summaryrefslogtreecommitdiff
path: root/libsanitizer/sanitizer_common/sanitizer_allocator_local_cache.h
blob: 40ef0781adbb7b95db6bf9f02a66fbbeb6427727 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
//===-- sanitizer_allocator_local_cache.h -----------------------*- C++ -*-===//
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Part of the Sanitizer Allocator.
//
//===----------------------------------------------------------------------===//
#ifndef SANITIZER_ALLOCATOR_H
#error This file must be included inside sanitizer_allocator.h
#endif

// Objects of this type should be used as local caches for SizeClassAllocator64
// or SizeClassAllocator32. Since the typical use of this class is to have one
// object per thread in TLS, is has to be POD.
template<class SizeClassAllocator>
struct SizeClassAllocatorLocalCache
    : SizeClassAllocator::AllocatorCache {
};

// Cache used by SizeClassAllocator64.
template <class SizeClassAllocator>
struct SizeClassAllocator64LocalCache {
  typedef SizeClassAllocator Allocator;
  static const uptr kNumClasses = SizeClassAllocator::kNumClasses;
  typedef typename Allocator::SizeClassMapT SizeClassMap;
  typedef typename Allocator::CompactPtrT CompactPtrT;

  void Init(AllocatorGlobalStats *s) {
    stats_.Init();
    if (s)
      s->Register(&stats_);
  }

  void Destroy(SizeClassAllocator *allocator, AllocatorGlobalStats *s) {
    Drain(allocator);
    if (s)
      s->Unregister(&stats_);
  }

  void *Allocate(SizeClassAllocator *allocator, uptr class_id) {
    CHECK_NE(class_id, 0UL);
    CHECK_LT(class_id, kNumClasses);
    stats_.Add(AllocatorStatAllocated, Allocator::ClassIdToSize(class_id));
    PerClass *c = &per_class_[class_id];
    if (UNLIKELY(c->count == 0))
      Refill(c, allocator, class_id);
    CHECK_GT(c->count, 0);
    CompactPtrT chunk = c->chunks[--c->count];
    void *res = reinterpret_cast<void *>(allocator->CompactPtrToPointer(
        allocator->GetRegionBeginBySizeClass(class_id), chunk));
    return res;
  }

  void Deallocate(SizeClassAllocator *allocator, uptr class_id, void *p) {
    CHECK_NE(class_id, 0UL);
    CHECK_LT(class_id, kNumClasses);
    // If the first allocator call on a new thread is a deallocation, then
    // max_count will be zero, leading to check failure.
    InitCache();
    stats_.Sub(AllocatorStatAllocated, Allocator::ClassIdToSize(class_id));
    PerClass *c = &per_class_[class_id];
    CHECK_NE(c->max_count, 0UL);
    if (UNLIKELY(c->count == c->max_count))
      Drain(c, allocator, class_id, c->max_count / 2);
    CompactPtrT chunk = allocator->PointerToCompactPtr(
        allocator->GetRegionBeginBySizeClass(class_id),
        reinterpret_cast<uptr>(p));
    c->chunks[c->count++] = chunk;
  }

  void Drain(SizeClassAllocator *allocator) {
    for (uptr class_id = 0; class_id < kNumClasses; class_id++) {
      PerClass *c = &per_class_[class_id];
      while (c->count > 0)
        Drain(c, allocator, class_id, c->count);
    }
  }

  // private:
  struct PerClass {
    u32 count;
    u32 max_count;
    CompactPtrT chunks[2 * SizeClassMap::kMaxNumCachedHint];
  };
  PerClass per_class_[kNumClasses];
  AllocatorStats stats_;

  void InitCache() {
    if (per_class_[1].max_count)
      return;
    for (uptr i = 0; i < kNumClasses; i++) {
      PerClass *c = &per_class_[i];
      c->max_count = 2 * SizeClassMap::MaxCachedHint(i);
    }
  }

  NOINLINE void Refill(PerClass *c, SizeClassAllocator *allocator,
                       uptr class_id) {
    InitCache();
    uptr num_requested_chunks = SizeClassMap::MaxCachedHint(class_id);
    allocator->GetFromAllocator(&stats_, class_id, c->chunks,
                                num_requested_chunks);
    c->count = num_requested_chunks;
  }

  NOINLINE void Drain(PerClass *c, SizeClassAllocator *allocator, uptr class_id,
                      uptr count) {
    InitCache();
    CHECK_GE(c->count, count);
    uptr first_idx_to_drain = c->count - count;
    c->count -= count;
    allocator->ReturnToAllocator(&stats_, class_id,
                                 &c->chunks[first_idx_to_drain], count);
  }
};

// Cache used by SizeClassAllocator32.
template <class SizeClassAllocator>
struct SizeClassAllocator32LocalCache {
  typedef SizeClassAllocator Allocator;
  typedef typename Allocator::TransferBatch TransferBatch;
  static const uptr kNumClasses = SizeClassAllocator::kNumClasses;

  void Init(AllocatorGlobalStats *s) {
    stats_.Init();
    if (s)
      s->Register(&stats_);
  }

  void Destroy(SizeClassAllocator *allocator, AllocatorGlobalStats *s) {
    Drain(allocator);
    if (s)
      s->Unregister(&stats_);
  }

  void *Allocate(SizeClassAllocator *allocator, uptr class_id) {
    CHECK_NE(class_id, 0UL);
    CHECK_LT(class_id, kNumClasses);
    stats_.Add(AllocatorStatAllocated, Allocator::ClassIdToSize(class_id));
    PerClass *c = &per_class_[class_id];
    if (UNLIKELY(c->count == 0))
      Refill(allocator, class_id);
    void *res = c->batch[--c->count];
    PREFETCH(c->batch[c->count - 1]);
    return res;
  }

  void Deallocate(SizeClassAllocator *allocator, uptr class_id, void *p) {
    CHECK_NE(class_id, 0UL);
    CHECK_LT(class_id, kNumClasses);
    // If the first allocator call on a new thread is a deallocation, then
    // max_count will be zero, leading to check failure.
    InitCache();
    stats_.Sub(AllocatorStatAllocated, Allocator::ClassIdToSize(class_id));
    PerClass *c = &per_class_[class_id];
    CHECK_NE(c->max_count, 0UL);
    if (UNLIKELY(c->count == c->max_count))
      Drain(allocator, class_id);
    c->batch[c->count++] = p;
  }

  void Drain(SizeClassAllocator *allocator) {
    for (uptr class_id = 0; class_id < kNumClasses; class_id++) {
      PerClass *c = &per_class_[class_id];
      while (c->count > 0)
        Drain(allocator, class_id);
    }
  }

  // private:
  typedef typename SizeClassAllocator::SizeClassMapT SizeClassMap;
  struct PerClass {
    uptr count;
    uptr max_count;
    void *batch[2 * TransferBatch::kMaxNumCached];
  };
  PerClass per_class_[kNumClasses];
  AllocatorStats stats_;

  void InitCache() {
    if (per_class_[1].max_count)
      return;
    for (uptr i = 0; i < kNumClasses; i++) {
      PerClass *c = &per_class_[i];
      c->max_count = 2 * TransferBatch::MaxCached(i);
    }
  }

  // TransferBatch class is declared in SizeClassAllocator.
  // We transfer chunks between central and thread-local free lists in batches.
  // For small size classes we allocate batches separately.
  // For large size classes we may use one of the chunks to store the batch.
  // sizeof(TransferBatch) must be a power of 2 for more efficient allocation.
  static uptr SizeClassForTransferBatch(uptr class_id) {
    if (Allocator::ClassIdToSize(class_id) <
        TransferBatch::AllocationSizeRequiredForNElements(
            TransferBatch::MaxCached(class_id)))
      return SizeClassMap::ClassID(sizeof(TransferBatch));
    return 0;
  }

  // Returns a TransferBatch suitable for class_id.
  // For small size classes allocates the batch from the allocator.
  // For large size classes simply returns b.
  TransferBatch *CreateBatch(uptr class_id, SizeClassAllocator *allocator,
                             TransferBatch *b) {
    if (uptr batch_class_id = SizeClassForTransferBatch(class_id))
      return (TransferBatch*)Allocate(allocator, batch_class_id);
    return b;
  }

  // Destroys TransferBatch b.
  // For small size classes deallocates b to the allocator.
  // Does notthing for large size classes.
  void DestroyBatch(uptr class_id, SizeClassAllocator *allocator,
                    TransferBatch *b) {
    if (uptr batch_class_id = SizeClassForTransferBatch(class_id))
      Deallocate(allocator, batch_class_id, b);
  }

  NOINLINE void Refill(SizeClassAllocator *allocator, uptr class_id) {
    InitCache();
    PerClass *c = &per_class_[class_id];
    TransferBatch *b = allocator->AllocateBatch(&stats_, this, class_id);
    CHECK_GT(b->Count(), 0);
    b->CopyToArray(c->batch);
    c->count = b->Count();
    DestroyBatch(class_id, allocator, b);
  }

  NOINLINE void Drain(SizeClassAllocator *allocator, uptr class_id) {
    InitCache();
    PerClass *c = &per_class_[class_id];
    uptr cnt = Min(c->max_count / 2, c->count);
    uptr first_idx_to_drain = c->count - cnt;
    TransferBatch *b = CreateBatch(
        class_id, allocator, (TransferBatch *)c->batch[first_idx_to_drain]);
    b->SetFromArray(allocator->GetRegionBeginBySizeClass(class_id),
                    &c->batch[first_idx_to_drain], cnt);
    c->count -= cnt;
    allocator->DeallocateBatch(&stats_, class_id, b);
  }
};