summaryrefslogtreecommitdiff
path: root/libgo/go/runtime/panic.go
blob: f6747f5c87919deb97da064c980cf3bdb9d9a23f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package runtime

import (
	"runtime/internal/atomic"
	"unsafe"
)

// For gccgo, use go:linkname to export compiler-called functions.
//
//go:linkname deferproc
//go:linkname deferprocStack
//go:linkname deferreturn
//go:linkname setdeferretaddr
//go:linkname checkdefer
//go:linkname gopanic
//go:linkname canrecover
//go:linkname makefuncfficanrecover
//go:linkname makefuncreturning
//go:linkname gorecover
//go:linkname deferredrecover
//go:linkname goPanicIndex
//go:linkname goPanicIndexU
//go:linkname goPanicSliceAlen
//go:linkname goPanicSliceAlenU
//go:linkname goPanicSliceAcap
//go:linkname goPanicSliceAcapU
//go:linkname goPanicSliceB
//go:linkname goPanicSliceBU
//go:linkname goPanicSlice3Alen
//go:linkname goPanicSlice3AlenU
//go:linkname goPanicSlice3Acap
//go:linkname goPanicSlice3AcapU
//go:linkname goPanicSlice3B
//go:linkname goPanicSlice3BU
//go:linkname goPanicSlice3C
//go:linkname goPanicSlice3CU
//go:linkname panicshift
//go:linkname panicdivide
//go:linkname panicmem
// Temporary for C code to call:
//go:linkname throw

// Check to make sure we can really generate a panic. If the panic
// was generated from the runtime, or from inside malloc, then convert
// to a throw of msg.
// pc should be the program counter of the compiler-generated code that
// triggered this panic.
func panicCheck1(pc uintptr, msg string) {
	name, _, _, _ := funcfileline(pc-1, -1, false)
	if hasPrefix(name, "runtime.") {
		throw(msg)
	}
	// TODO: is this redundant? How could we be in malloc
	// but not in the runtime? runtime/internal/*, maybe?
	gp := getg()
	if gp != nil && gp.m != nil && gp.m.mallocing != 0 {
		throw(msg)
	}
}

// Same as above, but calling from the runtime is allowed.
//
// Using this function is necessary for any panic that may be
// generated by runtime.sigpanic, since those are always called by the
// runtime.
func panicCheck2(err string) {
	// panic allocates, so to avoid recursive malloc, turn panics
	// during malloc into throws.
	gp := getg()
	if gp != nil && gp.m != nil && gp.m.mallocing != 0 {
		throw(err)
	}
}

// Many of the following panic entry-points turn into throws when they
// happen in various runtime contexts. These should never happen in
// the runtime, and if they do, they indicate a serious issue and
// should not be caught by user code.
//
// The panic{Index,Slice,divide,shift} functions are called by
// code generated by the compiler for out of bounds index expressions,
// out of bounds slice expressions, division by zero, and shift by negative.
// The panicdivide (again), panicoverflow, panicfloat, and panicmem
// functions are called by the signal handler when a signal occurs
// indicating the respective problem.
//
// Since panic{Index,Slice,shift} are never called directly, and
// since the runtime package should never have an out of bounds slice
// or array reference or negative shift, if we see those functions called from the
// runtime package we turn the panic into a throw. That will dump the
// entire runtime stack for easier debugging.
//
// The entry points called by the signal handler will be called from
// runtime.sigpanic, so we can't disallow calls from the runtime to
// these (they always look like they're called from the runtime).
// Hence, for these, we just check for clearly bad runtime conditions.

// failures in the comparisons for s[x], 0 <= x < y (y == len(s))
func goPanicIndex(x int, y int) {
	panicCheck1(getcallerpc(), "index out of range")
	panic(boundsError{x: int64(x), signed: true, y: y, code: boundsIndex})
}
func goPanicIndexU(x uint, y int) {
	panicCheck1(getcallerpc(), "index out of range")
	panic(boundsError{x: int64(x), signed: false, y: y, code: boundsIndex})
}

// failures in the comparisons for s[:x], 0 <= x <= y (y == len(s) or cap(s))
func goPanicSliceAlen(x int, y int) {
	panicCheck1(getcallerpc(), "slice bounds out of range")
	panic(boundsError{x: int64(x), signed: true, y: y, code: boundsSliceAlen})
}
func goPanicSliceAlenU(x uint, y int) {
	panicCheck1(getcallerpc(), "slice bounds out of range")
	panic(boundsError{x: int64(x), signed: false, y: y, code: boundsSliceAlen})
}
func goPanicSliceAcap(x int, y int) {
	panicCheck1(getcallerpc(), "slice bounds out of range")
	panic(boundsError{x: int64(x), signed: true, y: y, code: boundsSliceAcap})
}
func goPanicSliceAcapU(x uint, y int) {
	panicCheck1(getcallerpc(), "slice bounds out of range")
	panic(boundsError{x: int64(x), signed: false, y: y, code: boundsSliceAcap})
}

// failures in the comparisons for s[x:y], 0 <= x <= y
func goPanicSliceB(x int, y int) {
	panicCheck1(getcallerpc(), "slice bounds out of range")
	panic(boundsError{x: int64(x), signed: true, y: y, code: boundsSliceB})
}
func goPanicSliceBU(x uint, y int) {
	panicCheck1(getcallerpc(), "slice bounds out of range")
	panic(boundsError{x: int64(x), signed: false, y: y, code: boundsSliceB})
}

// failures in the comparisons for s[::x], 0 <= x <= y (y == len(s) or cap(s))
func goPanicSlice3Alen(x int, y int) {
	panicCheck1(getcallerpc(), "slice bounds out of range")
	panic(boundsError{x: int64(x), signed: true, y: y, code: boundsSlice3Alen})
}
func goPanicSlice3AlenU(x uint, y int) {
	panicCheck1(getcallerpc(), "slice bounds out of range")
	panic(boundsError{x: int64(x), signed: false, y: y, code: boundsSlice3Alen})
}
func goPanicSlice3Acap(x int, y int) {
	panicCheck1(getcallerpc(), "slice bounds out of range")
	panic(boundsError{x: int64(x), signed: true, y: y, code: boundsSlice3Acap})
}
func goPanicSlice3AcapU(x uint, y int) {
	panicCheck1(getcallerpc(), "slice bounds out of range")
	panic(boundsError{x: int64(x), signed: false, y: y, code: boundsSlice3Acap})
}

// failures in the comparisons for s[:x:y], 0 <= x <= y
func goPanicSlice3B(x int, y int) {
	panicCheck1(getcallerpc(), "slice bounds out of range")
	panic(boundsError{x: int64(x), signed: true, y: y, code: boundsSlice3B})
}
func goPanicSlice3BU(x uint, y int) {
	panicCheck1(getcallerpc(), "slice bounds out of range")
	panic(boundsError{x: int64(x), signed: false, y: y, code: boundsSlice3B})
}

// failures in the comparisons for s[x:y:], 0 <= x <= y
func goPanicSlice3C(x int, y int) {
	panicCheck1(getcallerpc(), "slice bounds out of range")
	panic(boundsError{x: int64(x), signed: true, y: y, code: boundsSlice3C})
}
func goPanicSlice3CU(x uint, y int) {
	panicCheck1(getcallerpc(), "slice bounds out of range")
	panic(boundsError{x: int64(x), signed: false, y: y, code: boundsSlice3C})
}

var shiftError = error(errorString("negative shift amount"))

func panicshift() {
	panicCheck1(getcallerpc(), "negative shift amount")
	panic(shiftError)
}

var divideError = error(errorString("integer divide by zero"))

func panicdivide() {
	panicCheck2("integer divide by zero")
	panic(divideError)
}

var overflowError = error(errorString("integer overflow"))

func panicoverflow() {
	panicCheck2("integer overflow")
	panic(overflowError)
}

var floatError = error(errorString("floating point error"))

func panicfloat() {
	panicCheck2("floating point error")
	panic(floatError)
}

var memoryError = error(errorString("invalid memory address or nil pointer dereference"))

func panicmem() {
	panicCheck2("invalid memory address or nil pointer dereference")
	panic(memoryError)
}

// deferproc creates a new deferred function.
// The compiler turns a defer statement into a call to this.
// frame points into the stack frame; it is used to determine which
// deferred functions are for the current stack frame, and whether we
// have already deferred functions for this frame.
// pfn is a C function pointer.
// arg is a value to pass to pfn.
func deferproc(frame *bool, pfn uintptr, arg unsafe.Pointer) {
	gp := getg()
	d := newdefer()
	if d._panic != nil {
		throw("deferproc: d.panic != nil after newdefer")
	}
	d.link = gp._defer
	gp._defer = d
	d.frame = frame
	d.panicStack = getg()._panic
	d.pfn = pfn
	d.arg = arg
	d.retaddr = 0
	d.makefunccanrecover = false
}

// deferprocStack queues a new deferred function with a defer record on the stack.
// The defer record, d, does not need to be initialized.
// Other arguments are the same as in deferproc.
//go:nosplit
func deferprocStack(d *_defer, frame *bool, pfn uintptr, arg unsafe.Pointer) {
	gp := getg()
	if gp.m.curg != gp {
		// go code on the system stack can't defer
		throw("defer on system stack")
	}
	d.pfn = pfn
	d.retaddr = 0
	d.makefunccanrecover = false
	d.heap = false
	// The lines below implement:
	//   d.frame = frame
	//   d.arg = arg
	//   d._panic = nil
	//   d.panicStack = gp._panic
	//   d.link = gp._defer
	// But without write barriers. They are writes to the stack so they
	// don't need a write barrier, and furthermore are to uninitialized
	// memory, so they must not use a write barrier.
	*(*uintptr)(unsafe.Pointer(&d.frame)) = uintptr(unsafe.Pointer(frame))
	*(*uintptr)(unsafe.Pointer(&d.arg)) = uintptr(unsafe.Pointer(arg))
	*(*uintptr)(unsafe.Pointer(&d._panic)) = 0
	*(*uintptr)(unsafe.Pointer(&d.panicStack)) = uintptr(unsafe.Pointer(gp._panic))
	*(*uintptr)(unsafe.Pointer(&d.link)) = uintptr(unsafe.Pointer(gp._defer))

	gp._defer = d
}

// Allocate a Defer, usually using per-P pool.
// Each defer must be released with freedefer.
func newdefer() *_defer {
	var d *_defer
	gp := getg()
	pp := gp.m.p.ptr()
	if len(pp.deferpool) == 0 && sched.deferpool != nil {
		systemstack(func() {
			lock(&sched.deferlock)
			for len(pp.deferpool) < cap(pp.deferpool)/2 && sched.deferpool != nil {
				d := sched.deferpool
				sched.deferpool = d.link
				d.link = nil
				pp.deferpool = append(pp.deferpool, d)
			}
			unlock(&sched.deferlock)
		})
	}
	if n := len(pp.deferpool); n > 0 {
		d = pp.deferpool[n-1]
		pp.deferpool[n-1] = nil
		pp.deferpool = pp.deferpool[:n-1]
	}
	if d == nil {
		systemstack(func() {
			d = new(_defer)
		})
		if debugCachedWork {
			// Duplicate the tail below so if there's a
			// crash in checkPut we can tell if d was just
			// allocated or came from the pool.
			d.heap = true
			d.link = gp._defer
			gp._defer = d
			return d
		}
	}
	d.heap = true
	return d
}

// Free the given defer.
// The defer cannot be used after this call.
//
// This must not grow the stack because there may be a frame without a
// stack map when this is called.
//
//go:nosplit
func freedefer(d *_defer) {
	if d._panic != nil {
		freedeferpanic()
	}
	if d.pfn != 0 {
		freedeferfn()
	}
	if !d.heap {
		return
	}
	pp := getg().m.p.ptr()
	if len(pp.deferpool) == cap(pp.deferpool) {
		// Transfer half of local cache to the central cache.
		//
		// Take this slow path on the system stack so
		// we don't grow freedefer's stack.
		systemstack(func() {
			var first, last *_defer
			for len(pp.deferpool) > cap(pp.deferpool)/2 {
				n := len(pp.deferpool)
				d := pp.deferpool[n-1]
				pp.deferpool[n-1] = nil
				pp.deferpool = pp.deferpool[:n-1]
				if first == nil {
					first = d
				} else {
					last.link = d
				}
				last = d
			}
			lock(&sched.deferlock)
			last.link = sched.deferpool
			sched.deferpool = first
			unlock(&sched.deferlock)
		})
	}

	// These lines used to be simply `*d = _defer{}` but that
	// started causing a nosplit stack overflow via typedmemmove.
	d.link = nil
	d.frame = nil
	d.panicStack = nil
	d.arg = nil
	d.retaddr = 0
	d.makefunccanrecover = false
	// d._panic and d.pfn must be nil already.
	// If not, we would have called freedeferpanic or freedeferfn above,
	// both of which throw.

	pp.deferpool = append(pp.deferpool, d)
}

// Separate function so that it can split stack.
// Windows otherwise runs out of stack space.
func freedeferpanic() {
	// _panic must be cleared before d is unlinked from gp.
	throw("freedefer with d._panic != nil")
}

func freedeferfn() {
	// fn must be cleared before d is unlinked from gp.
	throw("freedefer with d.fn != nil")
}

// deferreturn is called to undefer the stack.
// The compiler inserts a call to this function as a finally clause
// wrapped around the body of any function that calls defer.
// The frame argument points to the stack frame of the function.
func deferreturn(frame *bool) {
	gp := getg()
	for gp._defer != nil && gp._defer.frame == frame {
		d := gp._defer
		pfn := d.pfn
		d.pfn = 0

		if pfn != 0 {
			// This is rather awkward.
			// The gc compiler does this using assembler
			// code in jmpdefer.
			var fn func(unsafe.Pointer)
			*(*uintptr)(unsafe.Pointer(&fn)) = uintptr(noescape(unsafe.Pointer(&pfn)))
			gp.deferring = true
			fn(d.arg)
			gp.deferring = false
		}

		// If that was CgocallBackDone, it will have freed the
		// defer for us, since we are no longer running as Go code.
		if getg() == nil {
			*frame = true
			return
		}
		if gp.ranCgocallBackDone {
			gp.ranCgocallBackDone = false
			*frame = true
			return
		}

		gp._defer = d.link

		freedefer(d)

		// Since we are executing a defer function now, we
		// know that we are returning from the calling
		// function. If the calling function, or one of its
		// callees, panicked, then the defer functions would
		// be executed by panic.
		*frame = true
	}
}

// __builtin_extract_return_addr is a GCC intrinsic that converts an
// address returned by __builtin_return_address(0) to a real address.
// On most architectures this is a nop.
//extern __builtin_extract_return_addr
func __builtin_extract_return_addr(uintptr) uintptr

// setdeferretaddr records the address to which the deferred function
// returns.  This is check by canrecover.  The frontend relies on this
// function returning false.
func setdeferretaddr(retaddr uintptr) bool {
	gp := getg()
	if gp._defer != nil {
		gp._defer.retaddr = __builtin_extract_return_addr(retaddr)
	}
	return false
}

// checkdefer is called by exception handlers used when unwinding the
// stack after a recovered panic. The exception handler is simply
//   checkdefer(frame)
//   return;
// If we have not yet reached the frame we are looking for, we
// continue unwinding.
func checkdefer(frame *bool) {
	gp := getg()
	if gp == nil {
		// We should never wind up here. Even if some other
		// language throws an exception, the cgo code
		// should ensure that g is set.
		throw("no g in checkdefer")
	} else if gp.isforeign {
		// Some other language has thrown an exception.
		// We need to run the local defer handlers.
		// If they call recover, we stop unwinding here.
		var p _panic
		p.isforeign = true
		p.link = gp._panic
		gp._panic = (*_panic)(noescape(unsafe.Pointer(&p)))
		for {
			d := gp._defer
			if d == nil || d.frame != frame || d.pfn == 0 {
				break
			}

			pfn := d.pfn
			gp._defer = d.link

			var fn func(unsafe.Pointer)
			*(*uintptr)(unsafe.Pointer(&fn)) = uintptr(noescape(unsafe.Pointer(&pfn)))
			gp.deferring = true
			fn(d.arg)
			gp.deferring = false

			freedefer(d)

			if p.recovered {
				// The recover function caught the panic
				// thrown by some other language.
				break
			}
		}

		recovered := p.recovered
		gp._panic = p.link

		if recovered {
			// Just return and continue executing Go code.
			*frame = true
			return
		}

		// We are panicking through this function.
		*frame = false
	} else if gp._defer != nil && gp._defer.pfn == 0 && gp._defer.frame == frame {
		// This is the defer function that called recover.
		// Simply return to stop the stack unwind, and let the
		// Go code continue to execute.
		d := gp._defer
		gp._defer = d.link
		freedefer(d)

		// We are returning from this function.
		*frame = true

		return
	}

	// This is some other defer function. It was already run by
	// the call to panic, or just above. Rethrow the exception.
	rethrowException()
	throw("rethrowException returned")
}

// unwindStack starts unwinding the stack for a panic. We unwind
// function calls until we reach the one which used a defer function
// which called recover. Each function which uses a defer statement
// will have an exception handler, as shown above for checkdefer.
func unwindStack() {
	// Allocate the exception type used by the unwind ABI.
	// It would be nice to define it in runtime_sysinfo.go,
	// but current definitions don't work because the required
	// alignment is larger than can be represented in Go.
	// The type never contains any Go pointers.
	size := unwindExceptionSize()
	usize := uintptr(unsafe.Sizeof(uintptr(0)))
	c := (size + usize - 1) / usize
	s := make([]uintptr, c)
	getg().exception = unsafe.Pointer(&s[0])
	throwException()
}

// Goexit terminates the goroutine that calls it. No other goroutine is affected.
// Goexit runs all deferred calls before terminating the goroutine. Because Goexit
// is not a panic, any recover calls in those deferred functions will return nil.
//
// Calling Goexit from the main goroutine terminates that goroutine
// without func main returning. Since func main has not returned,
// the program continues execution of other goroutines.
// If all other goroutines exit, the program crashes.
func Goexit() {
	// Run all deferred functions for the current goroutine.
	// This code is similar to gopanic, see that implementation
	// for detailed comments.
	gp := getg()
	gp.goexiting = true

	// Create a panic object for Goexit, so we can recognize when it might be
	// bypassed by a recover().
	var p _panic
	p.goexit = true
	p.link = gp._panic
	gp._panic = (*_panic)(noescape(unsafe.Pointer(&p)))

	for {
		d := gp._defer
		if d == nil {
			break
		}

		pfn := d.pfn
		if pfn == 0 {
			if d._panic != nil {
				d._panic.aborted = true
				d._panic = nil
			}
			gp._defer = d.link
			freedefer(d)
			continue
		}
		d.pfn = 0

		var fn func(unsafe.Pointer)
		*(*uintptr)(unsafe.Pointer(&fn)) = uintptr(noescape(unsafe.Pointer(&pfn)))
		gp.deferring = true
		fn(d.arg)
		gp.deferring = false

		if gp._defer != d {
			throw("bad defer entry in Goexit")
		}
		d._panic = nil
		gp._defer = d.link
		freedefer(d)
		// Note: we ignore recovers here because Goexit isn't a panic
	}
	gp.goexiting = false
	goexit1()
}

// Call all Error and String methods before freezing the world.
// Used when crashing with panicking.
func preprintpanics(p *_panic) {
	defer func() {
		if recover() != nil {
			throw("panic while printing panic value")
		}
	}()
	for p != nil {
		switch v := p.arg.(type) {
		case error:
			p.arg = v.Error()
		case stringer:
			p.arg = v.String()
		}
		p = p.link
	}
}

// Print all currently active panics. Used when crashing.
// Should only be called after preprintpanics.
func printpanics(p *_panic) {
	if p.link != nil {
		printpanics(p.link)
		if !p.link.goexit {
			print("\t")
		}
	}
	if p.goexit {
		return
	}
	print("panic: ")
	printany(p.arg)
	if p.recovered {
		print(" [recovered]")
	}
	print("\n")
}

// The implementation of the predeclared function panic.
func gopanic(e interface{}) {
	gp := getg()
	if gp.m.curg != gp {
		print("panic: ")
		printany(e)
		print("\n")
		throw("panic on system stack")
	}

	if gp.m.mallocing != 0 {
		print("panic: ")
		printany(e)
		print("\n")
		throw("panic during malloc")
	}
	if gp.m.preemptoff != "" {
		print("panic: ")
		printany(e)
		print("\n")
		print("preempt off reason: ")
		print(gp.m.preemptoff)
		print("\n")
		throw("panic during preemptoff")
	}
	if gp.m.locks != 0 {
		print("panic: ")
		printany(e)
		print("\n")
		throw("panic holding locks")
	}

	// The gc compiler allocates this new _panic struct on the
	// stack. We can't do that, because when a deferred function
	// recovers the panic we unwind the stack. We unlink this
	// entry before unwinding the stack, but that doesn't help in
	// the case where we panic, a deferred function recovers and
	// then panics itself, that panic is in turn recovered, and
	// unwinds the stack past this stack frame.

	p := &_panic{
		arg:  e,
		link: gp._panic,
	}
	gp._panic = p

	atomic.Xadd(&runningPanicDefers, 1)

	for {
		d := gp._defer
		if d == nil {
			break
		}

		pfn := d.pfn

		// If defer was started by earlier panic or Goexit (and, since we're back here, that triggered a new panic),
		// take defer off list. The earlier panic or Goexit will not continue running.
		if pfn == 0 {
			if d._panic != nil {
				d._panic.aborted = true
			}
			d._panic = nil
			gp._defer = d.link
			freedefer(d)
			continue
		}
		d.pfn = 0

		// Record the panic that is running the defer.
		// If there is a new panic during the deferred call, that panic
		// will find d in the list and will mark d._panic (this panic) aborted.
		d._panic = p

		var fn func(unsafe.Pointer)
		*(*uintptr)(unsafe.Pointer(&fn)) = uintptr(noescape(unsafe.Pointer(&pfn)))
		gp.deferring = true
		fn(d.arg)
		gp.deferring = false

		if gp._defer != d {
			throw("bad defer entry in panic")
		}
		d._panic = nil

		if p.recovered {
			gp._panic = p.link
			if gp._panic != nil && gp._panic.goexit && gp._panic.aborted {
				Goexit()
				throw("Goexit returned")
			}
			atomic.Xadd(&runningPanicDefers, -1)

			// Aborted panics are marked but remain on the g.panic list.
			// Remove them from the list.
			for gp._panic != nil && gp._panic.aborted {
				gp._panic = gp._panic.link
			}
			if gp._panic == nil { // must be done with signal
				gp.sig = 0
			}

			if gp._panic != nil && gp._panic.goexit {
				Goexit()
				throw("Goexit returned")
			}

			// Unwind the stack by throwing an exception.
			// The compiler has arranged to create
			// exception handlers in each function
			// that uses a defer statement.  These
			// exception handlers will check whether
			// the entry on the top of the defer stack
			// is from the current function.  If it is,
			// we have unwound the stack far enough.
			unwindStack()

			throw("unwindStack returned")
		}

		// Because we executed that defer function by a panic,
		// and it did not call recover, we know that we are
		// not returning from the calling function--we are
		// panicking through it.
		*d.frame = false

		// Deferred function did not panic. Remove d.
		// In the p.recovered case, d will be removed by checkdefer.
		gp._defer = d.link

		freedefer(d)
	}

	// ran out of deferred calls - old-school panic now
	// Because it is unsafe to call arbitrary user code after freezing
	// the world, we call preprintpanics to invoke all necessary Error
	// and String methods to prepare the panic strings before startpanic.
	preprintpanics(gp._panic)

	fatalpanic(gp._panic) // should not return
	*(*int)(nil) = 0      // not reached
}

// currentDefer returns the top of the defer stack if it can be recovered.
// Otherwise it returns nil.
func currentDefer() *_defer {
	gp := getg()
	d := gp._defer
	if d == nil {
		return nil
	}

	// The panic that would be recovered is the one on the top of
	// the panic stack. We do not want to recover it if that panic
	// was on the top of the panic stack when this function was
	// deferred.
	if d.panicStack == gp._panic {
		return nil
	}

	// The deferred thunk will call setdeferretaddr. If this has
	// not happened, then we have not been called via defer, and
	// we can not recover.
	if d.retaddr == 0 {
		return nil
	}

	return d
}

// canrecover is called by a thunk to see if the real function would
// be permitted to recover a panic value. Recovering a value is
// permitted if the thunk was called directly by defer. retaddr is the
// return address of the function that is calling canrecover--that is,
// the thunk.
func canrecover(retaddr uintptr) bool {
	d := currentDefer()
	if d == nil {
		return false
	}

	ret := __builtin_extract_return_addr(retaddr)
	dret := d.retaddr
	if ret <= dret && ret+16 >= dret {
		return true
	}

	// On some systems, in some cases, the return address does not
	// work reliably. See http://gcc.gnu.org/PR60406. If we are
	// permitted to call recover, the call stack will look like this:
	//     runtime.gopanic, runtime.deferreturn, etc.
	//     thunk to call deferred function (calls __go_set_defer_retaddr)
	//     function that calls __go_can_recover (passing return address)
	//     runtime.canrecover
	// Calling callers will skip the thunks. So if our caller's
	// caller starts with "runtime.", then we are permitted to
	// call recover.
	var locs [16]location
	if callers(1, locs[:2]) < 2 {
		return false
	}

	name := locs[1].function
	if hasPrefix(name, "runtime.") {
		return true
	}

	// If the function calling recover was created by reflect.MakeFunc,
	// then makefuncfficanrecover will have set makefunccanrecover.
	if !d.makefunccanrecover {
		return false
	}

	// We look up the stack, ignoring libffi functions and
	// functions in the reflect package, until we find
	// reflect.makeFuncStub or reflect.ffi_callback called by FFI
	// functions.  Then we check the caller of that function.

	n := callers(2, locs[:])
	foundFFICallback := false
	i := 0
	for ; i < n; i++ {
		name = locs[i].function
		if name == "" {
			// No function name means this caller isn't Go code.
			// Assume that this is libffi.
			continue
		}

		// Ignore function in libffi.
		if hasPrefix(name, "ffi_") {
			continue
		}

		if foundFFICallback {
			break
		}

		if name == "reflect.ffi_callback" {
			foundFFICallback = true
			continue
		}

		// Ignore other functions in the reflect package.
		if hasPrefix(name, "reflect.") || hasPrefix(name, ".1reflect.") {
			continue
		}

		// We should now be looking at the real caller.
		break
	}

	if i < n {
		name = locs[i].function
		if hasPrefix(name, "runtime.") {
			return true
		}
	}

	return false
}

// This function is called when code is about to enter a function
// created by the libffi version of reflect.MakeFunc. This function is
// passed the names of the callers of the libffi code that called the
// stub. It uses them to decide whether it is permitted to call
// recover, and sets d.makefunccanrecover so that gorecover can make
// the same decision.
func makefuncfficanrecover(loc []location) {
	d := currentDefer()
	if d == nil {
		return
	}

	// If we are already in a call stack of MakeFunc functions,
	// there is nothing we can usefully check here.
	if d.makefunccanrecover {
		return
	}

	// loc starts with the caller of our caller. That will be a thunk.
	// If its caller was a function function, then it was called
	// directly by defer.
	if len(loc) < 2 {
		return
	}

	name := loc[1].function
	if hasPrefix(name, "runtime.") {
		d.makefunccanrecover = true
	}
}

// makefuncreturning is called when code is about to exit a function
// created by reflect.MakeFunc. It is called by the function stub used
// by reflect.MakeFunc. It clears the makefunccanrecover field. It's
// OK to always clear this field, because canrecover will only be
// called by a stub created for a function that calls recover. That
// stub will not call a function created by reflect.MakeFunc, so by
// the time we get here any caller higher up on the call stack no
// longer needs the information.
func makefuncreturning() {
	d := getg()._defer
	if d != nil {
		d.makefunccanrecover = false
	}
}

// The implementation of the predeclared function recover.
func gorecover() interface{} {
	gp := getg()
	p := gp._panic
	if p != nil && !p.goexit && !p.recovered {
		p.recovered = true
		return p.arg
	}
	return nil
}

// deferredrecover is called when a call to recover is deferred.  That
// is, something like
//   defer recover()
//
// We need to handle this specially.  In gc, the recover function
// looks up the stack frame. In particular, that means that a deferred
// recover will not recover a panic thrown in the same function that
// defers the recover. It will only recover a panic thrown in a
// function that defers the deferred call to recover.
//
// In other words:
//
// func f1() {
// 	defer recover()	// does not stop panic
// 	panic(0)
// }
//
// func f2() {
// 	defer func() {
// 		defer recover()	// stops panic(0)
// 	}()
// 	panic(0)
// }
//
// func f3() {
// 	defer func() {
// 		defer recover()	// does not stop panic
// 		panic(0)
// 	}()
// 	panic(1)
// }
//
// func f4() {
// 	defer func() {
// 		defer func() {
// 			defer recover()	// stops panic(0)
// 		}()
// 		panic(0)
// 	}()
// 	panic(1)
// }
//
// The interesting case here is f3. As can be seen from f2, the
// deferred recover could pick up panic(1). However, this does not
// happen because it is blocked by the panic(0).
//
// When a function calls recover, then when we invoke it we pass a
// hidden parameter indicating whether it should recover something.
// This parameter is set based on whether the function is being
// invoked directly from defer. The parameter winds up determining
// whether __go_recover or __go_deferred_recover is called at all.
//
// In the case of a deferred recover, the hidden parameter that
// controls the call is actually the one set up for the function that
// runs the defer recover() statement. That is the right thing in all
// the cases above except for f3. In f3 the function is permitted to
// call recover, but the deferred recover call is not. We address that
// here by checking for that specific case before calling recover. If
// this function was deferred when there is already a panic on the
// panic stack, then we can only recover that panic, not any other.

// Note that we can get away with using a special function here
// because you are not permitted to take the address of a predeclared
// function like recover.
func deferredrecover() interface{} {
	gp := getg()
	if gp._defer == nil || gp._defer.panicStack != gp._panic {
		return nil
	}
	return gorecover()
}

//go:linkname sync_throw sync.throw
func sync_throw(s string) {
	throw(s)
}

//go:nosplit
func throw(s string) {
	// Everything throw does should be recursively nosplit so it
	// can be called even when it's unsafe to grow the stack.
	systemstack(func() {
		print("fatal error: ", s, "\n")
	})
	gp := getg()
	if gp.m.throwing == 0 {
		gp.m.throwing = 1
	}
	fatalthrow()
	*(*int)(nil) = 0 // not reached
}

// runningPanicDefers is non-zero while running deferred functions for panic.
// runningPanicDefers is incremented and decremented atomically.
// This is used to try hard to get a panic stack trace out when exiting.
var runningPanicDefers uint32

// panicking is non-zero when crashing the program for an unrecovered panic.
// panicking is incremented and decremented atomically.
var panicking uint32

// paniclk is held while printing the panic information and stack trace,
// so that two concurrent panics don't overlap their output.
var paniclk mutex

// fatalthrow implements an unrecoverable runtime throw. It freezes the
// system, prints stack traces starting from its caller, and terminates the
// process.
//
//go:nosplit
func fatalthrow() {
	pc := getcallerpc()
	sp := getcallersp()
	gp := getg()

	startpanic_m()

	if dopanic_m(gp, pc, sp) {
		crash()
	}

	exit(2)

	*(*int)(nil) = 0 // not reached
}

// fatalpanic implements an unrecoverable panic. It is like fatalthrow, except
// that if msgs != nil, fatalpanic also prints panic messages and decrements
// runningPanicDefers once main is blocked from exiting.
//
//go:nosplit
func fatalpanic(msgs *_panic) {
	pc := getcallerpc()
	sp := getcallersp()
	gp := getg()
	var docrash bool

	if startpanic_m() && msgs != nil {
		// There were panic messages and startpanic_m
		// says it's okay to try to print them.

		// startpanic_m set panicking, which will
		// block main from exiting, so now OK to
		// decrement runningPanicDefers.
		atomic.Xadd(&runningPanicDefers, -1)

		printpanics(msgs)
	}

	docrash = dopanic_m(gp, pc, sp)

	if docrash {
		// By crashing outside the above systemstack call, debuggers
		// will not be confused when generating a backtrace.
		// Function crash is marked nosplit to avoid stack growth.
		crash()
	}

	systemstack(func() {
		exit(2)
	})

	*(*int)(nil) = 0 // not reached
}

// startpanic_m prepares for an unrecoverable panic.
//
// It returns true if panic messages should be printed, or false if
// the runtime is in bad shape and should just print stacks.
//
// It must not have write barriers even though the write barrier
// explicitly ignores writes once dying > 0. Write barriers still
// assume that g.m.p != nil, and this function may not have P
// in some contexts (e.g. a panic in a signal handler for a signal
// sent to an M with no P).
//
//go:nowritebarrierrec
func startpanic_m() bool {
	_g_ := getg()
	if mheap_.cachealloc.size == 0 { // very early
		print("runtime: panic before malloc heap initialized\n")
	}
	// Disallow malloc during an unrecoverable panic. A panic
	// could happen in a signal handler, or in a throw, or inside
	// malloc itself. We want to catch if an allocation ever does
	// happen (even if we're not in one of these situations).
	_g_.m.mallocing++

	// If we're dying because of a bad lock count, set it to a
	// good lock count so we don't recursively panic below.
	if _g_.m.locks < 0 {
		_g_.m.locks = 1
	}

	switch _g_.m.dying {
	case 0:
		// Setting dying >0 has the side-effect of disabling this G's writebuf.
		_g_.m.dying = 1
		atomic.Xadd(&panicking, 1)
		lock(&paniclk)
		if debug.schedtrace > 0 || debug.scheddetail > 0 {
			schedtrace(true)
		}
		freezetheworld()
		return true
	case 1:
		// Something failed while panicking.
		// Just print a stack trace and exit.
		_g_.m.dying = 2
		print("panic during panic\n")
		return false
	case 2:
		// This is a genuine bug in the runtime, we couldn't even
		// print the stack trace successfully.
		_g_.m.dying = 3
		print("stack trace unavailable\n")
		exit(4)
		fallthrough
	default:
		// Can't even print! Just exit.
		exit(5)
		return false // Need to return something.
	}
}

// throwReportQuirk, if non-nil, is called by throw after dumping the stacks.
//
// TODO(austin): Remove this after Go 1.15 when we remove the
// mlockGsignal workaround.
var throwReportQuirk func()

var didothers bool
var deadlock mutex

func dopanic_m(gp *g, pc, sp uintptr) bool {
	if gp.sig != 0 {
		signame := signame(gp.sig)
		if signame != "" {
			print("[signal ", signame)
		} else {
			print("[signal ", hex(gp.sig))
		}
		print(" code=", hex(gp.sigcode0), " addr=", hex(gp.sigcode1), " pc=", hex(gp.sigpc), "]\n")
	}

	level, all, docrash := gotraceback()
	_g_ := getg()
	if level > 0 {
		if gp != gp.m.curg {
			all = true
		}
		if gp != gp.m.g0 {
			print("\n")
			goroutineheader(gp)
			traceback(0)
		} else if level >= 2 || _g_.m.throwing > 0 {
			print("\nruntime stack:\n")
			traceback(0)
		}
		if !didothers && all {
			didothers = true
			tracebackothers(gp)
		}
	}
	unlock(&paniclk)

	if atomic.Xadd(&panicking, -1) != 0 {
		// Some other m is panicking too.
		// Let it print what it needs to print.
		// Wait forever without chewing up cpu.
		// It will exit when it's done.
		lock(&deadlock)
		lock(&deadlock)
	}

	printDebugLog()

	if throwReportQuirk != nil {
		throwReportQuirk()
	}

	return docrash
}

// canpanic returns false if a signal should throw instead of
// panicking.
//
//go:nosplit
func canpanic(gp *g) bool {
	// Note that g is m->gsignal, different from gp.
	// Note also that g->m can change at preemption, so m can go stale
	// if this function ever makes a function call.
	_g_ := getg()
	_m_ := _g_.m

	// Is it okay for gp to panic instead of crashing the program?
	// Yes, as long as it is running Go code, not runtime code,
	// and not stuck in a system call.
	if gp == nil || gp != _m_.curg {
		return false
	}
	if _m_.locks != 0 || _m_.mallocing != 0 || _m_.throwing != 0 || _m_.preemptoff != "" || _m_.dying != 0 {
		return false
	}
	status := readgstatus(gp)
	if status&^_Gscan != _Grunning || gp.syscallsp != 0 {
		return false
	}
	return true
}

// isAbortPC reports whether pc is the program counter at which
// runtime.abort raises a signal.
//
// It is nosplit because it's part of the isgoexception
// implementation.
//
//go:nosplit
func isAbortPC(pc uintptr) bool {
	return false
}