summaryrefslogtreecommitdiff
path: root/libphobos/src/std/experimental/allocator/building_blocks/region.d
blob: 43dfdb788e5e5e33efd79fc4247a24e0053da497 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
///
module std.experimental.allocator.building_blocks.region;

import std.experimental.allocator.building_blocks.null_allocator;
import std.experimental.allocator.common;
import std.typecons : Flag, Yes, No;

/**
A $(D Region) allocator allocates memory straight from one contiguous chunk.
There is no deallocation, and once the region is full, allocation requests
return $(D null). Therefore, $(D Region)s are often used (a) in conjunction with
more sophisticated allocators; or (b) for batch-style very fast allocations
that deallocate everything at once.

The region only stores three pointers, corresponding to the current position in
the store and the limits. One allocation entails rounding up the allocation
size for alignment purposes, bumping the current pointer, and comparing it
against the limit.

If $(D ParentAllocator) is different from $(D NullAllocator), $(D Region)
deallocates the chunk of memory during destruction.

The $(D minAlign) parameter establishes alignment. If $(D minAlign > 1), the
sizes of all allocation requests are rounded up to a multiple of $(D minAlign).
Applications aiming at maximum speed may want to choose $(D minAlign = 1) and
control alignment externally.

*/
struct Region(ParentAllocator = NullAllocator,
    uint minAlign = platformAlignment,
    Flag!"growDownwards" growDownwards = No.growDownwards)
{
    static assert(minAlign.isGoodStaticAlignment);
    static assert(ParentAllocator.alignment >= minAlign);

    import std.traits : hasMember;
    import std.typecons : Ternary;

    // state
    /**
    The _parent allocator. Depending on whether $(D ParentAllocator) holds state
    or not, this is a member variable or an alias for
    `ParentAllocator.instance`.
    */
    static if (stateSize!ParentAllocator)
    {
        ParentAllocator parent;
    }
    else
    {
        alias parent = ParentAllocator.instance;
    }
    private void* _current, _begin, _end;

    /**
    Constructs a region backed by a user-provided store. Assumes $(D store) is
    aligned at $(D minAlign). Also assumes the memory was allocated with $(D
    ParentAllocator) (if different from $(D NullAllocator)).

    Params:
    store = User-provided store backing up the region. $(D store) must be
    aligned at $(D minAlign) (enforced with $(D assert)). If $(D
    ParentAllocator) is different from $(D NullAllocator), memory is assumed to
    have been allocated with $(D ParentAllocator).
    n = Bytes to allocate using $(D ParentAllocator). This constructor is only
    defined If $(D ParentAllocator) is different from $(D NullAllocator). If
    $(D parent.allocate(n)) returns $(D null), the region will be initialized
    as empty (correctly initialized but unable to allocate).
    */
    this(ubyte[] store)
    {
        store = cast(ubyte[])(store.roundUpToAlignment(alignment));
        store = store[0 .. $.roundDownToAlignment(alignment)];
        assert(store.ptr.alignedAt(minAlign));
        assert(store.length % minAlign == 0);
        _begin = store.ptr;
        _end = store.ptr + store.length;
        static if (growDownwards)
            _current = _end;
        else
            _current = store.ptr;
    }

    /// Ditto
    static if (!is(ParentAllocator == NullAllocator))
    this(size_t n)
    {
        this(cast(ubyte[])(parent.allocate(n.roundUpToAlignment(alignment))));
    }

    /*
    TODO: The postblit of $(D BasicRegion) should be disabled because such objects
    should not be copied around naively.
    */

    /**
    If `ParentAllocator` is not `NullAllocator` and defines `deallocate`, the region defines a destructor that uses `ParentAllocator.delete` to free the
    memory chunk.
    */
    static if (!is(ParentAllocator == NullAllocator)
        && hasMember!(ParentAllocator, "deallocate"))
    ~this()
    {
        parent.deallocate(_begin[0 .. _end - _begin]);
    }


    /**
    Alignment offered.
    */
    alias alignment = minAlign;

    /**
    Allocates $(D n) bytes of memory. The shortest path involves an alignment
    adjustment (if $(D alignment > 1)), an increment, and a comparison.

    Params:
    n = number of bytes to allocate

    Returns:
    A properly-aligned buffer of size $(D n) or $(D null) if request could not
    be satisfied.
    */
    void[] allocate(size_t n)
    {
        static if (growDownwards)
        {
            if (available < n) return null;
            static if (minAlign > 1)
                const rounded = n.roundUpToAlignment(alignment);
            else
                alias rounded = n;
            assert(available >= rounded);
            auto result = (_current - rounded)[0 .. n];
            assert(result.ptr >= _begin);
            _current = result.ptr;
            assert(owns(result) == Ternary.yes);
            return result;
        }
        else
        {
            auto result = _current[0 .. n];
            static if (minAlign > 1)
                const rounded = n.roundUpToAlignment(alignment);
            else
                alias rounded = n;
            _current += rounded;
            if (_current <= _end) return result;
            // Slow path, backtrack
            _current -= rounded;
            return null;
        }
    }

    /**
    Allocates $(D n) bytes of memory aligned at alignment $(D a).

    Params:
    n = number of bytes to allocate
    a = alignment for the allocated block

    Returns:
    Either a suitable block of $(D n) bytes aligned at $(D a), or $(D null).
    */
    void[] alignedAllocate(size_t n, uint a)
    {
        import std.math : isPowerOf2;
        assert(a.isPowerOf2);
        static if (growDownwards)
        {
            const available = _current - _begin;
            if (available < n) return null;
            auto result = (_current - n).alignDownTo(a)[0 .. n];
            if (result.ptr >= _begin)
            {
                _current = result.ptr;
                return result;
            }
        }
        else
        {
            // Just bump the pointer to the next good allocation
            auto save = _current;
            _current = _current.alignUpTo(a);
            auto result = allocate(n);
            if (result.ptr)
            {
                assert(result.length == n);
                return result;
            }
            // Failed, rollback
            _current = save;
        }
        return null;
    }

    /// Allocates and returns all memory available to this region.
    void[] allocateAll()
    {
        static if (growDownwards)
        {
            auto result = _begin[0 .. available];
            _current = _begin;
        }
        else
        {
            auto result = _current[0 .. available];
            _current = _end;
        }
        return result;
    }

    /**
    Expands an allocated block in place. Expansion will succeed only if the
    block is the last allocated. Defined only if `growDownwards` is
    `No.growDownwards`.
    */
    static if (growDownwards == No.growDownwards)
    bool expand(ref void[] b, size_t delta)
    {
        assert(owns(b) == Ternary.yes || b.ptr is null);
        assert(b.ptr + b.length <= _current || b.ptr is null);
        if (!b.ptr) return delta == 0;
        auto newLength = b.length + delta;
        if (_current < b.ptr + b.length + alignment)
        {
            // This was the last allocation! Allocate some more and we're done.
            if (this.goodAllocSize(b.length) == this.goodAllocSize(newLength)
                || allocate(delta).length == delta)
            {
                b = b.ptr[0 .. newLength];
                assert(_current < b.ptr + b.length + alignment);
                return true;
            }
        }
        return false;
    }

    /**
    Deallocates $(D b). This works only if $(D b) was obtained as the last call
    to $(D allocate); otherwise (i.e. another allocation has occurred since) it
    does nothing. This semantics is tricky and therefore $(D deallocate) is
    defined only if $(D Region) is instantiated with $(D Yes.defineDeallocate)
    as the third template argument.

    Params:
    b = Block previously obtained by a call to $(D allocate) against this
    allocator ($(D null) is allowed).
    */
    bool deallocate(void[] b)
    {
        assert(owns(b) == Ternary.yes || b.ptr is null);
        static if (growDownwards)
        {
            if (b.ptr == _current)
            {
                _current += this.goodAllocSize(b.length);
                return true;
            }
        }
        else
        {
            if (b.ptr + this.goodAllocSize(b.length) == _current)
            {
                assert(b.ptr !is null || _current is null);
                _current = b.ptr;
                return true;
            }
        }
        return false;
    }

    /**
    Deallocates all memory allocated by this region, which can be subsequently
    reused for new allocations.
    */
    bool deallocateAll()
    {
        static if (growDownwards)
        {
            _current = _end;
        }
        else
        {
            _current = _begin;
        }
        return true;
    }

    /**
    Queries whether $(D b) has been allocated with this region.

    Params:
    b = Arbitrary block of memory ($(D null) is allowed; $(D owns(null))
    returns $(D false)).

    Returns:
    $(D true) if $(D b) has been allocated with this region, $(D false)
    otherwise.
    */
    Ternary owns(void[] b) const
    {
        return Ternary(b.ptr >= _begin && b.ptr + b.length <= _end);
    }

    /**
    Returns `Ternary.yes` if no memory has been allocated in this region,
    `Ternary.no` otherwise. (Never returns `Ternary.unknown`.)
    */
    Ternary empty() const
    {
        return Ternary(_current == _begin);
    }

    /// Nonstandard property that returns bytes available for allocation.
    size_t available() const
    {
        static if (growDownwards)
        {
            return _current - _begin;
        }
        else
        {
            return _end - _current;
        }
    }
}

///
@system unittest
{
    import std.algorithm.comparison : max;
    import std.experimental.allocator.building_blocks.allocator_list
        : AllocatorList;
    import std.experimental.allocator.mallocator : Mallocator;
    // Create a scalable list of regions. Each gets at least 1MB at a time by
    // using malloc.
    auto batchAllocator = AllocatorList!(
        (size_t n) => Region!Mallocator(max(n, 1024 * 1024))
    )();
    auto b = batchAllocator.allocate(101);
    assert(b.length == 101);
    // This will cause a second allocation
    b = batchAllocator.allocate(2 * 1024 * 1024);
    assert(b.length == 2 * 1024 * 1024);
    // Destructor will free the memory
}

@system unittest
{
    import std.experimental.allocator.mallocator : Mallocator;
    // Create a 64 KB region allocated with malloc
    auto reg = Region!(Mallocator, Mallocator.alignment,
        Yes.growDownwards)(1024 * 64);
    const b = reg.allocate(101);
    assert(b.length == 101);
    // Destructor will free the memory
}

/**

$(D InSituRegion) is a convenient region that carries its storage within itself
(in the form of a statically-sized array).

The first template argument is the size of the region and the second is the
needed alignment. Depending on the alignment requested and platform details,
the actual available storage may be smaller than the compile-time parameter. To
make sure that at least $(D n) bytes are available in the region, use
$(D InSituRegion!(n + a - 1, a)).

Given that the most frequent use of `InSituRegion` is as a stack allocator, it
allocates starting at the end on systems where stack grows downwards, such that
hot memory is used first.

*/
struct InSituRegion(size_t size, size_t minAlign = platformAlignment)
{
    import std.algorithm.comparison : max;
    import std.conv : to;
    import std.traits : hasMember;
    import std.typecons : Ternary;

    static assert(minAlign.isGoodStaticAlignment);
    static assert(size >= minAlign);

    version (X86) enum growDownwards = Yes.growDownwards;
    else version (X86_64) enum growDownwards = Yes.growDownwards;
    else version (ARM) enum growDownwards = Yes.growDownwards;
    else version (AArch64) enum growDownwards = Yes.growDownwards;
    else version (HPPA) enum growDownwards = No.growDownwards;
    else version (PPC) enum growDownwards = Yes.growDownwards;
    else version (PPC64) enum growDownwards = Yes.growDownwards;
    else version (MIPS32) enum growDownwards = Yes.growDownwards;
    else version (MIPS64) enum growDownwards = Yes.growDownwards;
    else version (RISCV32) enum growDownwards = Yes.growDownwards;
    else version (RISCV64) enum growDownwards = Yes.growDownwards;
    else version (SPARC) enum growDownwards = Yes.growDownwards;
    else version (SPARC64) enum growDownwards = Yes.growDownwards;
    else version (SystemZ) enum growDownwards = Yes.growDownwards;
    else static assert(0, "Dunno how the stack grows on this architecture.");

    @disable this(this);

    // state {
    private Region!(NullAllocator, minAlign, growDownwards) _impl;
    union
    {
        private ubyte[size] _store = void;
        private double _forAlignmentOnly1 = void;
    }
    // }

    /**
    An alias for $(D minAlign), which must be a valid alignment (nonzero power
    of 2). The start of the region and all allocation requests will be rounded
    up to a multiple of the alignment.

    ----
    InSituRegion!(4096) a1;
    assert(a1.alignment == platformAlignment);
    InSituRegion!(4096, 64) a2;
    assert(a2.alignment == 64);
    ----
    */
    alias alignment = minAlign;

    private void lazyInit()
    {
        assert(!_impl._current);
        _impl = typeof(_impl)(_store);
        assert(_impl._current.alignedAt(alignment));
    }

    /**
    Allocates $(D bytes) and returns them, or $(D null) if the region cannot
    accommodate the request. For efficiency reasons, if $(D bytes == 0) the
    function returns an empty non-null slice.
    */
    void[] allocate(size_t n)
    {
        // Fast path
    entry:
        auto result = _impl.allocate(n);
        if (result.length == n) return result;
        // Slow path
        if (_impl._current) return null; // no more room
        lazyInit;
        assert(_impl._current);
        goto entry;
    }

    /**
    As above, but the memory allocated is aligned at $(D a) bytes.
    */
    void[] alignedAllocate(size_t n, uint a)
    {
        // Fast path
    entry:
        auto result = _impl.alignedAllocate(n, a);
        if (result.length == n) return result;
        // Slow path
        if (_impl._current) return null; // no more room
        lazyInit;
        assert(_impl._current);
        goto entry;
    }

    /**
    Deallocates $(D b). This works only if $(D b) was obtained as the last call
    to $(D allocate); otherwise (i.e. another allocation has occurred since) it
    does nothing. This semantics is tricky and therefore $(D deallocate) is
    defined only if $(D Region) is instantiated with $(D Yes.defineDeallocate)
    as the third template argument.

    Params:
    b = Block previously obtained by a call to $(D allocate) against this
    allocator ($(D null) is allowed).
    */
    bool deallocate(void[] b)
    {
        if (!_impl._current) return b is null;
        return _impl.deallocate(b);
    }

    /**
    Returns `Ternary.yes` if `b` is the result of a previous allocation,
    `Ternary.no` otherwise.
    */
    Ternary owns(void[] b)
    {
        if (!_impl._current) return Ternary.no;
        return _impl.owns(b);
    }

    /**
    Expands an allocated block in place. Expansion will succeed only if the
    block is the last allocated.
    */
    static if (hasMember!(typeof(_impl), "expand"))
    bool expand(ref void[] b, size_t delta)
    {
        if (!_impl._current) lazyInit;
        return _impl.expand(b, delta);
    }

    /**
    Deallocates all memory allocated with this allocator.
    */
    bool deallocateAll()
    {
        // We don't care to lazily init the region
        return _impl.deallocateAll;
    }

    /**
    Allocates all memory available with this allocator.
    */
    void[] allocateAll()
    {
        if (!_impl._current) lazyInit;
        return _impl.allocateAll;
    }

    /**
    Nonstandard function that returns the bytes available for allocation.
    */
    size_t available()
    {
        if (!_impl._current) lazyInit;
        return _impl.available;
    }
}

///
@system unittest
{
    // 128KB region, allocated to x86's cache line
    InSituRegion!(128 * 1024, 16) r1;
    auto a1 = r1.allocate(101);
    assert(a1.length == 101);

    // 128KB region, with fallback to the garbage collector.
    import std.experimental.allocator.building_blocks.fallback_allocator
        : FallbackAllocator;
    import std.experimental.allocator.building_blocks.free_list
        : FreeList;
    import std.experimental.allocator.building_blocks.bitmapped_block
        : BitmappedBlock;
    import std.experimental.allocator.gc_allocator : GCAllocator;
    FallbackAllocator!(InSituRegion!(128 * 1024), GCAllocator) r2;
    const a2 = r2.allocate(102);
    assert(a2.length == 102);

    // Reap with GC fallback.
    InSituRegion!(128 * 1024, 8) tmp3;
    FallbackAllocator!(BitmappedBlock!(64, 8), GCAllocator) r3;
    r3.primary = BitmappedBlock!(64, 8)(cast(ubyte[])(tmp3.allocateAll()));
    const a3 = r3.allocate(103);
    assert(a3.length == 103);

    // Reap/GC with a freelist for small objects up to 16 bytes.
    InSituRegion!(128 * 1024, 64) tmp4;
    FreeList!(FallbackAllocator!(BitmappedBlock!(64, 64), GCAllocator), 0, 16) r4;
    r4.parent.primary = BitmappedBlock!(64, 64)(cast(ubyte[])(tmp4.allocateAll()));
    const a4 = r4.allocate(104);
    assert(a4.length == 104);
}

@system unittest
{
    InSituRegion!(4096, 1) r1;
    auto a = r1.allocate(2001);
    assert(a.length == 2001);
    import std.conv : text;
    assert(r1.available == 2095, text(r1.available));

    InSituRegion!(65_536, 1024*4) r2;
    assert(r2.available <= 65_536);
    a = r2.allocate(2001);
    assert(a.length == 2001);
}

private extern(C) void* sbrk(long);
private extern(C) int brk(shared void*);

/**

Allocator backed by $(D $(LINK2 https://en.wikipedia.org/wiki/Sbrk, sbrk))
for Posix systems. Due to the fact that $(D sbrk) is not thread-safe
$(HTTP lifecs.likai.org/2010/02/sbrk-is-not-thread-safe.html, by design),
$(D SbrkRegion) uses a mutex internally. This implies
that uncontrolled calls to $(D brk) and $(D sbrk) may affect the workings of $(D
SbrkRegion) adversely.

*/
version (Posix) struct SbrkRegion(uint minAlign = platformAlignment)
{
    import core.sys.posix.pthread : pthread_mutex_init, pthread_mutex_destroy,
        pthread_mutex_t, pthread_mutex_lock, pthread_mutex_unlock,
        PTHREAD_MUTEX_INITIALIZER;
    private static shared pthread_mutex_t sbrkMutex = PTHREAD_MUTEX_INITIALIZER;
    import std.typecons : Ternary;

    static assert(minAlign.isGoodStaticAlignment);
    static assert(size_t.sizeof == (void*).sizeof);
    private shared void* _brkInitial, _brkCurrent;

    /**
    Instance shared by all callers.
    */
    static shared SbrkRegion instance;

    /**
    Standard allocator primitives.
    */
    enum uint alignment = minAlign;

    /// Ditto
    void[] allocate(size_t bytes) shared
    {
        static if (minAlign > 1)
            const rounded = bytes.roundUpToMultipleOf(alignment);
        else
            alias rounded = bytes;
        pthread_mutex_lock(cast(pthread_mutex_t*) &sbrkMutex) == 0 || assert(0);
        scope(exit) pthread_mutex_unlock(cast(pthread_mutex_t*) &sbrkMutex) == 0
            || assert(0);
        // Assume sbrk returns the old break. Most online documentation confirms
        // that, except for http://www.inf.udec.cl/~leo/Malloc_tutorial.pdf,
        // which claims the returned value is not portable.
        auto p = sbrk(rounded);
        if (p == cast(void*) -1)
        {
            return null;
        }
        if (!_brkInitial)
        {
            _brkInitial = cast(shared) p;
            assert(cast(size_t) _brkInitial % minAlign == 0,
                "Too large alignment chosen for " ~ typeof(this).stringof);
        }
        _brkCurrent = cast(shared) (p + rounded);
        return p[0 .. bytes];
    }

    /// Ditto
    void[] alignedAllocate(size_t bytes, uint a) shared
    {
        pthread_mutex_lock(cast(pthread_mutex_t*) &sbrkMutex) == 0 || assert(0);
        scope(exit) pthread_mutex_unlock(cast(pthread_mutex_t*) &sbrkMutex) == 0
            || assert(0);
        if (!_brkInitial)
        {
            // This is one extra call, but it'll happen only once.
            _brkInitial = cast(shared) sbrk(0);
            assert(cast(size_t) _brkInitial % minAlign == 0,
                "Too large alignment chosen for " ~ typeof(this).stringof);
            (_brkInitial != cast(void*) -1) || assert(0);
            _brkCurrent = _brkInitial;
        }
        immutable size_t delta = cast(shared void*) roundUpToMultipleOf(
            cast(size_t) _brkCurrent, a) - _brkCurrent;
        // Still must make sure the total size is aligned to the allocator's
        // alignment.
        immutable rounded = (bytes + delta).roundUpToMultipleOf(alignment);

        auto p = sbrk(rounded);
        if (p == cast(void*) -1)
        {
            return null;
        }
        _brkCurrent = cast(shared) (p + rounded);
        return p[delta .. delta + bytes];
    }

    /**

    The $(D expand) method may only succeed if the argument is the last block
    allocated. In that case, $(D expand) attempts to push the break pointer to
    the right.

    */
    bool expand(ref void[] b, size_t delta) shared
    {
        if (b is null) return delta == 0;
        assert(_brkInitial && _brkCurrent); // otherwise where did b come from?
        pthread_mutex_lock(cast(pthread_mutex_t*) &sbrkMutex) == 0 || assert(0);
        scope(exit) pthread_mutex_unlock(cast(pthread_mutex_t*) &sbrkMutex) == 0
            || assert(0);
        if (_brkCurrent != b.ptr + b.length) return false;
        // Great, can expand the last block
        static if (minAlign > 1)
            const rounded = delta.roundUpToMultipleOf(alignment);
        else
            alias rounded = bytes;
        auto p = sbrk(rounded);
        if (p == cast(void*) -1)
        {
            return false;
        }
        _brkCurrent = cast(shared) (p + rounded);
        b = b.ptr[0 .. b.length + delta];
        return true;
    }

    /// Ditto
    Ternary owns(void[] b) shared
    {
        // No need to lock here.
        assert(!_brkCurrent || b.ptr + b.length <= _brkCurrent);
        return Ternary(_brkInitial && b.ptr >= _brkInitial);
    }

    /**

    The $(D deallocate) method only works (and returns $(D true))  on systems
    that support reducing the  break address (i.e. accept calls to $(D sbrk)
    with negative offsets). OSX does not accept such. In addition the argument
    must be the last block allocated.

    */
    bool deallocate(void[] b) shared
    {
        static if (minAlign > 1)
            const rounded = b.length.roundUpToMultipleOf(alignment);
        else
            const rounded = b.length;
        pthread_mutex_lock(cast(pthread_mutex_t*) &sbrkMutex) == 0 || assert(0);
        scope(exit) pthread_mutex_unlock(cast(pthread_mutex_t*) &sbrkMutex) == 0
            || assert(0);
        if (_brkCurrent != b.ptr + rounded) return false;
        assert(b.ptr >= _brkInitial);
        if (sbrk(-rounded) == cast(void*) -1)
            return false;
        _brkCurrent = cast(shared) b.ptr;
        return true;
    }

    /**
    The $(D deallocateAll) method only works (and returns $(D true)) on systems
    that support reducing the  break address (i.e. accept calls to $(D sbrk)
    with negative offsets). OSX does not accept such.
    */
    bool deallocateAll() shared
    {
        pthread_mutex_lock(cast(pthread_mutex_t*) &sbrkMutex) == 0 || assert(0);
        scope(exit) pthread_mutex_unlock(cast(pthread_mutex_t*) &sbrkMutex) == 0
            || assert(0);
        return !_brkInitial || brk(_brkInitial) == 0;
    }

    /// Standard allocator API.
    Ternary empty()
    {
        // Also works when they're both null.
        return Ternary(_brkCurrent == _brkInitial);
    }
}

version (Posix) @system unittest
{
    // Let's test the assumption that sbrk(n) returns the old address
    const p1 = sbrk(0);
    const p2 = sbrk(4096);
    assert(p1 == p2);
    const p3 = sbrk(0);
    assert(p3 == p2 + 4096);
    // Try to reset brk, but don't make a fuss if it doesn't work
    sbrk(-4096);
}

version (Posix) @system unittest
{
    import std.typecons : Ternary;
    alias alloc = SbrkRegion!(8).instance;
    auto a = alloc.alignedAllocate(2001, 4096);
    assert(a.length == 2001);
    auto b = alloc.allocate(2001);
    assert(b.length == 2001);
    assert(alloc.owns(a) == Ternary.yes);
    assert(alloc.owns(b) == Ternary.yes);
    // reducing the brk does not work on OSX
    version (OSX) {} else
    {
        assert(alloc.deallocate(b));
        assert(alloc.deallocateAll);
    }
}