summaryrefslogtreecommitdiff
path: root/libphobos/libdruntime/rt/minfo.d
blob: 4722866356226e3e3b6ad2a5bae9ee20b1047b44 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
/**
 * Written in the D programming language.
 * Module initialization routines.
 *
 * Copyright: Copyright Digital Mars 2000 - 2013.
 * License: Distributed under the
 *      $(LINK2 http://www.boost.org/LICENSE_1_0.txt, Boost Software License 1.0).
 *    (See accompanying file LICENSE)
 * Authors:   Walter Bright, Sean Kelly
 * Source: $(DRUNTIMESRC src/rt/_minfo.d)
 */

module rt.minfo;

import core.stdc.stdlib;  // alloca
import core.stdc.string;  // memcpy
import rt.sections;

enum
{
    MIctorstart  = 0x1,   // we've started constructing it
    MIctordone   = 0x2,   // finished construction
    MIstandalone = 0x4,   // module ctor does not depend on other module
                        // ctors being done first
    MItlsctor    = 8,
    MItlsdtor    = 0x10,
    MIctor       = 0x20,
    MIdtor       = 0x40,
    MIxgetMembers = 0x80,
    MIictor      = 0x100,
    MIunitTest   = 0x200,
    MIimportedModules = 0x400,
    MIlocalClasses = 0x800,
    MIname       = 0x1000,
}

/*****
 * A ModuleGroup is an unordered collection of modules.
 * There is exactly one for:
 *  1. all statically linked in D modules, either directely or as shared libraries
 *  2. each call to rt_loadLibrary()
 */

struct ModuleGroup
{
    this(immutable(ModuleInfo*)[] modules) nothrow @nogc
    {
        _modules = modules;
    }

    @property immutable(ModuleInfo*)[] modules() const nothrow @nogc
    {
        return _modules;
    }

    // this function initializes the bookeeping necessary to create the
    // cycle path, and then creates it. It is a precondition that src and
    // target modules are involved in a cycle.
    //
    // The return value is malloc'd using C, so it must be freed after use.
    private size_t[] genCyclePath(size_t srcidx, size_t targetidx, int[][] edges)
    {
        import core.bitop : bt, btc, bts;

        // set up all the arrays.
        size_t[] cyclePath = (cast(size_t*)malloc(size_t.sizeof * _modules.length * 2))[0 .. _modules.length * 2];
        size_t totalMods;
        int[] distance = (cast(int*)malloc(int.sizeof * _modules.length))[0 .. _modules.length];
        scope(exit)
            .free(distance.ptr);

        // determine the shortest path between two modules. Uses dijkstra
        // without a priority queue. (we can be a bit slow here, in order to
        // get a better printout).
        void shortest(size_t start, size_t target)
        {
            // initial setup
            distance[] = int.max;
            int curdist = 0;
            distance[start] = 0;
            while (true)
            {
                bool done = true;
                foreach (i, x; distance)
                {
                    if (x == curdist)
                    {
                        if (i == target)
                        {
                            done = true;
                            break;
                        }
                        foreach (n; edges[i])
                        {
                            if (distance[n] == int.max)
                            {
                                distance[n] = curdist + 1;
                                done = false;
                            }
                        }
                    }
                }
                if (done)
                    break;
                ++curdist;
            }
            // it should be impossible to not get to target, this is just a
            // sanity check. Not an assert, because druntime is compiled in
            // release mode.
            if (distance[target] != curdist)
            {
                throw new Error("internal error printing module cycle");
            }

            // determine the path. This is tricky, because we have to
            // follow the edges in reverse to get back to the original. We
            // don't have a reverse mapping, so it takes a bit of looping.
            totalMods += curdist;
            auto subpath = cyclePath[totalMods - curdist .. totalMods];
            while (true)
            {
                --curdist;
                subpath[curdist] = target;
                if (curdist == 0)
                    break;
            distloop:
                // search for next (previous) module in cycle.
                foreach (m, d; distance)
                {
                    if (d == curdist)
                    {
                        // determine if m can reach target
                        foreach (e; edges[m])
                        {
                            if (e == target)
                            {
                                // recurse
                                target = m;
                                break distloop;
                            }
                        }
                    }
                }
            }
        }

        // first get to the target
        shortest(srcidx, targetidx);
        // now get back.
        shortest(targetidx, srcidx);

        return cyclePath[0 .. totalMods];
    }

    /******************************
     * Allocate and fill in _ctors[] and _tlsctors[].
     * Modules are inserted into the arrays in the order in which the constructors
     * need to be run.
     *
     * Params:
     *  cycleHandling - string indicating option for cycle handling
     * Throws:
     *  Exception if it fails.
     */
    void sortCtors(string cycleHandling)
    {
        import core.bitop : bts, btr, bt, BitRange;
        import rt.util.container.hashtab;

        enum OnCycle
        {
            deprecate,
            abort,
            print,
            ignore
        }

        auto onCycle = OnCycle.abort;

        switch (cycleHandling) with(OnCycle)
        {
        case "deprecate":
            onCycle = deprecate;
            break;
        case "abort":
            onCycle = abort;
            break;
        case "print":
            onCycle = print;
            break;
        case "ignore":
            onCycle = ignore;
            break;
        case "":
            // no option passed
            break;
        default:
            // invalid cycle handling option.
            throw new Error("DRT invalid cycle handling option: " ~ cycleHandling);
        }

        debug (printModuleDependencies)
        {
            import core.stdc.stdio : printf;

            foreach (_m; _modules)
            {
                printf("%s%s%s:", _m.name.ptr, (_m.flags & MIstandalone)
                        ? "+".ptr : "".ptr, (_m.flags & (MIctor | MIdtor)) ? "*".ptr : "".ptr);
                foreach (_i; _m.importedModules)
                    printf(" %s", _i.name.ptr);
                printf("\n");
            }
        }

        immutable uint len = cast(uint) _modules.length;
        if (!len)
            return; // nothing to do.

        // allocate some stack arrays that will be used throughout the process.
        immutable nwords = (len + 8 * size_t.sizeof - 1) / (8 * size_t.sizeof);
        immutable flagbytes = nwords * size_t.sizeof;
        auto ctorstart = cast(size_t*) malloc(flagbytes); // ctor/dtor seen
        auto ctordone = cast(size_t*) malloc(flagbytes); // ctor/dtor processed
        auto relevant = cast(size_t*) malloc(flagbytes); // has ctors/dtors
        scope (exit)
        {
            .free(ctorstart);
            .free(ctordone);
            .free(relevant);
        }

        void clearFlags(size_t* flags)
        {
            memset(flags, 0, flagbytes);
        }


        // build the edges between each module. We may need this for printing,
        // and also allows avoiding keeping a hash around for module lookups.
        int[][] edges = (cast(int[]*)malloc((int[]).sizeof * _modules.length))[0 .. _modules.length];
        {
            HashTab!(immutable(ModuleInfo)*, int) modIndexes;
            foreach (i, m; _modules)
                modIndexes[m] = cast(int) i;

            auto reachable = cast(size_t*) malloc(flagbytes);
            scope(exit)
                .free(reachable);

            foreach (i, m; _modules)
            {
                // use bit array to prevent duplicates
                // https://issues.dlang.org/show_bug.cgi?id=16208
                clearFlags(reachable);
                // preallocate enough space to store all the indexes
                int *edge = cast(int*)malloc(int.sizeof * _modules.length);
                size_t nEdges = 0;
                foreach (imp; m.importedModules)
                {
                    if (imp is m) // self-import
                        continue;
                    if (auto impidx = imp in modIndexes)
                    {
                        if (!bts(reachable, *impidx))
                            edge[nEdges++] = *impidx;
                    }
                }
                // trim space to what is needed.
                edges[i] = (cast(int*)realloc(edge, int.sizeof * nEdges))[0 .. nEdges];
            }
        }

        // free all the edges after we are done
        scope(exit)
        {
            foreach (e; edges)
                if (e.ptr)
                    .free(e.ptr);
            .free(edges.ptr);
        }

        void buildCycleMessage(size_t sourceIdx, size_t cycleIdx, scope void delegate(string) sink)
        {
            version (Windows)
                enum EOL = "\r\n";
            else
                enum EOL = "\n";

            sink("Cyclic dependency between module ");
            sink(_modules[sourceIdx].name);
            sink(" and ");
            sink(_modules[cycleIdx].name);
            sink(EOL);
            auto cyclePath = genCyclePath(sourceIdx, cycleIdx, edges);
            scope(exit) .free(cyclePath.ptr);

            sink(_modules[sourceIdx].name);
            sink("* ->" ~ EOL);
            foreach (x; cyclePath[0 .. $ - 1])
            {
                sink(_modules[x].name);
                sink(bt(relevant, x) ? "* ->" ~ EOL : " ->" ~ EOL);
            }
            sink(_modules[sourceIdx].name);
            sink("*" ~ EOL);
        }

        // find all the non-trivial dependencies (that is, dependencies that have a
        // ctor or dtor) of a given module.  Doing this, we can 'skip over' the
        // trivial modules to get at the non-trivial ones.
        //
        // If a cycle is detected, returns the index of the module that completes the cycle.
        // Returns: true for success, false for a deprecated cycle error
        bool findDeps(size_t idx, size_t* reachable)
        {
            static struct stackFrame
            {
                size_t curMod;
                size_t curDep;
            }

            // initialize "stack"
            auto stack = cast(stackFrame*) malloc(stackFrame.sizeof * len);
            scope (exit)
                .free(stack);
            auto stacktop = stack + len;
            auto sp = stack;
            sp.curMod = cast(int) idx;
            sp.curDep = 0;

            // initialize reachable by flagging source module
            clearFlags(reachable);
            bts(reachable, idx);

            for (;;)
            {
                auto m = _modules[sp.curMod];
                if (sp.curDep >= edges[sp.curMod].length)
                {
                    // return
                    if (sp == stack) // finished the algorithm
                        break;
                    --sp;
                }
                else
                {
                    auto midx = edges[sp.curMod][sp.curDep];
                    if (!bts(reachable, midx))
                    {
                        if (bt(relevant, midx))
                        {
                            // need to process this node, don't recurse.
                            if (bt(ctorstart, midx))
                            {
                                // was already started, this is a cycle.
                                final switch (onCycle) with(OnCycle)
                                {
                                case deprecate:
                                    // check with old algorithm
                                    if (sortCtorsOld(edges))
                                    {
                                        // unwind to print deprecation message.
                                        return false;   // deprecated cycle error
                                    }
                                    goto case abort; // fall through
                                case abort:

                                    string errmsg = "";
                                    buildCycleMessage(idx, midx, (string x) {errmsg ~= x;});
                                    throw new Error(errmsg, __FILE__, __LINE__);
                                case ignore:
                                    break;
                                case print:
                                    // print the message
                                    buildCycleMessage(idx, midx, (string x) {
                                                      import core.stdc.stdio : fprintf, stderr;
                                                      fprintf(stderr, "%.*s", cast(int) x.length, x.ptr);
                                                      });
                                    // continue on as if this is correct.
                                    break;
                                }
                            }
                        }
                        else if (!bt(ctordone, midx))
                        {
                            // non-relevant, and hasn't been exhaustively processed, recurse.
                            if (++sp >= stacktop)
                            {
                                // stack overflow, this shouldn't happen.
                                import core.internal.abort : abort;

                                abort("stack overflow on dependency search");
                            }
                            sp.curMod = midx;
                            sp.curDep = 0;
                            continue;
                        }
                    }
                }

                // next dependency
                ++sp.curDep;
            }
            return true; // success
        }

        // The list of constructors that will be returned by the sorting.
        immutable(ModuleInfo)** ctors;
        // current element being inserted into ctors list.
        size_t ctoridx = 0;

        // This function will determine the order of construction/destruction and
        // check for cycles. If a cycle is found, the cycle path is transformed
        // into a string and thrown as an error.
        //
        // Each call into this function is given a module that has static
        // ctor/dtors that must be dealt with. It recurses only when it finds
        // dependencies that also have static ctor/dtors.
        // Returns: true for success, false for a deprecated cycle error
        bool processMod(size_t curidx)
        {
            immutable ModuleInfo* current = _modules[curidx];

            // First, determine what modules are reachable.
            auto reachable = cast(size_t*) malloc(flagbytes);
            scope (exit)
                .free(reachable);
            if (!findDeps(curidx, reachable))
                return false;   // deprecated cycle error

            // process the dependencies. First, we process all relevant ones
            bts(ctorstart, curidx);
            auto brange = BitRange(reachable, len);
            foreach (i; brange)
            {
                // note, don't check for cycles here, because the config could have been set to ignore cycles.
                // however, don't recurse if there is one, so still check for started ctor.
                if (i != curidx && bt(relevant, i) && !bt(ctordone, i) && !bt(ctorstart, i))
                {
                    if (!processMod(i))
                        return false; // deprecated cycle error
                }
            }

            // now mark this node, and all nodes reachable from this module as done.
            bts(ctordone, curidx);
            btr(ctorstart, curidx);
            foreach (i; brange)
            {
                // Since relevant dependencies are already marked as done
                // from recursion above (or are going to be handled up the call
                // stack), no reason to check for relevance, that is a wasted
                // op.
                bts(ctordone, i);
            }

            // add this module to the construction order list
            ctors[ctoridx++] = current;
            return true;
        }

        // returns `false` if deprecated cycle error otherwise set `result`.
        bool doSort(size_t relevantFlags, ref immutable(ModuleInfo)*[] result)
        {
            clearFlags(relevant);
            clearFlags(ctorstart);
            clearFlags(ctordone);

            // pre-allocate enough space to hold all modules.
            ctors = (cast(immutable(ModuleInfo)**).malloc(len * (void*).sizeof));
            ctoridx = 0;
            foreach (idx, m; _modules)
            {
                if (m.flags & relevantFlags)
                {
                    if (m.flags & MIstandalone)
                    {
                        // can run at any time. Just run it first.
                        ctors[ctoridx++] = m;
                    }
                    else
                    {
                        bts(relevant, idx);
                    }
                }
            }

            // now run the algorithm in the relevant ones
            foreach (idx; BitRange(relevant, len))
            {
                if (!bt(ctordone, idx))
                {
                    if (!processMod(idx))
                        return false;
                }
            }

            if (ctoridx == 0)
            {
                // no ctors in the list.
                .free(ctors);
            }
            else
            {
                ctors = cast(immutable(ModuleInfo)**).realloc(ctors, ctoridx * (void*).sizeof);
                if (ctors is null)
                    assert(0);
                result = ctors[0 .. ctoridx];
            }
            return true;
        }

        // finally, do the sorting for both shared and tls ctors. If either returns false,
        // print the deprecation warning.
        if (!doSort(MIctor | MIdtor, _ctors) ||
            !doSort(MItlsctor | MItlsdtor, _tlsctors))
        {
            // print a warning
            import core.stdc.stdio : fprintf, stderr;
            fprintf(stderr, "Deprecation 16211 warning:\n"
                ~ "A cycle has been detected in your program that was undetected prior to DMD\n"
                ~ "2.072. This program will continue, but will not operate when using DMD 2.074\n"
                ~ "to compile. Use runtime option --DRT-oncycle=print to see the cycle details.\n");

        }
    }

    /// ditto
    void sortCtors()
    {
        import rt.config : rt_configOption;
        sortCtors(rt_configOption("oncycle"));
    }

    /******************************
     * This is the old ctor sorting algorithm that does not find all cycles.
     *
     * It is here to allow the deprecated behavior from the original algorithm
     * until people have fixed their code.
     *
     * If no cycles are found, the _ctors and _tlsctors are replaced with the
     * ones generated by this algorithm to preserve the old incorrect ordering
     * behavior.
     *
     * Params:
     *   edges - The module edges as found in the `importedModules` member of
     *          each ModuleInfo. Generated in sortCtors.
     * Returns:
     *   true if no cycle is found, false if one was.
     */
    bool sortCtorsOld(int[][] edges)
    {
        immutable len = edges.length;
        assert(len == _modules.length);

        static struct StackRec
        {
            @property int mod()
            {
                return _mods[_idx];
            }

            int[] _mods;
            size_t         _idx;
        }

        auto stack = (cast(StackRec*).calloc(len, StackRec.sizeof))[0 .. len];
        // TODO: reuse GCBits by moving it to rt.util.container or core.internal
        immutable nwords = (len + 8 * size_t.sizeof - 1) / (8 * size_t.sizeof);
        auto ctorstart = cast(size_t*).malloc(nwords * size_t.sizeof);
        auto ctordone = cast(size_t*).malloc(nwords * size_t.sizeof);
        int[] initialEdges = (cast(int *)malloc(int.sizeof * len))[0 .. len];
        if (!stack.ptr || ctorstart is null || ctordone is null || !initialEdges.ptr)
            assert(0);
        scope (exit)
        {
            .free(stack.ptr);
            .free(ctorstart);
            .free(ctordone);
            .free(initialEdges.ptr);
        }

        // initialize the initial edges
        foreach (i, ref v; initialEdges)
            v = cast(int)i;

        bool sort(ref immutable(ModuleInfo)*[] ctors, uint mask)
        {
            import core.bitop;

            ctors = (cast(immutable(ModuleInfo)**).malloc(len * size_t.sizeof))[0 .. len];
            if (!ctors.ptr)
                assert(0);

            // clean flags
            memset(ctorstart, 0, nwords * size_t.sizeof);
            memset(ctordone, 0, nwords * size_t.sizeof);
            size_t stackidx = 0;
            size_t cidx;

            int[] mods = initialEdges;

            size_t idx;
            while (true)
            {
                while (idx < mods.length)
                {
                    auto m = mods[idx];

                    if (bt(ctordone, m))
                    {
                        // this module has already been processed, skip
                        ++idx;
                        continue;
                    }
                    else if (bt(ctorstart, m))
                    {
                        /* Trace back to the begin of the cycle.
                         */
                        bool ctorInCycle;
                        size_t start = stackidx;
                        while (start--)
                        {
                            auto sm = stack[start].mod;
                            if (sm == m)
                                break;
                            assert(sm >= 0);
                            if (bt(ctorstart, sm))
                                ctorInCycle = true;
                        }
                        assert(stack[start].mod == m);
                        if (ctorInCycle)
                        {
                            return false;
                        }
                        else
                        {
                            /* This is also a cycle, but the import chain does not constrain
                             * the order of initialization, either because the imported
                             * modules have no ctors or the ctors are standalone.
                             */
                            ++idx;
                        }
                    }
                    else
                    {
                        auto curmod = _modules[m];
                        if (curmod.flags & mask)
                        {
                            if (curmod.flags & MIstandalone || !edges[m].length)
                            {   // trivial ctor => sort in
                                ctors[cidx++] = curmod;
                                bts(ctordone, m);
                            }
                            else
                            {   // non-trivial ctor => defer
                                bts(ctorstart, m);
                            }
                        }
                        else    // no ctor => mark as visited
                        {
                            bts(ctordone, m);
                        }

                        if (edges[m].length)
                        {
                            /* Internal runtime error, recursion exceeds number of modules.
                             */
                            (stackidx < len) || assert(0);

                            // recurse
                            stack[stackidx++] = StackRec(mods, idx);
                            idx  = 0;
                            mods = edges[m];
                        }
                    }
                }

                if (stackidx)
                {   // pop old value from stack
                    --stackidx;
                    mods    = stack[stackidx]._mods;
                    idx     = stack[stackidx]._idx;
                    auto m  = mods[idx++];
                    if (bt(ctorstart, m) && !bts(ctordone, m))
                        ctors[cidx++] = _modules[m];
                }
                else // done
                    break;
            }
            // store final number and shrink array
            ctors = (cast(immutable(ModuleInfo)**).realloc(ctors.ptr, cidx * size_t.sizeof))[0 .. cidx];
            return true;
        }

        /* Do two passes: ctor/dtor, tlsctor/tlsdtor
         */
        immutable(ModuleInfo)*[] _ctors2;
        immutable(ModuleInfo)*[] _tlsctors2;
        auto result = sort(_ctors2, MIctor | MIdtor) && sort(_tlsctors2, MItlsctor | MItlsdtor);
        if (result) // no cycle
        {
            // fall back to original ordering as part of the deprecation.
            if (_ctors.ptr)
                .free(_ctors.ptr);
            _ctors = _ctors2;
            if (_tlsctors.ptr)
                .free(_tlsctors.ptr);
            _tlsctors = _tlsctors2;
        }
        else
        {
            // free any allocated memory that will be forgotten
            if (_ctors2.ptr)
                .free(_ctors2.ptr);
            if (_tlsctors2.ptr)
                .free(_tlsctors2.ptr);
        }
        return result;
    }

    void runCtors()
    {
        // run independent ctors
        runModuleFuncs!(m => m.ictor)(_modules);
        // sorted module ctors
        runModuleFuncs!(m => m.ctor)(_ctors);
    }

    void runTlsCtors()
    {
        runModuleFuncs!(m => m.tlsctor)(_tlsctors);
    }

    void runTlsDtors()
    {
        runModuleFuncsRev!(m => m.tlsdtor)(_tlsctors);
    }

    void runDtors()
    {
        runModuleFuncsRev!(m => m.dtor)(_ctors);
    }

    void free()
    {
        if (_ctors.ptr)
            .free(_ctors.ptr);
        _ctors = null;
        if (_tlsctors.ptr)
            .free(_tlsctors.ptr);
        _tlsctors = null;
        // _modules = null; // let the owner free it
    }

private:
    immutable(ModuleInfo*)[]  _modules;
    immutable(ModuleInfo)*[]    _ctors;
    immutable(ModuleInfo)*[] _tlsctors;
}


/********************************************
 * Iterate over all module infos.
 */

int moduleinfos_apply(scope int delegate(immutable(ModuleInfo*)) dg)
{
    foreach (ref sg; SectionGroup)
    {
        foreach (m; sg.modules)
        {
            // TODO: Should null ModuleInfo be allowed?
            if (m !is null)
            {
                if (auto res = dg(m))
                    return res;
            }
        }
    }
    return 0;
}

/********************************************
 * Module constructor and destructor routines.
 */

extern (C)
{
void rt_moduleCtor()
{
    foreach (ref sg; SectionGroup)
    {
        sg.moduleGroup.sortCtors();
        sg.moduleGroup.runCtors();
    }
}

void rt_moduleTlsCtor()
{
    foreach (ref sg; SectionGroup)
    {
        sg.moduleGroup.runTlsCtors();
    }
}

void rt_moduleTlsDtor()
{
    foreach_reverse (ref sg; SectionGroup)
    {
        sg.moduleGroup.runTlsDtors();
    }
}

void rt_moduleDtor()
{
    foreach_reverse (ref sg; SectionGroup)
    {
        sg.moduleGroup.runDtors();
        sg.moduleGroup.free();
    }
}

version (Win32)
{
    // Alternate names for backwards compatibility with older DLL code
    void _moduleCtor()
    {
        rt_moduleCtor();
    }

    void _moduleDtor()
    {
        rt_moduleDtor();
    }

    void _moduleTlsCtor()
    {
        rt_moduleTlsCtor();
    }

    void _moduleTlsDtor()
    {
        rt_moduleTlsDtor();
    }
}
}

/********************************************
 */

void runModuleFuncs(alias getfp)(const(immutable(ModuleInfo)*)[] modules)
{
    foreach (m; modules)
    {
        if (auto fp = getfp(m))
            (*fp)();
    }
}

void runModuleFuncsRev(alias getfp)(const(immutable(ModuleInfo)*)[] modules)
{
    foreach_reverse (m; modules)
    {
        if (auto fp = getfp(m))
            (*fp)();
    }
}

unittest
{
    static void assertThrown(T : Throwable, E)(lazy E expr, string msg)
    {
        try
            expr;
        catch (T)
            return;
        assert(0, msg);
    }

    static void stub()
    {
    }

    static struct UTModuleInfo
    {
        this(uint flags)
        {
            mi._flags = flags;
        }

        void setImports(immutable(ModuleInfo)*[] imports...)
        {
            import core.bitop;
            assert(flags & MIimportedModules);

            immutable nfuncs = popcnt(flags & (MItlsctor|MItlsdtor|MIctor|MIdtor|MIictor));
            immutable size = nfuncs * (void function()).sizeof +
                size_t.sizeof + imports.length * (ModuleInfo*).sizeof;
            assert(size <= pad.sizeof);

            pad[nfuncs] = imports.length;
            .memcpy(&pad[nfuncs+1], imports.ptr, imports.length * imports[0].sizeof);
        }

        immutable ModuleInfo mi;
        size_t[8] pad;
        alias mi this;
    }

    static UTModuleInfo mockMI(uint flags)
    {
        auto mi = UTModuleInfo(flags | MIimportedModules);
        auto p = cast(void function()*)&mi.pad;
        if (flags & MItlsctor) *p++ = &stub;
        if (flags & MItlsdtor) *p++ = &stub;
        if (flags & MIctor) *p++ = &stub;
        if (flags & MIdtor) *p++ = &stub;
        if (flags & MIictor) *p++ = &stub;
        *cast(size_t*)p++ = 0; // number of imported modules
        assert(cast(void*)p <= &mi + 1);
        return mi;
    }

    static void checkExp2(string testname, bool shouldThrow, string oncycle,
        immutable(ModuleInfo*)[] modules,
        immutable(ModuleInfo*)[] dtors=null,
        immutable(ModuleInfo*)[] tlsdtors=null)
    {
        auto mgroup = ModuleGroup(modules);
        mgroup.sortCtors(oncycle);

        // if we are expecting sort to throw, don't throw because of unexpected
        // success!
        if (!shouldThrow)
        {
            foreach (m; mgroup._modules)
                assert(!(m.flags & (MIctorstart | MIctordone)), testname);
            assert(mgroup._ctors    == dtors, testname);
            assert(mgroup._tlsctors == tlsdtors, testname);
        }
    }

    static void checkExp(string testname, bool shouldThrow,
        immutable(ModuleInfo*)[] modules,
        immutable(ModuleInfo*)[] dtors=null,
        immutable(ModuleInfo*)[] tlsdtors=null)
    {
        checkExp2(testname, shouldThrow, "abort", modules, dtors, tlsdtors);
    }


    {
        auto m0 = mockMI(0);
        auto m1 = mockMI(0);
        auto m2 = mockMI(0);
        checkExp("no ctors", false, [&m0.mi, &m1.mi, &m2.mi]);
    }

    {
        auto m0 = mockMI(MIictor);
        auto m1 = mockMI(0);
        auto m2 = mockMI(MIictor);
        auto mgroup = ModuleGroup([&m0.mi, &m1.mi, &m2.mi]);
        checkExp("independent ctors", false, [&m0.mi, &m1.mi, &m2.mi]);
    }

    {
        auto m0 = mockMI(MIstandalone | MIctor);
        auto m1 = mockMI(0);
        auto m2 = mockMI(0);
        auto mgroup = ModuleGroup([&m0.mi, &m1.mi, &m2.mi]);
        checkExp("standalone ctor", false, [&m0.mi, &m1.mi, &m2.mi], [&m0.mi]);
    }

    {
        auto m0 = mockMI(MIstandalone | MIctor);
        auto m1 = mockMI(MIstandalone | MIctor);
        auto m2 = mockMI(0);
        m1.setImports(&m0.mi);
        checkExp("imported standalone => no dependency", false,
                 [&m0.mi, &m1.mi, &m2.mi], [&m0.mi, &m1.mi]);
    }

    {
        auto m0 = mockMI(MIstandalone | MIctor);
        auto m1 = mockMI(MIstandalone | MIctor);
        auto m2 = mockMI(0);
        m0.setImports(&m1.mi);
        checkExp("imported standalone => no dependency (2)", false,
                [&m0.mi, &m1.mi, &m2.mi], [&m0.mi, &m1.mi]);
    }

    {
        auto m0 = mockMI(MIstandalone | MIctor);
        auto m1 = mockMI(MIstandalone | MIctor);
        auto m2 = mockMI(0);
        m0.setImports(&m1.mi);
        m1.setImports(&m0.mi);
        checkExp("standalone may have cycle", false,
                [&m0.mi, &m1.mi, &m2.mi], [&m0.mi, &m1.mi]);
    }

    {
        auto m0 = mockMI(MIctor);
        auto m1 = mockMI(MIctor);
        auto m2 = mockMI(0);
        m1.setImports(&m0.mi);
        checkExp("imported ctor => ordered ctors", false,
                [&m0.mi, &m1.mi, &m2.mi], [&m0.mi, &m1.mi], []);
    }

    {
        auto m0 = mockMI(MIctor);
        auto m1 = mockMI(MIctor);
        auto m2 = mockMI(0);
        m0.setImports(&m1.mi);
        checkExp("imported ctor => ordered ctors (2)", false,
                [&m0.mi, &m1.mi, &m2.mi], [&m1.mi, &m0.mi], []);
    }

    {
        auto m0 = mockMI(MIctor);
        auto m1 = mockMI(MIctor);
        auto m2 = mockMI(0);
        m0.setImports(&m1.mi);
        m1.setImports(&m0.mi);
        assertThrown!Throwable(checkExp("", true, [&m0.mi, &m1.mi, &m2.mi]),
                "detects ctors cycles");
        assertThrown!Throwable(checkExp2("", true, "deprecate",
                                        [&m0.mi, &m1.mi, &m2.mi]),
                "detects ctors cycles (dep)");
    }

    {
        auto m0 = mockMI(MIctor);
        auto m1 = mockMI(MIctor);
        auto m2 = mockMI(0);
        m0.setImports(&m2.mi);
        m1.setImports(&m2.mi);
        m2.setImports(&m0.mi, &m1.mi);
        assertThrown!Throwable(checkExp("", true, [&m0.mi, &m1.mi, &m2.mi]),
                "detects cycle with repeats");
    }

    {
        auto m0 = mockMI(MIctor);
        auto m1 = mockMI(MIctor);
        auto m2 = mockMI(MItlsctor);
        m0.setImports(&m1.mi, &m2.mi);
        checkExp("imported ctor/tlsctor => ordered ctors/tlsctors", false,
                [&m0.mi, &m1.mi, &m2.mi], [&m1.mi, &m0.mi], [&m2.mi]);
    }

    {
        auto m0 = mockMI(MIctor | MItlsctor);
        auto m1 = mockMI(MIctor);
        auto m2 = mockMI(MItlsctor);
        m0.setImports(&m1.mi, &m2.mi);
        checkExp("imported ctor/tlsctor => ordered ctors/tlsctors (2)", false,
                [&m0.mi, &m1.mi, &m2.mi], [&m1.mi, &m0.mi], [&m2.mi, &m0.mi]);
    }

    {
        auto m0 = mockMI(MIctor);
        auto m1 = mockMI(MIctor);
        auto m2 = mockMI(MItlsctor);
        m0.setImports(&m1.mi, &m2.mi);
        m2.setImports(&m0.mi);
        checkExp("no cycle between ctors/tlsctors", false,
                [&m0.mi, &m1.mi, &m2.mi], [&m1.mi, &m0.mi], [&m2.mi]);
    }

    {
        auto m0 = mockMI(MItlsctor);
        auto m1 = mockMI(MIctor);
        auto m2 = mockMI(MItlsctor);
        m0.setImports(&m2.mi);
        m2.setImports(&m0.mi);
        assertThrown!Throwable(checkExp("", true, [&m0.mi, &m1.mi, &m2.mi]),
                "detects tlsctors cycle");
        assertThrown!Throwable(checkExp2("", true, "deprecate",
                                         [&m0.mi, &m1.mi, &m2.mi]),
                "detects tlsctors cycle (dep)");
    }

    {
        auto m0 = mockMI(MItlsctor);
        auto m1 = mockMI(MIctor);
        auto m2 = mockMI(MItlsctor);
        m0.setImports(&m1.mi);
        m1.setImports(&m0.mi, &m2.mi);
        m2.setImports(&m1.mi);
        assertThrown!Throwable(checkExp("", true, [&m0.mi, &m1.mi, &m2.mi]),
                "detects tlsctors cycle with repeats");
    }

    {
        auto m0 = mockMI(MIctor);
        auto m1 = mockMI(MIstandalone | MIctor);
        auto m2 = mockMI(MIstandalone | MIctor);
        m0.setImports(&m1.mi);
        m1.setImports(&m2.mi);
        m2.setImports(&m0.mi);
        // NOTE: this is implementation dependent, sorted order shouldn't be tested.
        checkExp("closed ctors cycle", false, [&m0.mi, &m1.mi, &m2.mi],
                [&m1.mi, &m2.mi, &m0.mi]);
        //checkExp("closed ctors cycle", false, [&m0.mi, &m1.mi, &m2.mi], [&m0.mi, &m1.mi, &m2.mi]);
    }
}

version (CRuntime_Microsoft)
{
    // Dummy so Win32 code can still call it
    extern(C) void _minit() { }
}