summaryrefslogtreecommitdiff
path: root/libstdc++-v3/include/bits/unordered_map.h
blob: 0071d62e4620ae739a75a2e808ed931d7e24a2e1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
// unordered_map implementation -*- C++ -*-

// Copyright (C) 2010-2020 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.

// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.

// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
// <http://www.gnu.org/licenses/>.

/** @file bits/unordered_map.h
 *  This is an internal header file, included by other library headers.
 *  Do not attempt to use it directly. @headername{unordered_map}
 */

#ifndef _UNORDERED_MAP_H
#define _UNORDERED_MAP_H

namespace std _GLIBCXX_VISIBILITY(default)
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
_GLIBCXX_BEGIN_NAMESPACE_CONTAINER

  /// Base types for unordered_map.
  template<bool _Cache>
    using __umap_traits = __detail::_Hashtable_traits<_Cache, false, true>;

  template<typename _Key,
	   typename _Tp,
	   typename _Hash = hash<_Key>,
	   typename _Pred = std::equal_to<_Key>,
	   typename _Alloc = std::allocator<std::pair<const _Key, _Tp> >,
	   typename _Tr = __umap_traits<__cache_default<_Key, _Hash>::value>>
    using __umap_hashtable = _Hashtable<_Key, std::pair<const _Key, _Tp>,
                                        _Alloc, __detail::_Select1st,
				        _Pred, _Hash,
				        __detail::_Mod_range_hashing,
				        __detail::_Default_ranged_hash,
				        __detail::_Prime_rehash_policy, _Tr>;

  /// Base types for unordered_multimap.
  template<bool _Cache>
    using __ummap_traits = __detail::_Hashtable_traits<_Cache, false, false>;

  template<typename _Key,
	   typename _Tp,
	   typename _Hash = hash<_Key>,
	   typename _Pred = std::equal_to<_Key>,
	   typename _Alloc = std::allocator<std::pair<const _Key, _Tp> >,
	   typename _Tr = __ummap_traits<__cache_default<_Key, _Hash>::value>>
    using __ummap_hashtable = _Hashtable<_Key, std::pair<const _Key, _Tp>,
					 _Alloc, __detail::_Select1st,
					 _Pred, _Hash,
					 __detail::_Mod_range_hashing,
					 __detail::_Default_ranged_hash,
					 __detail::_Prime_rehash_policy, _Tr>;

  template<class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
    class unordered_multimap;

  /**
   *  @brief A standard container composed of unique keys (containing
   *  at most one of each key value) that associates values of another type
   *  with the keys.
   *
   *  @ingroup unordered_associative_containers
   *
   *  @tparam  _Key    Type of key objects.
   *  @tparam  _Tp     Type of mapped objects.
   *  @tparam  _Hash   Hashing function object type, defaults to hash<_Value>.
   *  @tparam  _Pred   Predicate function object type, defaults
   *                   to equal_to<_Value>.
   *  @tparam  _Alloc  Allocator type, defaults to 
   *                   std::allocator<std::pair<const _Key, _Tp>>.
   *
   *  Meets the requirements of a <a href="tables.html#65">container</a>, and
   *  <a href="tables.html#xx">unordered associative container</a>
   *
   * The resulting value type of the container is std::pair<const _Key, _Tp>.
   *
   *  Base is _Hashtable, dispatched at compile time via template
   *  alias __umap_hashtable.
   */
  template<typename _Key, typename _Tp,
	   typename _Hash = hash<_Key>,
	   typename _Pred = equal_to<_Key>,
	   typename _Alloc = allocator<std::pair<const _Key, _Tp>>>
    class unordered_map
    {
      typedef __umap_hashtable<_Key, _Tp, _Hash, _Pred, _Alloc>  _Hashtable;
      _Hashtable _M_h;

    public:
      // typedefs:
      //@{
      /// Public typedefs.
      typedef typename _Hashtable::key_type	key_type;
      typedef typename _Hashtable::value_type	value_type;
      typedef typename _Hashtable::mapped_type	mapped_type;
      typedef typename _Hashtable::hasher	hasher;
      typedef typename _Hashtable::key_equal	key_equal;
      typedef typename _Hashtable::allocator_type allocator_type;
      //@}

      //@{
      ///  Iterator-related typedefs.
      typedef typename _Hashtable::pointer		pointer;
      typedef typename _Hashtable::const_pointer	const_pointer;
      typedef typename _Hashtable::reference		reference;
      typedef typename _Hashtable::const_reference	const_reference;
      typedef typename _Hashtable::iterator		iterator;
      typedef typename _Hashtable::const_iterator	const_iterator;
      typedef typename _Hashtable::local_iterator	local_iterator;
      typedef typename _Hashtable::const_local_iterator	const_local_iterator;
      typedef typename _Hashtable::size_type		size_type;
      typedef typename _Hashtable::difference_type	difference_type;
      //@}

#if __cplusplus > 201402L
      using node_type = typename _Hashtable::node_type;
      using insert_return_type = typename _Hashtable::insert_return_type;
#endif

      //construct/destroy/copy

      /// Default constructor.
      unordered_map() = default;

      /**
       *  @brief  Default constructor creates no elements.
       *  @param __n  Minimal initial number of buckets.
       *  @param __hf  A hash functor.
       *  @param __eql  A key equality functor.
       *  @param __a  An allocator object.
       */
      explicit
      unordered_map(size_type __n,
		    const hasher& __hf = hasher(),
		    const key_equal& __eql = key_equal(),
		    const allocator_type& __a = allocator_type())
      : _M_h(__n, __hf, __eql, __a)
      { }

      /**
       *  @brief  Builds an %unordered_map from a range.
       *  @param  __first  An input iterator.
       *  @param  __last  An input iterator.
       *  @param __n  Minimal initial number of buckets.
       *  @param __hf  A hash functor.
       *  @param __eql  A key equality functor.
       *  @param __a  An allocator object.
       *
       *  Create an %unordered_map consisting of copies of the elements from
       *  [__first,__last).  This is linear in N (where N is
       *  distance(__first,__last)).
       */
      template<typename _InputIterator>
	unordered_map(_InputIterator __first, _InputIterator __last,
		      size_type __n = 0,
		      const hasher& __hf = hasher(),
		      const key_equal& __eql = key_equal(),
		      const allocator_type& __a = allocator_type())
	: _M_h(__first, __last, __n, __hf, __eql, __a)
	{ }

      /// Copy constructor.
      unordered_map(const unordered_map&) = default;

      /// Move constructor.
      unordered_map(unordered_map&&) = default;

      /**
       *  @brief Creates an %unordered_map with no elements.
       *  @param __a An allocator object.
       */
      explicit
      unordered_map(const allocator_type& __a)
	: _M_h(__a)
      { }

      /*
       *  @brief Copy constructor with allocator argument.
       * @param  __uset  Input %unordered_map to copy.
       * @param  __a  An allocator object.
       */
      unordered_map(const unordered_map& __umap,
		    const allocator_type& __a)
      : _M_h(__umap._M_h, __a)
      { }

      /*
       *  @brief  Move constructor with allocator argument.
       *  @param  __uset Input %unordered_map to move.
       *  @param  __a    An allocator object.
       */
      unordered_map(unordered_map&& __umap,
		    const allocator_type& __a)
      : _M_h(std::move(__umap._M_h), __a)
      { }

      /**
       *  @brief  Builds an %unordered_map from an initializer_list.
       *  @param  __l  An initializer_list.
       *  @param __n  Minimal initial number of buckets.
       *  @param __hf  A hash functor.
       *  @param __eql  A key equality functor.
       *  @param  __a  An allocator object.
       *
       *  Create an %unordered_map consisting of copies of the elements in the
       *  list. This is linear in N (where N is @a __l.size()).
       */
      unordered_map(initializer_list<value_type> __l,
		    size_type __n = 0,
		    const hasher& __hf = hasher(),
		    const key_equal& __eql = key_equal(),
		    const allocator_type& __a = allocator_type())
      : _M_h(__l, __n, __hf, __eql, __a)
      { }

      unordered_map(size_type __n, const allocator_type& __a)
      : unordered_map(__n, hasher(), key_equal(), __a)
      { }

      unordered_map(size_type __n, const hasher& __hf,
		    const allocator_type& __a)
      : unordered_map(__n, __hf, key_equal(), __a)
      { }

      template<typename _InputIterator>
	unordered_map(_InputIterator __first, _InputIterator __last,
		      size_type __n,
		      const allocator_type& __a)
	: unordered_map(__first, __last, __n, hasher(), key_equal(), __a)
	{ }

      template<typename _InputIterator>
	unordered_map(_InputIterator __first, _InputIterator __last,
		      size_type __n, const hasher& __hf,
		      const allocator_type& __a)
	  : unordered_map(__first, __last, __n, __hf, key_equal(), __a)
	{ }

      unordered_map(initializer_list<value_type> __l,
		    size_type __n,
		    const allocator_type& __a)
      : unordered_map(__l, __n, hasher(), key_equal(), __a)
      { }

      unordered_map(initializer_list<value_type> __l,
		    size_type __n, const hasher& __hf,
		    const allocator_type& __a)
      : unordered_map(__l, __n, __hf, key_equal(), __a)
      { }

      /// Copy assignment operator.
      unordered_map&
      operator=(const unordered_map&) = default;

      /// Move assignment operator.
      unordered_map&
      operator=(unordered_map&&) = default;

      /**
       *  @brief  %Unordered_map list assignment operator.
       *  @param  __l  An initializer_list.
       *
       *  This function fills an %unordered_map with copies of the elements in
       *  the initializer list @a __l.
       *
       *  Note that the assignment completely changes the %unordered_map and
       *  that the resulting %unordered_map's size is the same as the number
       *  of elements assigned.
       */
      unordered_map&
      operator=(initializer_list<value_type> __l)
      {
	_M_h = __l;
	return *this;
      }

      ///  Returns the allocator object used by the %unordered_map.
      allocator_type
      get_allocator() const noexcept
      { return _M_h.get_allocator(); }

      // size and capacity:

      ///  Returns true if the %unordered_map is empty.
      _GLIBCXX_NODISCARD bool
      empty() const noexcept
      { return _M_h.empty(); }

      ///  Returns the size of the %unordered_map.
      size_type
      size() const noexcept
      { return _M_h.size(); }

      ///  Returns the maximum size of the %unordered_map.
      size_type
      max_size() const noexcept
      { return _M_h.max_size(); }

      // iterators.

      /**
       *  Returns a read/write iterator that points to the first element in the
       *  %unordered_map.
       */
      iterator
      begin() noexcept
      { return _M_h.begin(); }

      //@{
      /**
       *  Returns a read-only (constant) iterator that points to the first
       *  element in the %unordered_map.
       */
      const_iterator
      begin() const noexcept
      { return _M_h.begin(); }

      const_iterator
      cbegin() const noexcept
      { return _M_h.begin(); }
      //@}

      /**
       *  Returns a read/write iterator that points one past the last element in
       *  the %unordered_map.
       */
      iterator
      end() noexcept
      { return _M_h.end(); }

      //@{
      /**
       *  Returns a read-only (constant) iterator that points one past the last
       *  element in the %unordered_map.
       */
      const_iterator
      end() const noexcept
      { return _M_h.end(); }

      const_iterator
      cend() const noexcept
      { return _M_h.end(); }
      //@}

      // modifiers.

      /**
       *  @brief Attempts to build and insert a std::pair into the
       *  %unordered_map.
       *
       *  @param __args  Arguments used to generate a new pair instance (see
       *	        std::piecewise_contruct for passing arguments to each
       *	        part of the pair constructor).
       *
       *  @return  A pair, of which the first element is an iterator that points
       *           to the possibly inserted pair, and the second is a bool that
       *           is true if the pair was actually inserted.
       *
       *  This function attempts to build and insert a (key, value) %pair into
       *  the %unordered_map.
       *  An %unordered_map relies on unique keys and thus a %pair is only
       *  inserted if its first element (the key) is not already present in the
       *  %unordered_map.
       *
       *  Insertion requires amortized constant time.
       */
      template<typename... _Args>
	std::pair<iterator, bool>
	emplace(_Args&&... __args)
	{ return _M_h.emplace(std::forward<_Args>(__args)...); }

      /**
       *  @brief Attempts to build and insert a std::pair into the
       *  %unordered_map.
       *
       *  @param  __pos  An iterator that serves as a hint as to where the pair
       *                should be inserted.
       *  @param  __args  Arguments used to generate a new pair instance (see
       *	         std::piecewise_contruct for passing arguments to each
       *	         part of the pair constructor).
       *  @return An iterator that points to the element with key of the
       *          std::pair built from @a __args (may or may not be that
       *          std::pair).
       *
       *  This function is not concerned about whether the insertion took place,
       *  and thus does not return a boolean like the single-argument emplace()
       *  does.
       *  Note that the first parameter is only a hint and can potentially
       *  improve the performance of the insertion process. A bad hint would
       *  cause no gains in efficiency.
       *
       *  See
       *  https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
       *  for more on @a hinting.
       *
       *  Insertion requires amortized constant time.
       */
      template<typename... _Args>
	iterator
	emplace_hint(const_iterator __pos, _Args&&... __args)
	{ return _M_h.emplace_hint(__pos, std::forward<_Args>(__args)...); }

#if __cplusplus > 201402L
      /// Extract a node.
      node_type
      extract(const_iterator __pos)
      {
	__glibcxx_assert(__pos != end());
	return _M_h.extract(__pos);
      }

      /// Extract a node.
      node_type
      extract(const key_type& __key)
      { return _M_h.extract(__key); }

      /// Re-insert an extracted node.
      insert_return_type
      insert(node_type&& __nh)
      { return _M_h._M_reinsert_node(std::move(__nh)); }

      /// Re-insert an extracted node.
      iterator
      insert(const_iterator, node_type&& __nh)
      { return _M_h._M_reinsert_node(std::move(__nh)).position; }

#define __cpp_lib_unordered_map_try_emplace 201411
      /**
       *  @brief Attempts to build and insert a std::pair into the
       *  %unordered_map.
       *
       *  @param __k    Key to use for finding a possibly existing pair in
       *                the unordered_map.
       *  @param __args  Arguments used to generate the .second for a 
       *                new pair instance.
       *
       *  @return  A pair, of which the first element is an iterator that points
       *           to the possibly inserted pair, and the second is a bool that
       *           is true if the pair was actually inserted.
       *
       *  This function attempts to build and insert a (key, value) %pair into
       *  the %unordered_map.
       *  An %unordered_map relies on unique keys and thus a %pair is only
       *  inserted if its first element (the key) is not already present in the
       *  %unordered_map.
       *  If a %pair is not inserted, this function has no effect.
       *
       *  Insertion requires amortized constant time.
       */
      template <typename... _Args>
        pair<iterator, bool>
        try_emplace(const key_type& __k, _Args&&... __args)
        {
          iterator __i = find(__k);
          if (__i == end())
            {
              __i = emplace(std::piecewise_construct,
                            std::forward_as_tuple(__k),
                            std::forward_as_tuple(
                              std::forward<_Args>(__args)...))
                .first;
              return {__i, true};
            }
          return {__i, false};
        }

      // move-capable overload
      template <typename... _Args>
        pair<iterator, bool>
        try_emplace(key_type&& __k, _Args&&... __args)
        {
          iterator __i = find(__k);
          if (__i == end())
            {
              __i = emplace(std::piecewise_construct,
                            std::forward_as_tuple(std::move(__k)),
                            std::forward_as_tuple(
                              std::forward<_Args>(__args)...))
                .first;
              return {__i, true};
            }
          return {__i, false};
        }

      /**
       *  @brief Attempts to build and insert a std::pair into the
       *  %unordered_map.
       *
       *  @param  __hint  An iterator that serves as a hint as to where the pair
       *                should be inserted.
       *  @param __k    Key to use for finding a possibly existing pair in
       *                the unordered_map.
       *  @param __args  Arguments used to generate the .second for a 
       *                new pair instance.
       *  @return An iterator that points to the element with key of the
       *          std::pair built from @a __args (may or may not be that
       *          std::pair).
       *
       *  This function is not concerned about whether the insertion took place,
       *  and thus does not return a boolean like the single-argument emplace()
       *  does. However, if insertion did not take place,
       *  this function has no effect.
       *  Note that the first parameter is only a hint and can potentially
       *  improve the performance of the insertion process. A bad hint would
       *  cause no gains in efficiency.
       *
       *  See
       *  https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
       *  for more on @a hinting.
       *
       *  Insertion requires amortized constant time.
       */
      template <typename... _Args>
        iterator
        try_emplace(const_iterator __hint, const key_type& __k,
                    _Args&&... __args)
        {
          iterator __i = find(__k);
          if (__i == end())
            __i = emplace_hint(__hint, std::piecewise_construct,
                               std::forward_as_tuple(__k),
                               std::forward_as_tuple(
                                 std::forward<_Args>(__args)...));
          return __i;
        }

      // move-capable overload
      template <typename... _Args>
        iterator
        try_emplace(const_iterator __hint, key_type&& __k, _Args&&... __args)
        {
          iterator __i = find(__k);
          if (__i == end())
            __i = emplace_hint(__hint, std::piecewise_construct,
                               std::forward_as_tuple(std::move(__k)),
                               std::forward_as_tuple(
                                 std::forward<_Args>(__args)...));
          return __i;
        }
#endif // C++17

      //@{
      /**
       *  @brief Attempts to insert a std::pair into the %unordered_map.

       *  @param __x Pair to be inserted (see std::make_pair for easy
       *	     creation of pairs).
       *
       *  @return  A pair, of which the first element is an iterator that 
       *           points to the possibly inserted pair, and the second is 
       *           a bool that is true if the pair was actually inserted.
       *
       *  This function attempts to insert a (key, value) %pair into the
       *  %unordered_map. An %unordered_map relies on unique keys and thus a
       *  %pair is only inserted if its first element (the key) is not already
       *  present in the %unordered_map.
       *
       *  Insertion requires amortized constant time.
       */
      std::pair<iterator, bool>
      insert(const value_type& __x)
      { return _M_h.insert(__x); }

      // _GLIBCXX_RESOLVE_LIB_DEFECTS
      // 2354. Unnecessary copying when inserting into maps with braced-init
      std::pair<iterator, bool>
      insert(value_type&& __x)
      { return _M_h.insert(std::move(__x)); }

      template<typename _Pair>
	__enable_if_t<is_constructible<value_type, _Pair&&>::value,
		      pair<iterator, bool>>
	insert(_Pair&& __x)
        { return _M_h.emplace(std::forward<_Pair>(__x)); }
      //@}

      //@{
      /**
       *  @brief Attempts to insert a std::pair into the %unordered_map.
       *  @param  __hint  An iterator that serves as a hint as to where the
       *                 pair should be inserted.
       *  @param  __x  Pair to be inserted (see std::make_pair for easy creation
       *               of pairs).
       *  @return An iterator that points to the element with key of
       *           @a __x (may or may not be the %pair passed in).
       *
       *  This function is not concerned about whether the insertion took place,
       *  and thus does not return a boolean like the single-argument insert()
       *  does.  Note that the first parameter is only a hint and can
       *  potentially improve the performance of the insertion process.  A bad
       *  hint would cause no gains in efficiency.
       *
       *  See
       *  https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
       *  for more on @a hinting.
       *
       *  Insertion requires amortized constant time.
       */
      iterator
      insert(const_iterator __hint, const value_type& __x)
      { return _M_h.insert(__hint, __x); }

      // _GLIBCXX_RESOLVE_LIB_DEFECTS
      // 2354. Unnecessary copying when inserting into maps with braced-init
      iterator
      insert(const_iterator __hint, value_type&& __x)
      { return _M_h.insert(__hint, std::move(__x)); }

      template<typename _Pair>
	__enable_if_t<is_constructible<value_type, _Pair&&>::value, iterator>
	insert(const_iterator __hint, _Pair&& __x)
	{ return _M_h.emplace_hint(__hint, std::forward<_Pair>(__x)); }
      //@}

      /**
       *  @brief A template function that attempts to insert a range of
       *  elements.
       *  @param  __first  Iterator pointing to the start of the range to be
       *                   inserted.
       *  @param  __last  Iterator pointing to the end of the range.
       *
       *  Complexity similar to that of the range constructor.
       */
      template<typename _InputIterator>
	void
	insert(_InputIterator __first, _InputIterator __last)
	{ _M_h.insert(__first, __last); }

      /**
       *  @brief Attempts to insert a list of elements into the %unordered_map.
       *  @param  __l  A std::initializer_list<value_type> of elements
       *               to be inserted.
       *
       *  Complexity similar to that of the range constructor.
       */
      void
      insert(initializer_list<value_type> __l)
      { _M_h.insert(__l); }


#if __cplusplus > 201402L
      /**
       *  @brief Attempts to insert a std::pair into the %unordered_map.
       *  @param __k    Key to use for finding a possibly existing pair in
       *                the map.
       *  @param __obj  Argument used to generate the .second for a pair 
       *                instance.
       *
       *  @return  A pair, of which the first element is an iterator that 
       *           points to the possibly inserted pair, and the second is 
       *           a bool that is true if the pair was actually inserted.
       *
       *  This function attempts to insert a (key, value) %pair into the
       *  %unordered_map. An %unordered_map relies on unique keys and thus a
       *  %pair is only inserted if its first element (the key) is not already
       *  present in the %unordered_map.
       *  If the %pair was already in the %unordered_map, the .second of 
       *  the %pair is assigned from __obj.
       *
       *  Insertion requires amortized constant time.
       */
      template <typename _Obj>
        pair<iterator, bool>
        insert_or_assign(const key_type& __k, _Obj&& __obj)
        {
          iterator __i = find(__k);
          if (__i == end())
            {
              __i = emplace(std::piecewise_construct,
                            std::forward_as_tuple(__k),
                            std::forward_as_tuple(std::forward<_Obj>(__obj)))
                .first;
              return {__i, true};
            }
          (*__i).second = std::forward<_Obj>(__obj);
          return {__i, false};
        }

      // move-capable overload
      template <typename _Obj>
        pair<iterator, bool>
        insert_or_assign(key_type&& __k, _Obj&& __obj)
        {
          iterator __i = find(__k);
          if (__i == end())
            {
              __i = emplace(std::piecewise_construct,
                            std::forward_as_tuple(std::move(__k)),
                            std::forward_as_tuple(std::forward<_Obj>(__obj)))
                .first;
              return {__i, true};
            }
          (*__i).second = std::forward<_Obj>(__obj);
          return {__i, false};
        }

      /**
       *  @brief Attempts to insert a std::pair into the %unordered_map.
       *  @param  __hint  An iterator that serves as a hint as to where the
       *                  pair should be inserted.
       *  @param __k    Key to use for finding a possibly existing pair in
       *                the unordered_map.
       *  @param __obj  Argument used to generate the .second for a pair 
       *                instance.
       *  @return An iterator that points to the element with key of
       *           @a __x (may or may not be the %pair passed in).
       *
       *  This function is not concerned about whether the insertion took place,
       *  and thus does not return a boolean like the single-argument insert()
       *  does.         
       *  If the %pair was already in the %unordered map, the .second of
       *  the %pair is assigned from __obj.
       *  Note that the first parameter is only a hint and can
       *  potentially improve the performance of the insertion process.  A bad
       *  hint would cause no gains in efficiency.
       *
       *  See
       *  https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
       *  for more on @a hinting.
       *
       *  Insertion requires amortized constant time.
       */
      template <typename _Obj>
        iterator
        insert_or_assign(const_iterator __hint, const key_type& __k,
                         _Obj&& __obj)
        {
          iterator __i = find(__k);
          if (__i == end())
            {
              return emplace_hint(__hint, std::piecewise_construct,
                                  std::forward_as_tuple(__k),
                                  std::forward_as_tuple(
                                    std::forward<_Obj>(__obj)));
            }
          (*__i).second = std::forward<_Obj>(__obj);
          return __i;
        }

      // move-capable overload
      template <typename _Obj>
        iterator
        insert_or_assign(const_iterator __hint, key_type&& __k, _Obj&& __obj)
        {
          iterator __i = find(__k);
          if (__i == end())
            {
              return emplace_hint(__hint, std::piecewise_construct,
                                  std::forward_as_tuple(std::move(__k)),
                                  std::forward_as_tuple(
                                    std::forward<_Obj>(__obj)));
            }
          (*__i).second = std::forward<_Obj>(__obj);
          return __i;
        }
#endif

      //@{
      /**
       *  @brief Erases an element from an %unordered_map.
       *  @param  __position  An iterator pointing to the element to be erased.
       *  @return An iterator pointing to the element immediately following
       *          @a __position prior to the element being erased. If no such
       *          element exists, end() is returned.
       *
       *  This function erases an element, pointed to by the given iterator,
       *  from an %unordered_map.
       *  Note that this function only erases the element, and that if the
       *  element is itself a pointer, the pointed-to memory is not touched in
       *  any way.  Managing the pointer is the user's responsibility.
       */
      iterator
      erase(const_iterator __position)
      { return _M_h.erase(__position); }

      // LWG 2059.
      iterator
      erase(iterator __position)
      { return _M_h.erase(__position); }
      //@}

      /**
       *  @brief Erases elements according to the provided key.
       *  @param  __x  Key of element to be erased.
       *  @return  The number of elements erased.
       *
       *  This function erases all the elements located by the given key from
       *  an %unordered_map. For an %unordered_map the result of this function
       *  can only be 0 (not present) or 1 (present).
       *  Note that this function only erases the element, and that if the
       *  element is itself a pointer, the pointed-to memory is not touched in
       *  any way.  Managing the pointer is the user's responsibility.
       */
      size_type
      erase(const key_type& __x)
      { return _M_h.erase(__x); }

      /**
       *  @brief Erases a [__first,__last) range of elements from an
       *  %unordered_map.
       *  @param  __first  Iterator pointing to the start of the range to be
       *                  erased.
       *  @param __last  Iterator pointing to the end of the range to
       *                be erased.
       *  @return The iterator @a __last.
       *
       *  This function erases a sequence of elements from an %unordered_map.
       *  Note that this function only erases the elements, and that if
       *  the element is itself a pointer, the pointed-to memory is not touched
       *  in any way.  Managing the pointer is the user's responsibility.
       */
      iterator
      erase(const_iterator __first, const_iterator __last)
      { return _M_h.erase(__first, __last); }

      /**
       *  Erases all elements in an %unordered_map.
       *  Note that this function only erases the elements, and that if the
       *  elements themselves are pointers, the pointed-to memory is not touched
       *  in any way.  Managing the pointer is the user's responsibility.
       */
      void
      clear() noexcept
      { _M_h.clear(); }

      /**
       *  @brief  Swaps data with another %unordered_map.
       *  @param  __x  An %unordered_map of the same element and allocator
       *  types.
       *
       *  This exchanges the elements between two %unordered_map in constant
       *  time.
       *  Note that the global std::swap() function is specialized such that
       *  std::swap(m1,m2) will feed to this function.
       */
      void
      swap(unordered_map& __x)
      noexcept( noexcept(_M_h.swap(__x._M_h)) )
      { _M_h.swap(__x._M_h); }

#if __cplusplus > 201402L
      template<typename, typename, typename>
	friend class std::_Hash_merge_helper;

      template<typename _H2, typename _P2>
	void
	merge(unordered_map<_Key, _Tp, _H2, _P2, _Alloc>& __source)
	{
	  using _Merge_helper = _Hash_merge_helper<unordered_map, _H2, _P2>;
	  _M_h._M_merge_unique(_Merge_helper::_S_get_table(__source));
	}

      template<typename _H2, typename _P2>
	void
	merge(unordered_map<_Key, _Tp, _H2, _P2, _Alloc>&& __source)
	{ merge(__source); }

      template<typename _H2, typename _P2>
	void
	merge(unordered_multimap<_Key, _Tp, _H2, _P2, _Alloc>& __source)
	{
	  using _Merge_helper = _Hash_merge_helper<unordered_map, _H2, _P2>;
	  _M_h._M_merge_unique(_Merge_helper::_S_get_table(__source));
	}

      template<typename _H2, typename _P2>
	void
	merge(unordered_multimap<_Key, _Tp, _H2, _P2, _Alloc>&& __source)
	{ merge(__source); }
#endif // C++17

      // observers.

      ///  Returns the hash functor object with which the %unordered_map was
      ///  constructed.
      hasher
      hash_function() const
      { return _M_h.hash_function(); }

      ///  Returns the key comparison object with which the %unordered_map was
      ///  constructed.
      key_equal
      key_eq() const
      { return _M_h.key_eq(); }

      // lookup.

      //@{
      /**
       *  @brief Tries to locate an element in an %unordered_map.
       *  @param  __x  Key to be located.
       *  @return  Iterator pointing to sought-after element, or end() if not
       *           found.
       *
       *  This function takes a key and tries to locate the element with which
       *  the key matches.  If successful the function returns an iterator
       *  pointing to the sought after element.  If unsuccessful it returns the
       *  past-the-end ( @c end() ) iterator.
       */
      iterator
      find(const key_type& __x)
      { return _M_h.find(__x); }

      const_iterator
      find(const key_type& __x) const
      { return _M_h.find(__x); }
      //@}

      /**
       *  @brief  Finds the number of elements.
       *  @param  __x  Key to count.
       *  @return  Number of elements with specified key.
       *
       *  This function only makes sense for %unordered_multimap; for
       *  %unordered_map the result will either be 0 (not present) or 1
       *  (present).
       */
      size_type
      count(const key_type& __x) const
      { return _M_h.count(__x); }

#if __cplusplus > 201703L
      /**
       *  @brief  Finds whether an element with the given key exists.
       *  @param  __x  Key of elements to be located.
       *  @return  True if there is any element with the specified key.
       */
      bool
      contains(const key_type& __x) const
      { return _M_h.find(__x) != _M_h.end(); }
#endif

      //@{
      /**
       *  @brief Finds a subsequence matching given key.
       *  @param  __x  Key to be located.
       *  @return  Pair of iterators that possibly points to the subsequence
       *           matching given key.
       *
       *  This function probably only makes sense for %unordered_multimap.
       */
      std::pair<iterator, iterator>
      equal_range(const key_type& __x)
      { return _M_h.equal_range(__x); }

      std::pair<const_iterator, const_iterator>
      equal_range(const key_type& __x) const
      { return _M_h.equal_range(__x); }
      //@}

      //@{
      /**
       *  @brief  Subscript ( @c [] ) access to %unordered_map data.
       *  @param  __k  The key for which data should be retrieved.
       *  @return  A reference to the data of the (key,data) %pair.
       *
       *  Allows for easy lookup with the subscript ( @c [] )operator.  Returns
       *  data associated with the key specified in subscript.  If the key does
       *  not exist, a pair with that key is created using default values, which
       *  is then returned.
       *
       *  Lookup requires constant time.
       */
      mapped_type&
      operator[](const key_type& __k)
      { return _M_h[__k]; }

      mapped_type&
      operator[](key_type&& __k)
      { return _M_h[std::move(__k)]; }
      //@}

      //@{
      /**
       *  @brief  Access to %unordered_map data.
       *  @param  __k  The key for which data should be retrieved.
       *  @return  A reference to the data whose key is equal to @a __k, if
       *           such a data is present in the %unordered_map.
       *  @throw  std::out_of_range  If no such data is present.
       */
      mapped_type&
      at(const key_type& __k)
      { return _M_h.at(__k); }

      const mapped_type&
      at(const key_type& __k) const
      { return _M_h.at(__k); }
      //@}

      // bucket interface.

      /// Returns the number of buckets of the %unordered_map.
      size_type
      bucket_count() const noexcept
      { return _M_h.bucket_count(); }

      /// Returns the maximum number of buckets of the %unordered_map.
      size_type
      max_bucket_count() const noexcept
      { return _M_h.max_bucket_count(); }

      /*
       * @brief  Returns the number of elements in a given bucket.
       * @param  __n  A bucket index.
       * @return  The number of elements in the bucket.
       */
      size_type
      bucket_size(size_type __n) const
      { return _M_h.bucket_size(__n); }

      /*
       * @brief  Returns the bucket index of a given element.
       * @param  __key  A key instance.
       * @return  The key bucket index.
       */
      size_type
      bucket(const key_type& __key) const
      { return _M_h.bucket(__key); }
      
      /**
       *  @brief  Returns a read/write iterator pointing to the first bucket
       *         element.
       *  @param  __n The bucket index.
       *  @return  A read/write local iterator.
       */
      local_iterator
      begin(size_type __n)
      { return _M_h.begin(__n); }

      //@{
      /**
       *  @brief  Returns a read-only (constant) iterator pointing to the first
       *         bucket element.
       *  @param  __n The bucket index.
       *  @return  A read-only local iterator.
       */
      const_local_iterator
      begin(size_type __n) const
      { return _M_h.begin(__n); }

      const_local_iterator
      cbegin(size_type __n) const
      { return _M_h.cbegin(__n); }
      //@}

      /**
       *  @brief  Returns a read/write iterator pointing to one past the last
       *         bucket elements.
       *  @param  __n The bucket index.
       *  @return  A read/write local iterator.
       */
      local_iterator
      end(size_type __n)
      { return _M_h.end(__n); }

      //@{
      /**
       *  @brief  Returns a read-only (constant) iterator pointing to one past
       *         the last bucket elements.
       *  @param  __n The bucket index.
       *  @return  A read-only local iterator.
       */
      const_local_iterator
      end(size_type __n) const
      { return _M_h.end(__n); }

      const_local_iterator
      cend(size_type __n) const
      { return _M_h.cend(__n); }
      //@}

      // hash policy.

      /// Returns the average number of elements per bucket.
      float
      load_factor() const noexcept
      { return _M_h.load_factor(); }

      /// Returns a positive number that the %unordered_map tries to keep the
      /// load factor less than or equal to.
      float
      max_load_factor() const noexcept
      { return _M_h.max_load_factor(); }

      /**
       *  @brief  Change the %unordered_map maximum load factor.
       *  @param  __z The new maximum load factor.
       */
      void
      max_load_factor(float __z)
      { _M_h.max_load_factor(__z); }

      /**
       *  @brief  May rehash the %unordered_map.
       *  @param  __n The new number of buckets.
       *
       *  Rehash will occur only if the new number of buckets respect the
       *  %unordered_map maximum load factor.
       */
      void
      rehash(size_type __n)
      { _M_h.rehash(__n); }

      /**
       *  @brief  Prepare the %unordered_map for a specified number of
       *          elements.
       *  @param  __n Number of elements required.
       *
       *  Same as rehash(ceil(n / max_load_factor())).
       */
      void
      reserve(size_type __n)
      { _M_h.reserve(__n); }

      template<typename _Key1, typename _Tp1, typename _Hash1, typename _Pred1,
	       typename _Alloc1>
        friend bool
	operator==(const unordered_map<_Key1, _Tp1, _Hash1, _Pred1, _Alloc1>&,
		   const unordered_map<_Key1, _Tp1, _Hash1, _Pred1, _Alloc1>&);
    };

#if __cpp_deduction_guides >= 201606

  template<typename _InputIterator,
	   typename _Hash = hash<__iter_key_t<_InputIterator>>,
	   typename _Pred = equal_to<__iter_key_t<_InputIterator>>,
	   typename _Allocator = allocator<__iter_to_alloc_t<_InputIterator>>,
	   typename = _RequireInputIter<_InputIterator>,
	   typename = _RequireNotAllocatorOrIntegral<_Hash>,
	   typename = _RequireNotAllocator<_Pred>,
	   typename = _RequireAllocator<_Allocator>>
    unordered_map(_InputIterator, _InputIterator,
		  typename unordered_map<int, int>::size_type = {},
		  _Hash = _Hash(), _Pred = _Pred(), _Allocator = _Allocator())
    -> unordered_map<__iter_key_t<_InputIterator>,
		     __iter_val_t<_InputIterator>,
		     _Hash, _Pred, _Allocator>;

  template<typename _Key, typename _Tp, typename _Hash = hash<_Key>,
	   typename _Pred = equal_to<_Key>,
	   typename _Allocator = allocator<pair<const _Key, _Tp>>,
	   typename = _RequireNotAllocatorOrIntegral<_Hash>,
	   typename = _RequireNotAllocator<_Pred>,
	   typename = _RequireAllocator<_Allocator>>
    unordered_map(initializer_list<pair<_Key, _Tp>>,
		  typename unordered_map<int, int>::size_type = {},
		  _Hash = _Hash(), _Pred = _Pred(), _Allocator = _Allocator())
    -> unordered_map<_Key, _Tp, _Hash, _Pred, _Allocator>;

  template<typename _InputIterator, typename _Allocator,
	   typename = _RequireInputIter<_InputIterator>,
	   typename = _RequireAllocator<_Allocator>>
    unordered_map(_InputIterator, _InputIterator,
		  typename unordered_map<int, int>::size_type, _Allocator)
    -> unordered_map<__iter_key_t<_InputIterator>,
		     __iter_val_t<_InputIterator>,
		     hash<__iter_key_t<_InputIterator>>,
		     equal_to<__iter_key_t<_InputIterator>>,
		     _Allocator>;

  template<typename _InputIterator, typename _Allocator,
	   typename = _RequireInputIter<_InputIterator>,
	   typename = _RequireAllocator<_Allocator>>
    unordered_map(_InputIterator, _InputIterator, _Allocator)
    -> unordered_map<__iter_key_t<_InputIterator>,
		     __iter_val_t<_InputIterator>,
		     hash<__iter_key_t<_InputIterator>>,
		     equal_to<__iter_key_t<_InputIterator>>,
		     _Allocator>;

  template<typename _InputIterator, typename _Hash, typename _Allocator,
	   typename = _RequireInputIter<_InputIterator>,
	   typename = _RequireNotAllocatorOrIntegral<_Hash>,
	   typename = _RequireAllocator<_Allocator>>
    unordered_map(_InputIterator, _InputIterator,
		  typename unordered_map<int, int>::size_type,
		  _Hash, _Allocator)
    -> unordered_map<__iter_key_t<_InputIterator>,
		     __iter_val_t<_InputIterator>, _Hash,
		     equal_to<__iter_key_t<_InputIterator>>, _Allocator>;

  template<typename _Key, typename _Tp, typename _Allocator,
	   typename = _RequireAllocator<_Allocator>>
    unordered_map(initializer_list<pair<_Key, _Tp>>,
		  typename unordered_map<int, int>::size_type,
		  _Allocator)
    -> unordered_map<_Key, _Tp, hash<_Key>, equal_to<_Key>, _Allocator>;

  template<typename _Key, typename _Tp, typename _Allocator,
	   typename = _RequireAllocator<_Allocator>>
    unordered_map(initializer_list<pair<_Key, _Tp>>, _Allocator)
    -> unordered_map<_Key, _Tp, hash<_Key>, equal_to<_Key>, _Allocator>;

  template<typename _Key, typename _Tp, typename _Hash, typename _Allocator,
	   typename = _RequireNotAllocatorOrIntegral<_Hash>,
	   typename = _RequireAllocator<_Allocator>>
    unordered_map(initializer_list<pair<_Key, _Tp>>,
		  typename unordered_map<int, int>::size_type,
		  _Hash, _Allocator)
    -> unordered_map<_Key, _Tp, _Hash, equal_to<_Key>, _Allocator>;

#endif

  /**
   *  @brief A standard container composed of equivalent keys
   *  (possibly containing multiple of each key value) that associates
   *  values of another type with the keys.
   *
   *  @ingroup unordered_associative_containers
   *
   *  @tparam  _Key    Type of key objects.
   *  @tparam  _Tp     Type of mapped objects.
   *  @tparam  _Hash   Hashing function object type, defaults to hash<_Value>.
   *  @tparam  _Pred   Predicate function object type, defaults
   *                   to equal_to<_Value>.
   *  @tparam  _Alloc  Allocator type, defaults to
   *                   std::allocator<std::pair<const _Key, _Tp>>.
   *
   *  Meets the requirements of a <a href="tables.html#65">container</a>, and
   *  <a href="tables.html#xx">unordered associative container</a>
   *
   * The resulting value type of the container is std::pair<const _Key, _Tp>.
   *
   *  Base is _Hashtable, dispatched at compile time via template
   *  alias __ummap_hashtable.
   */
  template<typename _Key, typename _Tp,
	   typename _Hash = hash<_Key>,
	   typename _Pred = equal_to<_Key>,
	   typename _Alloc = allocator<std::pair<const _Key, _Tp>>>
    class unordered_multimap
    {
      typedef __ummap_hashtable<_Key, _Tp, _Hash, _Pred, _Alloc>  _Hashtable;
      _Hashtable _M_h;

    public:
      // typedefs:
      //@{
      /// Public typedefs.
      typedef typename _Hashtable::key_type	key_type;
      typedef typename _Hashtable::value_type	value_type;
      typedef typename _Hashtable::mapped_type	mapped_type;
      typedef typename _Hashtable::hasher	hasher;
      typedef typename _Hashtable::key_equal	key_equal;
      typedef typename _Hashtable::allocator_type allocator_type;
      //@}

      //@{
      ///  Iterator-related typedefs.
      typedef typename _Hashtable::pointer		pointer;
      typedef typename _Hashtable::const_pointer	const_pointer;
      typedef typename _Hashtable::reference		reference;
      typedef typename _Hashtable::const_reference	const_reference;
      typedef typename _Hashtable::iterator		iterator;
      typedef typename _Hashtable::const_iterator	const_iterator;
      typedef typename _Hashtable::local_iterator	local_iterator;
      typedef typename _Hashtable::const_local_iterator	const_local_iterator;
      typedef typename _Hashtable::size_type		size_type;
      typedef typename _Hashtable::difference_type	difference_type;
      //@}

#if __cplusplus > 201402L
      using node_type = typename _Hashtable::node_type;
#endif

      //construct/destroy/copy

      /// Default constructor.
      unordered_multimap() = default;

      /**
       *  @brief  Default constructor creates no elements.
       *  @param __n  Mnimal initial number of buckets.
       *  @param __hf  A hash functor.
       *  @param __eql  A key equality functor.
       *  @param __a  An allocator object.
       */
      explicit
      unordered_multimap(size_type __n,
			 const hasher& __hf = hasher(),
			 const key_equal& __eql = key_equal(),
			 const allocator_type& __a = allocator_type())
      : _M_h(__n, __hf, __eql, __a)
      { }

      /**
       *  @brief  Builds an %unordered_multimap from a range.
       *  @param  __first An input iterator.
       *  @param  __last  An input iterator.
       *  @param __n      Minimal initial number of buckets.
       *  @param __hf     A hash functor.
       *  @param __eql    A key equality functor.
       *  @param __a      An allocator object.
       *
       *  Create an %unordered_multimap consisting of copies of the elements
       *  from [__first,__last).  This is linear in N (where N is
       *  distance(__first,__last)).
       */
      template<typename _InputIterator>
	unordered_multimap(_InputIterator __first, _InputIterator __last,
			   size_type __n = 0,
			   const hasher& __hf = hasher(),
			   const key_equal& __eql = key_equal(),
			   const allocator_type& __a = allocator_type())
	: _M_h(__first, __last, __n, __hf, __eql, __a)
	{ }

      /// Copy constructor.
      unordered_multimap(const unordered_multimap&) = default;

      /// Move constructor.
      unordered_multimap(unordered_multimap&&) = default;

      /**
       *  @brief Creates an %unordered_multimap with no elements.
       *  @param __a An allocator object.
       */
      explicit
      unordered_multimap(const allocator_type& __a)
      : _M_h(__a)
      { }

      /*
       *  @brief Copy constructor with allocator argument.
       * @param  __uset  Input %unordered_multimap to copy.
       * @param  __a  An allocator object.
       */
      unordered_multimap(const unordered_multimap& __ummap,
			 const allocator_type& __a)
      : _M_h(__ummap._M_h, __a)
      { }

      /*
       *  @brief  Move constructor with allocator argument.
       *  @param  __uset Input %unordered_multimap to move.
       *  @param  __a    An allocator object.
       */
      unordered_multimap(unordered_multimap&& __ummap,
			 const allocator_type& __a)
      : _M_h(std::move(__ummap._M_h), __a)
      { }

      /**
       *  @brief  Builds an %unordered_multimap from an initializer_list.
       *  @param  __l  An initializer_list.
       *  @param __n  Minimal initial number of buckets.
       *  @param __hf  A hash functor.
       *  @param __eql  A key equality functor.
       *  @param  __a  An allocator object.
       *
       *  Create an %unordered_multimap consisting of copies of the elements in
       *  the list. This is linear in N (where N is @a __l.size()).
       */
      unordered_multimap(initializer_list<value_type> __l,
			 size_type __n = 0,
			 const hasher& __hf = hasher(),
			 const key_equal& __eql = key_equal(),
			 const allocator_type& __a = allocator_type())
      : _M_h(__l, __n, __hf, __eql, __a)
      { }

      unordered_multimap(size_type __n, const allocator_type& __a)
      : unordered_multimap(__n, hasher(), key_equal(), __a)
      { }

      unordered_multimap(size_type __n, const hasher& __hf,
			 const allocator_type& __a)
      : unordered_multimap(__n, __hf, key_equal(), __a)
      { }

      template<typename _InputIterator>
	unordered_multimap(_InputIterator __first, _InputIterator __last,
			   size_type __n,
			   const allocator_type& __a)
	: unordered_multimap(__first, __last, __n, hasher(), key_equal(), __a)
	{ }

      template<typename _InputIterator>
	unordered_multimap(_InputIterator __first, _InputIterator __last,
			   size_type __n, const hasher& __hf,
			   const allocator_type& __a)
	: unordered_multimap(__first, __last, __n, __hf, key_equal(), __a)
	{ }

      unordered_multimap(initializer_list<value_type> __l,
			 size_type __n,
			 const allocator_type& __a)
      : unordered_multimap(__l, __n, hasher(), key_equal(), __a)
      { }

      unordered_multimap(initializer_list<value_type> __l,
			 size_type __n, const hasher& __hf,
			 const allocator_type& __a)
      : unordered_multimap(__l, __n, __hf, key_equal(), __a)
      { }

      /// Copy assignment operator.
      unordered_multimap&
      operator=(const unordered_multimap&) = default;

      /// Move assignment operator.
      unordered_multimap&
      operator=(unordered_multimap&&) = default;

      /**
       *  @brief  %Unordered_multimap list assignment operator.
       *  @param  __l  An initializer_list.
       *
       *  This function fills an %unordered_multimap with copies of the
       *  elements in the initializer list @a __l.
       *
       *  Note that the assignment completely changes the %unordered_multimap
       *  and that the resulting %unordered_multimap's size is the same as the
       *  number of elements assigned.
       */
      unordered_multimap&
      operator=(initializer_list<value_type> __l)
      {
	_M_h = __l;
	return *this;
      }

      ///  Returns the allocator object used by the %unordered_multimap.
      allocator_type
      get_allocator() const noexcept
      { return _M_h.get_allocator(); }

      // size and capacity:

      ///  Returns true if the %unordered_multimap is empty.
      _GLIBCXX_NODISCARD bool
      empty() const noexcept
      { return _M_h.empty(); }

      ///  Returns the size of the %unordered_multimap.
      size_type
      size() const noexcept
      { return _M_h.size(); }

      ///  Returns the maximum size of the %unordered_multimap.
      size_type
      max_size() const noexcept
      { return _M_h.max_size(); }

      // iterators.

      /**
       *  Returns a read/write iterator that points to the first element in the
       *  %unordered_multimap.
       */
      iterator
      begin() noexcept
      { return _M_h.begin(); }

      //@{
      /**
       *  Returns a read-only (constant) iterator that points to the first
       *  element in the %unordered_multimap.
       */
      const_iterator
      begin() const noexcept
      { return _M_h.begin(); }

      const_iterator
      cbegin() const noexcept
      { return _M_h.begin(); }
      //@}

      /**
       *  Returns a read/write iterator that points one past the last element in
       *  the %unordered_multimap.
       */
      iterator
      end() noexcept
      { return _M_h.end(); }

      //@{
      /**
       *  Returns a read-only (constant) iterator that points one past the last
       *  element in the %unordered_multimap.
       */
      const_iterator
      end() const noexcept
      { return _M_h.end(); }

      const_iterator
      cend() const noexcept
      { return _M_h.end(); }
      //@}

      // modifiers.

      /**
       *  @brief Attempts to build and insert a std::pair into the
       *  %unordered_multimap.
       *
       *  @param __args  Arguments used to generate a new pair instance (see
       *	        std::piecewise_contruct for passing arguments to each
       *	        part of the pair constructor).
       *
       *  @return  An iterator that points to the inserted pair.
       *
       *  This function attempts to build and insert a (key, value) %pair into
       *  the %unordered_multimap.
       *
       *  Insertion requires amortized constant time.
       */
      template<typename... _Args>
	iterator
	emplace(_Args&&... __args)
	{ return _M_h.emplace(std::forward<_Args>(__args)...); }

      /**
       *  @brief Attempts to build and insert a std::pair into the
       *  %unordered_multimap.
       *
       *  @param  __pos  An iterator that serves as a hint as to where the pair
       *                should be inserted.
       *  @param  __args  Arguments used to generate a new pair instance (see
       *	         std::piecewise_contruct for passing arguments to each
       *	         part of the pair constructor).
       *  @return An iterator that points to the element with key of the
       *          std::pair built from @a __args.
       *
       *  Note that the first parameter is only a hint and can potentially
       *  improve the performance of the insertion process. A bad hint would
       *  cause no gains in efficiency.
       *
       *  See
       *  https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
       *  for more on @a hinting.
       *
       *  Insertion requires amortized constant time.
       */
      template<typename... _Args>
	iterator
	emplace_hint(const_iterator __pos, _Args&&... __args)
	{ return _M_h.emplace_hint(__pos, std::forward<_Args>(__args)...); }

      //@{
      /**
       *  @brief Inserts a std::pair into the %unordered_multimap.
       *  @param __x Pair to be inserted (see std::make_pair for easy
       *	     creation of pairs).
       *
       *  @return  An iterator that points to the inserted pair.
       *
       *  Insertion requires amortized constant time.
       */
      iterator
      insert(const value_type& __x)
      { return _M_h.insert(__x); }

      iterator
      insert(value_type&& __x)
      { return _M_h.insert(std::move(__x)); }

      template<typename _Pair>
	__enable_if_t<is_constructible<value_type, _Pair&&>::value, iterator>
	insert(_Pair&& __x)
        { return _M_h.emplace(std::forward<_Pair>(__x)); }
      //@}

      //@{
      /**
       *  @brief Inserts a std::pair into the %unordered_multimap.
       *  @param  __hint  An iterator that serves as a hint as to where the
       *                 pair should be inserted.
       *  @param  __x  Pair to be inserted (see std::make_pair for easy creation
       *               of pairs).
       *  @return An iterator that points to the element with key of
       *           @a __x (may or may not be the %pair passed in).
       *
       *  Note that the first parameter is only a hint and can potentially
       *  improve the performance of the insertion process.  A bad hint would
       *  cause no gains in efficiency.
       *
       *  See
       *  https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
       *  for more on @a hinting.
       *
       *  Insertion requires amortized constant time.
       */
      iterator
      insert(const_iterator __hint, const value_type& __x)
      { return _M_h.insert(__hint, __x); }

      // _GLIBCXX_RESOLVE_LIB_DEFECTS
      // 2354. Unnecessary copying when inserting into maps with braced-init
      iterator
      insert(const_iterator __hint, value_type&& __x)
      { return _M_h.insert(__hint, std::move(__x)); }

      template<typename _Pair>
	__enable_if_t<is_constructible<value_type, _Pair&&>::value, iterator>
	insert(const_iterator __hint, _Pair&& __x)
        { return _M_h.emplace_hint(__hint, std::forward<_Pair>(__x)); }
      //@}

      /**
       *  @brief A template function that attempts to insert a range of
       *  elements.
       *  @param  __first  Iterator pointing to the start of the range to be
       *                   inserted.
       *  @param  __last  Iterator pointing to the end of the range.
       *
       *  Complexity similar to that of the range constructor.
       */
      template<typename _InputIterator>
	void
	insert(_InputIterator __first, _InputIterator __last)
	{ _M_h.insert(__first, __last); }

      /**
       *  @brief Attempts to insert a list of elements into the
       *  %unordered_multimap.
       *  @param  __l  A std::initializer_list<value_type> of elements
       *               to be inserted.
       *
       *  Complexity similar to that of the range constructor.
       */
      void
      insert(initializer_list<value_type> __l)
      { _M_h.insert(__l); }

#if __cplusplus > 201402L
      /// Extract a node.
      node_type
      extract(const_iterator __pos)
      {
	__glibcxx_assert(__pos != end());
	return _M_h.extract(__pos);
      }

      /// Extract a node.
      node_type
      extract(const key_type& __key)
      { return _M_h.extract(__key); }

      /// Re-insert an extracted node.
      iterator
      insert(node_type&& __nh)
      { return _M_h._M_reinsert_node_multi(cend(), std::move(__nh)); }

      /// Re-insert an extracted node.
      iterator
      insert(const_iterator __hint, node_type&& __nh)
      { return _M_h._M_reinsert_node_multi(__hint, std::move(__nh)); }
#endif // C++17

      //@{
      /**
       *  @brief Erases an element from an %unordered_multimap.
       *  @param  __position  An iterator pointing to the element to be erased.
       *  @return An iterator pointing to the element immediately following
       *          @a __position prior to the element being erased. If no such
       *          element exists, end() is returned.
       *
       *  This function erases an element, pointed to by the given iterator,
       *  from an %unordered_multimap.
       *  Note that this function only erases the element, and that if the
       *  element is itself a pointer, the pointed-to memory is not touched in
       *  any way.  Managing the pointer is the user's responsibility.
       */
      iterator
      erase(const_iterator __position)
      { return _M_h.erase(__position); }

      // LWG 2059.
      iterator
      erase(iterator __position)
      { return _M_h.erase(__position); }
      //@}

      /**
       *  @brief Erases elements according to the provided key.
       *  @param  __x  Key of elements to be erased.
       *  @return  The number of elements erased.
       *
       *  This function erases all the elements located by the given key from
       *  an %unordered_multimap.
       *  Note that this function only erases the element, and that if the
       *  element is itself a pointer, the pointed-to memory is not touched in
       *  any way.  Managing the pointer is the user's responsibility.
       */
      size_type
      erase(const key_type& __x)
      { return _M_h.erase(__x); }

      /**
       *  @brief Erases a [__first,__last) range of elements from an
       *  %unordered_multimap.
       *  @param  __first  Iterator pointing to the start of the range to be
       *                  erased.
       *  @param __last  Iterator pointing to the end of the range to
       *                be erased.
       *  @return The iterator @a __last.
       *
       *  This function erases a sequence of elements from an
       *  %unordered_multimap.
       *  Note that this function only erases the elements, and that if
       *  the element is itself a pointer, the pointed-to memory is not touched
       *  in any way.  Managing the pointer is the user's responsibility.
       */
      iterator
      erase(const_iterator __first, const_iterator __last)
      { return _M_h.erase(__first, __last); }

      /**
       *  Erases all elements in an %unordered_multimap.
       *  Note that this function only erases the elements, and that if the
       *  elements themselves are pointers, the pointed-to memory is not touched
       *  in any way.  Managing the pointer is the user's responsibility.
       */
      void
      clear() noexcept
      { _M_h.clear(); }

      /**
       *  @brief  Swaps data with another %unordered_multimap.
       *  @param  __x  An %unordered_multimap of the same element and allocator
       *  types.
       *
       *  This exchanges the elements between two %unordered_multimap in
       *  constant time.
       *  Note that the global std::swap() function is specialized such that
       *  std::swap(m1,m2) will feed to this function.
       */
      void
      swap(unordered_multimap& __x)
      noexcept( noexcept(_M_h.swap(__x._M_h)) )
      { _M_h.swap(__x._M_h); }

#if __cplusplus > 201402L
      template<typename, typename, typename>
	friend class std::_Hash_merge_helper;

      template<typename _H2, typename _P2>
	void
	merge(unordered_multimap<_Key, _Tp, _H2, _P2, _Alloc>& __source)
	{
	  using _Merge_helper
	    = _Hash_merge_helper<unordered_multimap, _H2, _P2>;
	  _M_h._M_merge_multi(_Merge_helper::_S_get_table(__source));
	}

      template<typename _H2, typename _P2>
	void
	merge(unordered_multimap<_Key, _Tp, _H2, _P2, _Alloc>&& __source)
	{ merge(__source); }

      template<typename _H2, typename _P2>
	void
	merge(unordered_map<_Key, _Tp, _H2, _P2, _Alloc>& __source)
	{
	  using _Merge_helper
	    = _Hash_merge_helper<unordered_multimap, _H2, _P2>;
	  _M_h._M_merge_multi(_Merge_helper::_S_get_table(__source));
	}

      template<typename _H2, typename _P2>
	void
	merge(unordered_map<_Key, _Tp, _H2, _P2, _Alloc>&& __source)
	{ merge(__source); }
#endif // C++17

      // observers.

      ///  Returns the hash functor object with which the %unordered_multimap
      ///  was constructed.
      hasher
      hash_function() const
      { return _M_h.hash_function(); }

      ///  Returns the key comparison object with which the %unordered_multimap
      ///  was constructed.
      key_equal
      key_eq() const
      { return _M_h.key_eq(); }

      // lookup.

      //@{
      /**
       *  @brief Tries to locate an element in an %unordered_multimap.
       *  @param  __x  Key to be located.
       *  @return  Iterator pointing to sought-after element, or end() if not
       *           found.
       *
       *  This function takes a key and tries to locate the element with which
       *  the key matches.  If successful the function returns an iterator
       *  pointing to the sought after element.  If unsuccessful it returns the
       *  past-the-end ( @c end() ) iterator.
       */
      iterator
      find(const key_type& __x)
      { return _M_h.find(__x); }

      const_iterator
      find(const key_type& __x) const
      { return _M_h.find(__x); }
      //@}

      /**
       *  @brief  Finds the number of elements.
       *  @param  __x  Key to count.
       *  @return  Number of elements with specified key.
       */
      size_type
      count(const key_type& __x) const
      { return _M_h.count(__x); }

#if __cplusplus > 201703L
      /**
       *  @brief  Finds whether an element with the given key exists.
       *  @param  __x  Key of elements to be located.
       *  @return  True if there is any element with the specified key.
       */
      bool
      contains(const key_type& __x) const
      { return _M_h.find(__x) != _M_h.end(); }
#endif

      //@{
      /**
       *  @brief Finds a subsequence matching given key.
       *  @param  __x  Key to be located.
       *  @return  Pair of iterators that possibly points to the subsequence
       *           matching given key.
       */
      std::pair<iterator, iterator>
      equal_range(const key_type& __x)
      { return _M_h.equal_range(__x); }

      std::pair<const_iterator, const_iterator>
      equal_range(const key_type& __x) const
      { return _M_h.equal_range(__x); }
      //@}

      // bucket interface.

      /// Returns the number of buckets of the %unordered_multimap.
      size_type
      bucket_count() const noexcept
      { return _M_h.bucket_count(); }

      /// Returns the maximum number of buckets of the %unordered_multimap.
      size_type
      max_bucket_count() const noexcept
      { return _M_h.max_bucket_count(); }

      /*
       * @brief  Returns the number of elements in a given bucket.
       * @param  __n  A bucket index.
       * @return  The number of elements in the bucket.
       */
      size_type
      bucket_size(size_type __n) const
      { return _M_h.bucket_size(__n); }

      /*
       * @brief  Returns the bucket index of a given element.
       * @param  __key  A key instance.
       * @return  The key bucket index.
       */
      size_type
      bucket(const key_type& __key) const
      { return _M_h.bucket(__key); }
      
      /**
       *  @brief  Returns a read/write iterator pointing to the first bucket
       *         element.
       *  @param  __n The bucket index.
       *  @return  A read/write local iterator.
       */
      local_iterator
      begin(size_type __n)
      { return _M_h.begin(__n); }

      //@{
      /**
       *  @brief  Returns a read-only (constant) iterator pointing to the first
       *         bucket element.
       *  @param  __n The bucket index.
       *  @return  A read-only local iterator.
       */
      const_local_iterator
      begin(size_type __n) const
      { return _M_h.begin(__n); }

      const_local_iterator
      cbegin(size_type __n) const
      { return _M_h.cbegin(__n); }
      //@}

      /**
       *  @brief  Returns a read/write iterator pointing to one past the last
       *         bucket elements.
       *  @param  __n The bucket index.
       *  @return  A read/write local iterator.
       */
      local_iterator
      end(size_type __n)
      { return _M_h.end(__n); }

      //@{
      /**
       *  @brief  Returns a read-only (constant) iterator pointing to one past
       *         the last bucket elements.
       *  @param  __n The bucket index.
       *  @return  A read-only local iterator.
       */
      const_local_iterator
      end(size_type __n) const
      { return _M_h.end(__n); }

      const_local_iterator
      cend(size_type __n) const
      { return _M_h.cend(__n); }
      //@}

      // hash policy.

      /// Returns the average number of elements per bucket.
      float
      load_factor() const noexcept
      { return _M_h.load_factor(); }

      /// Returns a positive number that the %unordered_multimap tries to keep
      /// the load factor less than or equal to.
      float
      max_load_factor() const noexcept
      { return _M_h.max_load_factor(); }

      /**
       *  @brief  Change the %unordered_multimap maximum load factor.
       *  @param  __z The new maximum load factor.
       */
      void
      max_load_factor(float __z)
      { _M_h.max_load_factor(__z); }

      /**
       *  @brief  May rehash the %unordered_multimap.
       *  @param  __n The new number of buckets.
       *
       *  Rehash will occur only if the new number of buckets respect the
       *  %unordered_multimap maximum load factor.
       */
      void
      rehash(size_type __n)
      { _M_h.rehash(__n); }

      /**
       *  @brief  Prepare the %unordered_multimap for a specified number of
       *          elements.
       *  @param  __n Number of elements required.
       *
       *  Same as rehash(ceil(n / max_load_factor())).
       */
      void
      reserve(size_type __n)
      { _M_h.reserve(__n); }

      template<typename _Key1, typename _Tp1, typename _Hash1, typename _Pred1,
	       typename _Alloc1>
        friend bool
	operator==(const unordered_multimap<_Key1, _Tp1,
					    _Hash1, _Pred1, _Alloc1>&,
		   const unordered_multimap<_Key1, _Tp1,
					    _Hash1, _Pred1, _Alloc1>&);
    };

#if __cpp_deduction_guides >= 201606

  template<typename _InputIterator,
	   typename _Hash = hash<__iter_key_t<_InputIterator>>,
	   typename _Pred = equal_to<__iter_key_t<_InputIterator>>,
	   typename _Allocator = allocator<__iter_to_alloc_t<_InputIterator>>,
	   typename = _RequireInputIter<_InputIterator>,
	   typename = _RequireNotAllocatorOrIntegral<_Hash>,
	   typename = _RequireNotAllocator<_Pred>,
	   typename = _RequireAllocator<_Allocator>>
    unordered_multimap(_InputIterator, _InputIterator,
		       unordered_multimap<int, int>::size_type = {},
		       _Hash = _Hash(), _Pred = _Pred(),
		       _Allocator = _Allocator())
    -> unordered_multimap<__iter_key_t<_InputIterator>,
			  __iter_val_t<_InputIterator>, _Hash, _Pred,
			  _Allocator>;

  template<typename _Key, typename _Tp, typename _Hash = hash<_Key>,
	   typename _Pred = equal_to<_Key>,
	   typename _Allocator = allocator<pair<const _Key, _Tp>>,
	   typename = _RequireNotAllocatorOrIntegral<_Hash>,
	   typename = _RequireNotAllocator<_Pred>,
	   typename = _RequireAllocator<_Allocator>>
    unordered_multimap(initializer_list<pair<_Key, _Tp>>,
		       unordered_multimap<int, int>::size_type = {},
		       _Hash = _Hash(), _Pred = _Pred(),
		       _Allocator = _Allocator())
    -> unordered_multimap<_Key, _Tp, _Hash, _Pred, _Allocator>;

  template<typename _InputIterator, typename _Allocator,
	   typename = _RequireInputIter<_InputIterator>,
	   typename = _RequireAllocator<_Allocator>>
    unordered_multimap(_InputIterator, _InputIterator,
		       unordered_multimap<int, int>::size_type, _Allocator)
    -> unordered_multimap<__iter_key_t<_InputIterator>,
			  __iter_val_t<_InputIterator>,
			  hash<__iter_key_t<_InputIterator>>,
			  equal_to<__iter_key_t<_InputIterator>>, _Allocator>;

  template<typename _InputIterator, typename _Allocator,
	   typename = _RequireInputIter<_InputIterator>,
	   typename = _RequireAllocator<_Allocator>>
    unordered_multimap(_InputIterator, _InputIterator, _Allocator)
    -> unordered_multimap<__iter_key_t<_InputIterator>,
			  __iter_val_t<_InputIterator>,
			  hash<__iter_key_t<_InputIterator>>,
			  equal_to<__iter_key_t<_InputIterator>>, _Allocator>;

  template<typename _InputIterator, typename _Hash, typename _Allocator,
	   typename = _RequireInputIter<_InputIterator>,
	   typename = _RequireNotAllocatorOrIntegral<_Hash>,
	   typename = _RequireAllocator<_Allocator>>
    unordered_multimap(_InputIterator, _InputIterator,
		       unordered_multimap<int, int>::size_type, _Hash,
		       _Allocator)
    -> unordered_multimap<__iter_key_t<_InputIterator>,
			  __iter_val_t<_InputIterator>, _Hash,
			  equal_to<__iter_key_t<_InputIterator>>, _Allocator>;

  template<typename _Key, typename _Tp, typename _Allocator,
	   typename = _RequireAllocator<_Allocator>>
    unordered_multimap(initializer_list<pair<_Key, _Tp>>,
		       unordered_multimap<int, int>::size_type,
		       _Allocator)
    -> unordered_multimap<_Key, _Tp, hash<_Key>, equal_to<_Key>, _Allocator>;

  template<typename _Key, typename _Tp, typename _Allocator,
	   typename = _RequireAllocator<_Allocator>>
    unordered_multimap(initializer_list<pair<_Key, _Tp>>, _Allocator)
    -> unordered_multimap<_Key, _Tp, hash<_Key>, equal_to<_Key>, _Allocator>;

  template<typename _Key, typename _Tp, typename _Hash, typename _Allocator,
	   typename = _RequireNotAllocatorOrIntegral<_Hash>,
	   typename = _RequireAllocator<_Allocator>>
    unordered_multimap(initializer_list<pair<_Key, _Tp>>,
		       unordered_multimap<int, int>::size_type,
		       _Hash, _Allocator)
    -> unordered_multimap<_Key, _Tp, _Hash, equal_to<_Key>, _Allocator>;

#endif

  template<class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
    inline void
    swap(unordered_map<_Key, _Tp, _Hash, _Pred, _Alloc>& __x,
	 unordered_map<_Key, _Tp, _Hash, _Pred, _Alloc>& __y)
    noexcept(noexcept(__x.swap(__y)))
    { __x.swap(__y); }

  template<class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
    inline void
    swap(unordered_multimap<_Key, _Tp, _Hash, _Pred, _Alloc>& __x,
	 unordered_multimap<_Key, _Tp, _Hash, _Pred, _Alloc>& __y)
    noexcept(noexcept(__x.swap(__y)))
    { __x.swap(__y); }

  template<class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
    inline bool
    operator==(const unordered_map<_Key, _Tp, _Hash, _Pred, _Alloc>& __x,
	       const unordered_map<_Key, _Tp, _Hash, _Pred, _Alloc>& __y)
    { return __x._M_h._M_equal(__y._M_h); }

#if __cpp_impl_three_way_comparison < 201907L
  template<class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
    inline bool
    operator!=(const unordered_map<_Key, _Tp, _Hash, _Pred, _Alloc>& __x,
	       const unordered_map<_Key, _Tp, _Hash, _Pred, _Alloc>& __y)
    { return !(__x == __y); }
#endif

  template<class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
    inline bool
    operator==(const unordered_multimap<_Key, _Tp, _Hash, _Pred, _Alloc>& __x,
	       const unordered_multimap<_Key, _Tp, _Hash, _Pred, _Alloc>& __y)
    { return __x._M_h._M_equal(__y._M_h); }

#if __cpp_impl_three_way_comparison < 201907L
  template<class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
    inline bool
    operator!=(const unordered_multimap<_Key, _Tp, _Hash, _Pred, _Alloc>& __x,
	       const unordered_multimap<_Key, _Tp, _Hash, _Pred, _Alloc>& __y)
    { return !(__x == __y); }
#endif

_GLIBCXX_END_NAMESPACE_CONTAINER

#if __cplusplus > 201402L
  // Allow std::unordered_map access to internals of compatible maps.
  template<typename _Key, typename _Val, typename _Hash1, typename _Eq1,
	   typename _Alloc, typename _Hash2, typename _Eq2>
    struct _Hash_merge_helper<
      _GLIBCXX_STD_C::unordered_map<_Key, _Val, _Hash1, _Eq1, _Alloc>,
      _Hash2, _Eq2>
    {
    private:
      template<typename... _Tp>
	using unordered_map = _GLIBCXX_STD_C::unordered_map<_Tp...>;
      template<typename... _Tp>
	using unordered_multimap = _GLIBCXX_STD_C::unordered_multimap<_Tp...>;

      friend unordered_map<_Key, _Val, _Hash1, _Eq1, _Alloc>;

      static auto&
      _S_get_table(unordered_map<_Key, _Val, _Hash2, _Eq2, _Alloc>& __map)
      { return __map._M_h; }

      static auto&
      _S_get_table(unordered_multimap<_Key, _Val, _Hash2, _Eq2, _Alloc>& __map)
      { return __map._M_h; }
    };

  // Allow std::unordered_multimap access to internals of compatible maps.
  template<typename _Key, typename _Val, typename _Hash1, typename _Eq1,
	   typename _Alloc, typename _Hash2, typename _Eq2>
    struct _Hash_merge_helper<
      _GLIBCXX_STD_C::unordered_multimap<_Key, _Val, _Hash1, _Eq1, _Alloc>,
      _Hash2, _Eq2>
    {
    private:
      template<typename... _Tp>
	using unordered_map = _GLIBCXX_STD_C::unordered_map<_Tp...>;
      template<typename... _Tp>
	using unordered_multimap = _GLIBCXX_STD_C::unordered_multimap<_Tp...>;

      friend unordered_multimap<_Key, _Val, _Hash1, _Eq1, _Alloc>;

      static auto&
      _S_get_table(unordered_map<_Key, _Val, _Hash2, _Eq2, _Alloc>& __map)
      { return __map._M_h; }

      static auto&
      _S_get_table(unordered_multimap<_Key, _Val, _Hash2, _Eq2, _Alloc>& __map)
      { return __map._M_h; }
    };
#endif // C++17

_GLIBCXX_END_NAMESPACE_VERSION
} // namespace std

#endif /* _UNORDERED_MAP_H */