aboutsummaryrefslogtreecommitdiff
path: root/core/crypto/aes-gcm-ghash-tbl.c
blob: 203b5300232784a7fbebcb4a6594b9211815941c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
// SPDX-License-Identifier: Apache-2.0
/*
 *  NIST SP800-38D compliant GCM implementation
 *
 *  Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
 *
 *  Licensed under the Apache License, Version 2.0 (the "License"); you may
 *  not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *  http://www.apache.org/licenses/LICENSE-2.0
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 */

#include <io.h>
#include <kernel/panic.h>
#include <string.h>
#include <tee_api_types.h>
#include <types_ext.h>

#include "aes-gcm-private.h"

/*
 * http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
 *
 * See also:
 * [MGV] http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/
gcm-revised-spec.pdf
 *
 * We use the algorithm described as Shoup's method with 4-bit tables in
 * [MGV] 4.1, pp. 12-13, to enhance speed without using too much memory.
 */

/*
 * Precompute small multiples of H, that is set
 *      HH[i] || HL[i] = H times i,
 * where i is seen as a field element as in [MGV], ie high-order bits
 * correspond to low powers of P. The result is stored in the same way, that
 * is the high-order bit of HH corresponds to P^0 and the low-order bit of HL
 * corresponds to P^127.
 */
void internal_aes_gcm_ghash_gen_tbl(struct internal_aes_gcm_state *state,
				    const struct internal_aes_gcm_key *ek)
{
	int i, j;
	uint64_t vl, vh;
	unsigned char h[16];

	memset(h, 0, 16);
	internal_aes_gcm_encrypt_block(ek, h, h);

	vh = get_be64(h);
	vl = get_be64(h + 8);

	/* 8 = 1000 corresponds to 1 in GF(2^128) */
	state->HL[8] = vl;
	state->HH[8] = vh;

	/* 0 corresponds to 0 in GF(2^128) */
	state->HH[0] = 0;
	state->HL[0] = 0;

	for (i = 4; i > 0; i >>= 1) {
		uint32_t T = (vl & 1) * 0xe1000000U;

		vl  = (vh << 63) | (vl >> 1);
		vh  = (vh >> 1) ^ ((uint64_t)T << 32);

		state->HL[i] = vl;
		state->HH[i] = vh;
	}

	for (i = 2; i <= 8; i *= 2) {
		uint64_t *HiL = state->HL + i, *HiH = state->HH + i;

		vh = *HiH;
		vl = *HiL;
		for (j = 1; j < i; j++) {
			HiH[j] = vh ^ state->HH[j];
			HiL[j] = vl ^ state->HL[j];
		}
	}
}

/*
 * Shoup's method for multiplication use this table with
 *      last4[x] = x times P^128
 * where x and last4[x] are seen as elements of GF(2^128) as in [MGV]
 */
static const uint64_t last4[16] = {
	0x0000, 0x1c20, 0x3840, 0x2460,
	0x7080, 0x6ca0, 0x48c0, 0x54e0,
	0xe100, 0xfd20, 0xd940, 0xc560,
	0x9180, 0x8da0, 0xa9c0, 0xb5e0
};

/*
 * Sets output to x times H using the precomputed tables.
 * x and output are seen as elements of GF(2^128) as in [MGV].
 */
static void gcm_mult(struct internal_aes_gcm_state *state,
		     const unsigned char x[16], unsigned char output[16])
{
	int i = 0;
	unsigned char lo, hi, rem;
	uint64_t zh, zl;

	lo = x[15] & 0xf;

	zh = state->HH[lo];
	zl = state->HL[lo];

	for (i = 15; i >= 0; i--) {
		lo = x[i] & 0xf;
		hi = x[i] >> 4;

		if (i != 15) {
			rem = (unsigned char)zl & 0xf;
			zl = (zh << 60) | (zl >> 4);
			zh = (zh >> 4);
			zh ^= (uint64_t)last4[rem] << 48;
			zh ^= state->HH[lo];
			zl ^= state->HL[lo];
		}

		rem = (unsigned char)zl & 0xf;
		zl = (zh << 60) | (zl >> 4);
		zh = (zh >> 4);
		zh ^= (uint64_t)last4[rem] << 48;
		zh ^= state->HH[hi];
		zl ^= state->HL[hi];
	}

	put_be64(output, zh);
	put_be64(output + 8, zl);
}

void internal_aes_gcm_ghash_update_block(struct internal_aes_gcm_state *state,
					 const void *data)
{
	void *y = state->hash_state;

	internal_aes_gcm_xor_block(y, data);
	gcm_mult(state, y, y);
}