summaryrefslogtreecommitdiff
path: root/gcc/range-op.cc
blob: 5df075b15b5a5b8d637b7b1eb3b5a14eb65f9464 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
/* Code for range operators.
   Copyright (C) 2017-2020 Free Software Foundation, Inc.
   Contributed by Andrew MacLeod <amacleod@redhat.com>
   and Aldy Hernandez <aldyh@redhat.com>.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "insn-codes.h"
#include "rtl.h"
#include "tree.h"
#include "gimple.h"
#include "cfghooks.h"
#include "tree-pass.h"
#include "ssa.h"
#include "optabs-tree.h"
#include "gimple-pretty-print.h"
#include "diagnostic-core.h"
#include "flags.h"
#include "fold-const.h"
#include "stor-layout.h"
#include "calls.h"
#include "cfganal.h"
#include "gimple-fold.h"
#include "tree-eh.h"
#include "gimple-iterator.h"
#include "gimple-walk.h"
#include "tree-cfg.h"
#include "wide-int.h"
#include "range-op.h"

// Return the upper limit for a type.

static inline wide_int
max_limit (const_tree type)
{
  return wi::max_value (TYPE_PRECISION (type) , TYPE_SIGN (type));
}

// Return the lower limit for a type.

static inline wide_int
min_limit (const_tree type)
{
  return wi::min_value (TYPE_PRECISION (type) , TYPE_SIGN (type));
}

// If the range of either op1 or op2 is undefined, set the result to
// undefined and return TRUE.

inline bool
empty_range_check (value_range &r,
		   const value_range &op1, const value_range & op2)
{
  if (op1.undefined_p () || op2.undefined_p ())
    {
      r.set_undefined ();
      return true;
    }
  else
    return false;
}

// Return TRUE if shifting by OP is undefined behavior, and set R to
// the appropriate range.

static inline bool
undefined_shift_range_check (value_range &r, tree type, const value_range op)
{
  if (op.undefined_p ())
    {
      r = value_range ();
      return true;
    }

  // Shifting by any values outside [0..prec-1], gets undefined
  // behavior from the shift operation.  We cannot even trust
  // SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
  // shifts, and the operation at the tree level may be widened.
  if (wi::lt_p (op.lower_bound (), 0, TYPE_SIGN (op.type ()))
      || wi::ge_p (op.upper_bound (),
		   TYPE_PRECISION (type), TYPE_SIGN (op.type ())))
    {
      r = value_range (type);
      return true;
    }
  return false;
}

// Return TRUE if 0 is within [WMIN, WMAX].

static inline bool
wi_includes_zero_p (tree type, const wide_int &wmin, const wide_int &wmax)
{
  signop sign = TYPE_SIGN (type);
  return wi::le_p (wmin, 0, sign) && wi::ge_p (wmax, 0, sign);
}

// Return TRUE if [WMIN, WMAX] is the singleton 0.

static inline bool
wi_zero_p (tree type, const wide_int &wmin, const wide_int &wmax)
{
  unsigned prec = TYPE_PRECISION (type);
  return wmin == wmax && wi::eq_p (wmin, wi::zero (prec));
}

// Default wide_int fold operation returns [MIN, MAX].

void
range_operator::wi_fold (value_range &r, tree type,
			 const wide_int &lh_lb ATTRIBUTE_UNUSED,
			 const wide_int &lh_ub ATTRIBUTE_UNUSED,
			 const wide_int &rh_lb ATTRIBUTE_UNUSED,
			 const wide_int &rh_ub ATTRIBUTE_UNUSED) const
{
  gcc_checking_assert (value_range::supports_type_p (type));
  r = value_range (type);
}

// The default for fold is to break all ranges into sub-ranges and
// invoke the wi_fold method on each sub-range pair.

bool
range_operator::fold_range (value_range &r, tree type,
			    const value_range &lh,
			    const value_range &rh) const
{
  gcc_checking_assert (value_range::supports_type_p (type));
  if (empty_range_check (r, lh, rh))
    return true;

  value_range tmp;
  r.set_undefined ();
  for (unsigned x = 0; x < lh.num_pairs (); ++x)
    for (unsigned y = 0; y < rh.num_pairs (); ++y)
      {
	wide_int lh_lb = lh.lower_bound (x);
	wide_int lh_ub = lh.upper_bound (x);
	wide_int rh_lb = rh.lower_bound (y);
	wide_int rh_ub = rh.upper_bound (y);
	wi_fold (tmp, type, lh_lb, lh_ub, rh_lb, rh_ub);
	r.union_ (tmp);
	if (r.varying_p ())
	  return true;
      }
  return true;
}

// The default for op1_range is to return false.

bool
range_operator::op1_range (value_range &r ATTRIBUTE_UNUSED,
			   tree type ATTRIBUTE_UNUSED,
			   const value_range &lhs ATTRIBUTE_UNUSED,
			   const value_range &op2 ATTRIBUTE_UNUSED) const
{
  return false;
}

// The default for op2_range is to return false.

bool
range_operator::op2_range (value_range &r ATTRIBUTE_UNUSED,
			   tree type ATTRIBUTE_UNUSED,
			   const value_range &lhs ATTRIBUTE_UNUSED,
			   const value_range &op1 ATTRIBUTE_UNUSED) const
{
  return false;
}


// Create and return a range from a pair of wide-ints that are known
// to have overflowed (or underflowed).

static void
value_range_from_overflowed_bounds (value_range &r, tree type,
				    const wide_int &wmin,
				    const wide_int &wmax)
{
  const signop sgn = TYPE_SIGN (type);
  const unsigned int prec = TYPE_PRECISION (type);

  wide_int tmin = wide_int::from (wmin, prec, sgn);
  wide_int tmax = wide_int::from (wmax, prec, sgn);

  bool covers = false;
  wide_int tem = tmin;
  tmin = tmax + 1;
  if (wi::cmp (tmin, tmax, sgn) < 0)
    covers = true;
  tmax = tem - 1;
  if (wi::cmp (tmax, tem, sgn) > 0)
    covers = true;

  // If the anti-range would cover nothing, drop to varying.
  // Likewise if the anti-range bounds are outside of the types
  // values.
  if (covers || wi::cmp (tmin, tmax, sgn) > 0)
    r = value_range (type);
  else
    r = value_range (type, tmin, tmax, VR_ANTI_RANGE);
}

// Create and return a range from a pair of wide-ints.  MIN_OVF and
// MAX_OVF describe any overflow that might have occurred while
// calculating WMIN and WMAX respectively.

static void
value_range_with_overflow (value_range &r, tree type,
			   const wide_int &wmin, const wide_int &wmax,
			   wi::overflow_type min_ovf = wi::OVF_NONE,
			   wi::overflow_type max_ovf = wi::OVF_NONE)
{
  const signop sgn = TYPE_SIGN (type);
  const unsigned int prec = TYPE_PRECISION (type);
  const bool overflow_wraps = TYPE_OVERFLOW_WRAPS (type);

  // For one bit precision if max != min, then the range covers all
  // values.
  if (prec == 1 && wi::ne_p (wmax, wmin))
    {
      r = value_range (type);
      return;
    }

  if (overflow_wraps)
    {
      // If overflow wraps, truncate the values and adjust the range,
      // kind, and bounds appropriately.
      if ((min_ovf != wi::OVF_NONE) == (max_ovf != wi::OVF_NONE))
	{
	  wide_int tmin = wide_int::from (wmin, prec, sgn);
	  wide_int tmax = wide_int::from (wmax, prec, sgn);
	  // If the limits are swapped, we wrapped around and cover
	  // the entire range.
	  if (wi::gt_p (tmin, tmax, sgn))
	    r = value_range (type);
	  else
	    // No overflow or both overflow or underflow.  The range
	    // kind stays normal.
	    r = value_range (type, tmin, tmax);
	  return;
	}

      if ((min_ovf == wi::OVF_UNDERFLOW && max_ovf == wi::OVF_NONE)
	  || (max_ovf == wi::OVF_OVERFLOW && min_ovf == wi::OVF_NONE))
	value_range_from_overflowed_bounds (r, type, wmin, wmax);
      else
	// Other underflow and/or overflow, drop to VR_VARYING.
	r = value_range (type);
    }
  else
    {
      // If overflow does not wrap, saturate to [MIN, MAX].
      wide_int new_lb, new_ub;
      if (min_ovf == wi::OVF_UNDERFLOW)
	new_lb = wi::min_value (prec, sgn);
      else if (min_ovf == wi::OVF_OVERFLOW)
	new_lb = wi::max_value (prec, sgn);
      else
        new_lb = wmin;

      if (max_ovf == wi::OVF_UNDERFLOW)
	new_ub = wi::min_value (prec, sgn);
      else if (max_ovf == wi::OVF_OVERFLOW)
	new_ub = wi::max_value (prec, sgn);
      else
        new_ub = wmax;

      r = value_range (type, new_lb, new_ub);
    }
}

// Create and return a range from a pair of wide-ints.  Canonicalize
// the case where the bounds are swapped.  In which case, we transform
// [10,5] into [MIN,5][10,MAX].

static inline void
create_possibly_reversed_range (value_range &r, tree type,
				const wide_int &new_lb, const wide_int &new_ub)
{
  signop s = TYPE_SIGN (type);
  // If the bounds are swapped, treat the result as if an overflow occured.
  if (wi::gt_p (new_lb, new_ub, s))
    value_range_from_overflowed_bounds (r, type, new_lb, new_ub);
  else
    // Otherwise its just a normal range.
    r = value_range (type, new_lb, new_ub);
}

// Return a value_range instance that is a boolean TRUE.

static inline value_range
range_true (tree type)
{
  unsigned prec = TYPE_PRECISION (type);
  return value_range (type, wi::one (prec), wi::one (prec));
}

// Return a value_range instance that is a boolean FALSE.

static inline value_range
range_false (tree type)
{
  unsigned prec = TYPE_PRECISION (type);
  return value_range (type, wi::zero (prec), wi::zero (prec));
}

// Return a value_range that covers both true and false.

static inline value_range
range_true_and_false (tree type)
{
  unsigned prec = TYPE_PRECISION (type);
  return value_range (type, wi::zero (prec), wi::one (prec));
}

enum bool_range_state { BRS_FALSE, BRS_TRUE, BRS_EMPTY, BRS_FULL };

// Return the summary information about boolean range LHS.  Return an
// "interesting" range in R.  For EMPTY or FULL, return the equivalent
// range for TYPE, for BRS_TRUE and BRS false, return the negation of
// the bool range.

static bool_range_state
get_bool_state (value_range &r, const value_range &lhs, tree val_type)
{
  // If there is no result, then this is unexecutable.
  if (lhs.undefined_p ())
    {
      r.set_undefined ();
      return BRS_EMPTY;
    }

  // If the bounds aren't the same, then it's not a constant.
  if (!wi::eq_p (lhs.upper_bound (), lhs.lower_bound ()))
    {
      r.set_varying (val_type);
      return BRS_FULL;
    }

  if (lhs.zero_p ())
    return BRS_FALSE;

  return BRS_TRUE;
}


class operator_equal : public range_operator
{
public:
  virtual bool fold_range (value_range &r, tree type,
			   const value_range &op1,
			   const value_range &op2) const;
  virtual bool op1_range (value_range &r, tree type,
			  const value_range &lhs,
			  const value_range &val) const;
  virtual bool op2_range (value_range &r, tree type,
			  const value_range &lhs,
			  const value_range &val) const;
} op_equal;

bool
operator_equal::fold_range (value_range &r, tree type,
			    const value_range &op1,
			    const value_range &op2) const
{
  if (empty_range_check (r, op1, op2))
    return true;

  // We can be sure the values are always equal or not if both ranges
  // consist of a single value, and then compare them.
  if (wi::eq_p (op1.lower_bound (), op1.upper_bound ())
      && wi::eq_p (op2.lower_bound (), op2.upper_bound ()))
    {
      if (wi::eq_p (op1.lower_bound (), op2.upper_bound()))
	r = range_true (type);
      else
	r = range_false (type);
    }
  else
    {
      // If ranges do not intersect, we know the range is not equal,
      // otherwise we don't know anything for sure.
      r = op1;
      r.intersect (op2);
      if (r.undefined_p ())
	r = range_false (type);
      else
	r = range_true_and_false (type);
    }
  return true;
}

bool
operator_equal::op1_range (value_range &r, tree type,
			   const value_range &lhs,
			   const value_range &op2) const
{
  switch (get_bool_state (r, lhs, type))
    {
    case BRS_FALSE:
      // If the result is false, the only time we know anything is
      // if OP2 is a constant.
      if (wi::eq_p (op2.lower_bound(), op2.upper_bound()))
	{
	  r = op2;
	  r.invert ();
	}
      else
	r.set_varying (type);
      break;

    case BRS_TRUE:
      // If it's true, the result is the same as OP2.
      r = op2;
      break;

    default:
      break;
    }
  return true;
}

bool
operator_equal::op2_range (value_range &r, tree type,
			   const value_range &lhs,
			   const value_range &op1) const
{
  return operator_equal::op1_range (r, type, lhs, op1);
}


class operator_not_equal : public range_operator
{
public:
  virtual bool fold_range (value_range &r, tree type,
			   const value_range &op1,
			   const value_range &op2) const;
  virtual bool op1_range (value_range &r, tree type,
			  const value_range &lhs,
			  const value_range &op2) const;
  virtual bool op2_range (value_range &r, tree type,
			  const value_range &lhs,
			  const value_range &op1) const;
} op_not_equal;

bool
operator_not_equal::fold_range (value_range &r, tree type,
				const value_range &op1,
				const value_range &op2) const
{
  if (empty_range_check (r, op1, op2))
    return true;

  // We can be sure the values are always equal or not if both ranges
  // consist of a single value, and then compare them.
  if (wi::eq_p (op1.lower_bound (), op1.upper_bound ())
      && wi::eq_p (op2.lower_bound (), op2.upper_bound ()))
    {
      if (wi::ne_p (op1.lower_bound (), op2.upper_bound()))
	r = range_true (type);
      else
	r = range_false (type);
    }
  else
    {
      // If ranges do not intersect, we know the range is not equal,
      // otherwise we don't know anything for sure.
      r = op1;
      r.intersect (op2);
      if (r.undefined_p ())
	r = range_true (type);
      else
	r = range_true_and_false (type);
    }
  return true;
}

bool
operator_not_equal::op1_range (value_range &r, tree type,
			       const value_range &lhs,
			       const value_range &op2) const
{
  switch (get_bool_state (r, lhs, type))
    {
    case BRS_TRUE:
      // If the result is true, the only time we know anything is if
      // OP2 is a constant.
      if (wi::eq_p (op2.lower_bound(), op2.upper_bound()))
	{
	  r = op2;
	  r.invert ();
	}
      else
	r.set_varying (type);
      break;

    case BRS_FALSE:
      // If its true, the result is the same as OP2.
      r = op2;
      break;

    default:
      break;
    }
  return true;
}


bool
operator_not_equal::op2_range (value_range &r, tree type,
			       const value_range &lhs,
			       const value_range &op1) const
{
  return operator_not_equal::op1_range (r, type, lhs, op1);
}

// (X < VAL) produces the range of [MIN, VAL - 1].

static void
build_lt (value_range &r, tree type, const wide_int &val)
{
  wi::overflow_type ov;
  wide_int lim = wi::sub (val, 1, TYPE_SIGN (type), &ov);

  // If val - 1 underflows, check if X < MIN, which is an empty range.
  if (ov)
    r.set_undefined ();
  else
    r = value_range (type, min_limit (type), lim);
}

// (X <= VAL) produces the range of [MIN, VAL].

static void
build_le (value_range &r, tree type, const wide_int &val)
{
  r = value_range (type, min_limit (type), val);
}

// (X > VAL) produces the range of [VAL + 1, MAX].

static void
build_gt (value_range &r, tree type, const wide_int &val)
{
  wi::overflow_type ov;
  wide_int lim = wi::add (val, 1, TYPE_SIGN (type), &ov);
  // If val + 1 overflows, check is for X > MAX, which is an empty range.
  if (ov)
    r.set_undefined ();
  else
    r = value_range (type, lim, max_limit (type));
}

// (X >= val) produces the range of [VAL, MAX].

static void
build_ge (value_range &r, tree type, const wide_int &val)
{
  r = value_range (type, val, max_limit (type));
}


class operator_lt :  public range_operator
{
public:
  virtual bool fold_range (value_range &r, tree type,
			   const value_range &op1,
			   const value_range &op2) const;
  virtual bool op1_range (value_range &r, tree type,
			  const value_range &lhs,
			  const value_range &op2) const;
  virtual bool op2_range (value_range &r, tree type,
			  const value_range &lhs,
			  const value_range &op1) const;
} op_lt;

bool
operator_lt::fold_range (value_range &r, tree type,
			 const value_range &op1,
			 const value_range &op2) const
{
  if (empty_range_check (r, op1, op2))
    return true;

  signop sign = TYPE_SIGN (op1.type ());
  gcc_checking_assert (sign == TYPE_SIGN (op2.type ()));

  if (wi::lt_p (op1.upper_bound (), op2.lower_bound (), sign))
    r = range_true (type);
  else if (!wi::lt_p (op1.lower_bound (), op2.upper_bound (), sign))
    r = range_false (type);
  else
    r = range_true_and_false (type);
  return true;
}

bool
operator_lt::op1_range (value_range &r, tree type,
			const value_range &lhs,
			const value_range &op2) const
{
  switch (get_bool_state (r, lhs, type))
    {
    case BRS_TRUE:
      build_lt (r, type, op2.upper_bound ());
      break;

    case BRS_FALSE:
      build_ge (r, type, op2.lower_bound ());
      break;

    default:
      break;
    }
  return true;
}

bool
operator_lt::op2_range (value_range &r, tree type,
			const value_range &lhs,
			const value_range &op1) const
{
  switch (get_bool_state (r, lhs, type))
    {
    case BRS_FALSE:
      build_le (r, type, op1.upper_bound ());
      break;

    case BRS_TRUE:
      build_gt (r, type, op1.lower_bound ());
      break;

    default:
      break;
    }
  return true;
}


class operator_le :  public range_operator
{
public:
  virtual bool fold_range (value_range &r, tree type,
			   const value_range &op1,
			   const value_range &op2) const;
  virtual bool op1_range (value_range &r, tree type,
			  const value_range &lhs,
			  const value_range &op2) const;
  virtual bool op2_range (value_range &r, tree type,
			  const value_range &lhs,
			  const value_range &op1) const;
} op_le;

bool
operator_le::fold_range (value_range &r, tree type,
			 const value_range &op1,
			 const value_range &op2) const
{
  if (empty_range_check (r, op1, op2))
    return true;

  signop sign = TYPE_SIGN (op1.type ());
  gcc_checking_assert (sign == TYPE_SIGN (op2.type ()));

  if (wi::le_p (op1.upper_bound (), op2.lower_bound (), sign))
    r = range_true (type);
  else if (!wi::le_p (op1.lower_bound (), op2.upper_bound (), sign))
    r = range_false (type);
  else
    r = range_true_and_false (type);
  return true;
}

bool
operator_le::op1_range (value_range &r, tree type,
			const value_range &lhs,
			const value_range &op2) const
{
  switch (get_bool_state (r, lhs, type))
    {
    case BRS_TRUE:
      build_le (r, type, op2.upper_bound ());
      break;

    case BRS_FALSE:
      build_gt (r, type, op2.lower_bound ());
      break;

    default:
      break;
    }
  return true;
}

bool
operator_le::op2_range (value_range &r, tree type,
			const value_range &lhs,
			const value_range &op1) const
{
  switch (get_bool_state (r, lhs, type))
    {
    case BRS_FALSE:
      build_lt (r, type, op1.upper_bound ());
      break;

    case BRS_TRUE:
      build_ge (r, type, op1.lower_bound ());
      break;

    default:
      break;
    }
  return true;
}


class operator_gt :  public range_operator
{
public:
  virtual bool fold_range (value_range &r, tree type,
			   const value_range &op1,
			   const value_range &op2) const;
  virtual bool op1_range (value_range &r, tree type,
			  const value_range &lhs,
			  const value_range &op2) const;
  virtual bool op2_range (value_range &r, tree type,
			  const value_range &lhs,
			  const value_range &op1) const;
} op_gt;

bool
operator_gt::fold_range (value_range &r, tree type,
			 const value_range &op1, const value_range &op2) const
{
  if (empty_range_check (r, op1, op2))
    return true;

  signop sign = TYPE_SIGN (op1.type ());
  gcc_checking_assert (sign == TYPE_SIGN (op2.type ()));

  if (wi::gt_p (op1.lower_bound (), op2.upper_bound (), sign))
    r = range_true (type);
  else if (!wi::gt_p (op1.upper_bound (), op2.lower_bound (), sign))
    r = range_false (type);
  else
    r = range_true_and_false (type);
  return true;
}

bool
operator_gt::op1_range (value_range &r, tree type,
			const value_range &lhs, const value_range &op2) const
{
  switch (get_bool_state (r, lhs, type))
    {
    case BRS_TRUE:
      build_gt (r, type, op2.lower_bound ());
      break;

    case BRS_FALSE:
      build_le (r, type, op2.upper_bound ());
      break;

    default:
      break;
    }
  return true;
}

bool
operator_gt::op2_range (value_range &r, tree type,
			const value_range &lhs,
			const value_range &op1) const
{
  switch (get_bool_state (r, lhs, type))
    {
    case BRS_FALSE:
      build_ge (r, type, op1.lower_bound ());
      break;

    case BRS_TRUE:
      build_lt (r, type, op1.upper_bound ());
      break;

    default:
      break;
    }
  return true;
}


class operator_ge :  public range_operator
{
public:
  virtual bool fold_range (value_range &r, tree type,
			   const value_range &op1,
			   const value_range &op2) const;
  virtual bool op1_range (value_range &r, tree type,
			  const value_range &lhs,
			  const value_range &op2) const;
  virtual bool op2_range (value_range &r, tree type,
			  const value_range &lhs,
			  const value_range &op1) const;
} op_ge;

bool
operator_ge::fold_range (value_range &r, tree type,
			 const value_range &op1,
			 const value_range &op2) const
{
  if (empty_range_check (r, op1, op2))
    return true;

  signop sign = TYPE_SIGN (op1.type ());
  gcc_checking_assert (sign == TYPE_SIGN (op2.type ()));

  if (wi::ge_p (op1.lower_bound (), op2.upper_bound (), sign))
    r = range_true (type);
  else if (!wi::ge_p (op1.upper_bound (), op2.lower_bound (), sign))
    r = range_false (type);
  else
    r = range_true_and_false (type);
  return true;
}

bool
operator_ge::op1_range (value_range &r, tree type,
			const value_range &lhs,
			const value_range &op2) const
{
  switch (get_bool_state (r, lhs, type))
    {
    case BRS_TRUE:
      build_ge (r, type, op2.lower_bound ());
      break;

    case BRS_FALSE:
      build_lt (r, type, op2.upper_bound ());
      break;

    default:
      break;
    }
  return true;
}

bool
operator_ge::op2_range (value_range &r, tree type,
			const value_range &lhs,
			const value_range &op1) const
{
  switch (get_bool_state (r, lhs, type))
    {
    case BRS_FALSE:
      build_gt (r, type, op1.lower_bound ());
      break;

    case BRS_TRUE:
      build_le (r, type, op1.upper_bound ());
      break;

    default:
      break;
    }
  return true;
}


class operator_plus : public range_operator
{
public:
  virtual bool op1_range (value_range &r, tree type,
			  const value_range &lhs,
			  const value_range &op2) const;
  virtual bool op2_range (value_range &r, tree type,
			  const value_range &lhs,
			  const value_range &op1) const;
  virtual void wi_fold (value_range &r, tree type,
		        const wide_int &lh_lb,
		        const wide_int &lh_ub,
		        const wide_int &rh_lb,
		        const wide_int &rh_ub) const;
} op_plus;

void
operator_plus::wi_fold (value_range &r, tree type,
			const wide_int &lh_lb, const wide_int &lh_ub,
			const wide_int &rh_lb, const wide_int &rh_ub) const
{
  wi::overflow_type ov_lb, ov_ub;
  signop s = TYPE_SIGN (type);
  wide_int new_lb = wi::add (lh_lb, rh_lb, s, &ov_lb);
  wide_int new_ub = wi::add (lh_ub, rh_ub, s, &ov_ub);
  value_range_with_overflow (r, type, new_lb, new_ub, ov_lb, ov_ub);
}

bool
operator_plus::op1_range (value_range &r, tree type,
			  const value_range &lhs,
			  const value_range &op2) const
{
  return range_op_handler (MINUS_EXPR, type)->fold_range (r, type, lhs, op2);
}

bool
operator_plus::op2_range (value_range &r, tree type,
			  const value_range &lhs,
			  const value_range &op1) const
{
  return range_op_handler (MINUS_EXPR, type)->fold_range (r, type, lhs, op1);
}


class operator_minus : public range_operator
{
public:
  virtual bool op1_range (value_range &r, tree type,
			  const value_range &lhs,
			  const value_range &op2) const;
  virtual bool op2_range (value_range &r, tree type,
			  const value_range &lhs,
			  const value_range &op1) const;
  virtual void wi_fold (value_range &r, tree type,
		        const wide_int &lh_lb,
		        const wide_int &lh_ub,
		        const wide_int &rh_lb,
		        const wide_int &rh_ub) const;
} op_minus;

void 
operator_minus::wi_fold (value_range &r, tree type,
			 const wide_int &lh_lb, const wide_int &lh_ub,
			 const wide_int &rh_lb, const wide_int &rh_ub) const
{
  wi::overflow_type ov_lb, ov_ub;
  signop s = TYPE_SIGN (type);
  wide_int new_lb = wi::sub (lh_lb, rh_ub, s, &ov_lb);
  wide_int new_ub = wi::sub (lh_ub, rh_lb, s, &ov_ub);
  value_range_with_overflow (r, type, new_lb, new_ub, ov_lb, ov_ub);
}

bool
operator_minus::op1_range (value_range &r, tree type,
			   const value_range &lhs,
			   const value_range &op2) const
{
  return range_op_handler (PLUS_EXPR, type)->fold_range (r, type, lhs, op2);
}

bool
operator_minus::op2_range (value_range &r, tree type,
			   const value_range &lhs,
			   const value_range &op1) const
{
  return fold_range (r, type, op1, lhs);
}


class operator_min : public range_operator
{
public:
  virtual void wi_fold (value_range &r, tree type,
		        const wide_int &lh_lb,
		        const wide_int &lh_ub,
		        const wide_int &rh_lb,
		        const wide_int &rh_ub) const;
} op_min;

void
operator_min::wi_fold (value_range &r, tree type,
		       const wide_int &lh_lb, const wide_int &lh_ub,
		       const wide_int &rh_lb, const wide_int &rh_ub) const
{
  signop s = TYPE_SIGN (type);
  wide_int new_lb = wi::min (lh_lb, rh_lb, s);
  wide_int new_ub = wi::min (lh_ub, rh_ub, s);
  value_range_with_overflow (r, type, new_lb, new_ub);
}


class operator_max : public range_operator
{
public:
  virtual void wi_fold (value_range &r, tree type,
		        const wide_int &lh_lb,
		        const wide_int &lh_ub,
		        const wide_int &rh_lb,
		        const wide_int &rh_ub) const;
} op_max;

void
operator_max::wi_fold (value_range &r, tree type,
		       const wide_int &lh_lb, const wide_int &lh_ub,
		       const wide_int &rh_lb, const wide_int &rh_ub) const
{
  signop s = TYPE_SIGN (type);
  wide_int new_lb = wi::max (lh_lb, rh_lb, s);
  wide_int new_ub = wi::max (lh_ub, rh_ub, s);
  value_range_with_overflow (r, type, new_lb, new_ub);
}


class cross_product_operator : public range_operator
{
public:
  // Perform an operation between two wide-ints and place the result
  // in R.  Return true if the operation overflowed.
  virtual bool wi_op_overflows (wide_int &r,
				tree type,
				const wide_int &,
				const wide_int &) const = 0;

  // Calculate the cross product of two sets of sub-ranges and return it.
  void wi_cross_product (value_range &r, tree type,
			 const wide_int &lh_lb,
			 const wide_int &lh_ub,
			 const wide_int &rh_lb,
			 const wide_int &rh_ub) const;
};

// Calculate the cross product of two sets of ranges and return it.
//
// Multiplications, divisions and shifts are a bit tricky to handle,
// depending on the mix of signs we have in the two ranges, we need to
// operate on different values to get the minimum and maximum values
// for the new range.  One approach is to figure out all the
// variations of range combinations and do the operations.
//
// However, this involves several calls to compare_values and it is
// pretty convoluted.  It's simpler to do the 4 operations (MIN0 OP
// MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP MAX1) and then
// figure the smallest and largest values to form the new range.

void
cross_product_operator::wi_cross_product (value_range &r, tree type,
					  const wide_int &lh_lb,
					  const wide_int &lh_ub,
					  const wide_int &rh_lb,
					  const wide_int &rh_ub) const
{
  wide_int cp1, cp2, cp3, cp4;
  // Default to varying.
  r = value_range (type);

  // Compute the 4 cross operations, bailing if we get an overflow we
  // can't handle.
  if (wi_op_overflows (cp1, type, lh_lb, rh_lb))
    return;
  if (wi::eq_p (lh_lb, lh_ub))
    cp3 = cp1;
  else if (wi_op_overflows (cp3, type, lh_ub, rh_lb))
    return;
  if (wi::eq_p (rh_lb, rh_ub))
    cp2 = cp1;
  else if (wi_op_overflows (cp2, type, lh_lb, rh_ub))
    return;
  if (wi::eq_p (lh_lb, lh_ub))
    cp4 = cp2;
  else if (wi_op_overflows (cp4, type, lh_ub, rh_ub))
    return;

  // Order pairs.
  signop sign = TYPE_SIGN (type);
  if (wi::gt_p (cp1, cp2, sign))
    std::swap (cp1, cp2);
  if (wi::gt_p (cp3, cp4, sign))
    std::swap (cp3, cp4);

  // Choose min and max from the ordered pairs.
  wide_int res_lb = wi::min (cp1, cp3, sign);
  wide_int res_ub = wi::max (cp2, cp4, sign);
  value_range_with_overflow (r, type, res_lb, res_ub);
}


class operator_mult : public cross_product_operator
{
public:
  virtual void wi_fold (value_range &r, tree type,
		        const wide_int &lh_lb,
		        const wide_int &lh_ub,
		        const wide_int &rh_lb,
		        const wide_int &rh_ub) const;
  virtual bool wi_op_overflows (wide_int &res, tree type,
				const wide_int &w0, const wide_int &w1) const;
} op_mult;

bool
operator_mult::wi_op_overflows (wide_int &res, tree type,
				const wide_int &w0, const wide_int &w1) const
{
  wi::overflow_type overflow = wi::OVF_NONE;
  signop sign = TYPE_SIGN (type);
  res = wi::mul (w0, w1, sign, &overflow);
   if (overflow && TYPE_OVERFLOW_UNDEFINED (type))
     {
       // For multiplication, the sign of the overflow is given
       // by the comparison of the signs of the operands.
       if (sign == UNSIGNED || w0.sign_mask () == w1.sign_mask ())
	 res = wi::max_value (w0.get_precision (), sign);
       else
	 res = wi::min_value (w0.get_precision (), sign);
       return false;
     }
   return overflow;
}

void 
operator_mult::wi_fold (value_range &r, tree type,
			const wide_int &lh_lb, const wide_int &lh_ub,
			const wide_int &rh_lb, const wide_int &rh_ub) const
{
  if (TYPE_OVERFLOW_UNDEFINED (type))
    {
      wi_cross_product (r, type, lh_lb, lh_ub, rh_lb, rh_ub);
      return;
    }

  // Multiply the ranges when overflow wraps.  This is basically fancy
  // code so we don't drop to varying with an unsigned
  // [-3,-1]*[-3,-1].
  //
  // This test requires 2*prec bits if both operands are signed and
  // 2*prec + 2 bits if either is not.  Therefore, extend the values
  // using the sign of the result to PREC2.  From here on out,
  // everthing is just signed math no matter what the input types
  // were.

  signop sign = TYPE_SIGN (type);
  unsigned prec = TYPE_PRECISION (type);
  widest2_int min0 = widest2_int::from (lh_lb, sign);
  widest2_int max0 = widest2_int::from (lh_ub, sign);
  widest2_int min1 = widest2_int::from (rh_lb, sign);
  widest2_int max1 = widest2_int::from (rh_ub, sign);
  widest2_int sizem1 = wi::mask <widest2_int> (prec, false);
  widest2_int size = sizem1 + 1;

  // Canonicalize the intervals.
  if (sign == UNSIGNED)
    {
      if (wi::ltu_p (size, min0 + max0))
	{
	  min0 -= size;
	  max0 -= size;
	}
      if (wi::ltu_p (size, min1 + max1))
	{
	  min1 -= size;
	  max1 -= size;
	}
    }

  // Sort the 4 products so that min is in prod0 and max is in
  // prod3.
  widest2_int prod0 = min0 * min1;
  widest2_int prod1 = min0 * max1;
  widest2_int prod2 = max0 * min1;
  widest2_int prod3 = max0 * max1;

  // min0min1 > max0max1
  if (prod0 > prod3)
    std::swap (prod0, prod3);

  // min0max1 > max0min1
  if (prod1 > prod2)
    std::swap (prod1, prod2);

  if (prod0 > prod1)
    std::swap (prod0, prod1);

  if (prod2 > prod3)
    std::swap (prod2, prod3);

  // diff = max - min
  prod2 = prod3 - prod0;
  if (wi::geu_p (prod2, sizem1))
    // The range covers all values.
    r = value_range (type);
  else
    {
      wide_int new_lb = wide_int::from (prod0, prec, sign);
      wide_int new_ub = wide_int::from (prod3, prec, sign);
      create_possibly_reversed_range (r, type, new_lb, new_ub);
    }
}


class operator_div : public cross_product_operator
{
public:
  operator_div (enum tree_code c)  { code = c; }
  virtual void wi_fold (value_range &r, tree type,
		        const wide_int &lh_lb,
		        const wide_int &lh_ub,
		        const wide_int &rh_lb,
		        const wide_int &rh_ub) const;
  virtual bool wi_op_overflows (wide_int &res, tree type,
				const wide_int &, const wide_int &) const;
private:
  enum tree_code code;
};

bool
operator_div::wi_op_overflows (wide_int &res, tree type,
			       const wide_int &w0, const wide_int &w1) const
{
  if (w1 == 0)
    return true;

  wi::overflow_type overflow = wi::OVF_NONE;
  signop sign = TYPE_SIGN (type);

  switch (code)
    {
    case EXACT_DIV_EXPR:
      // EXACT_DIV_EXPR is implemented as TRUNC_DIV_EXPR in
      // operator_exact_divide.  No need to handle it here.
      gcc_unreachable ();
      break;
    case TRUNC_DIV_EXPR:
      res = wi::div_trunc (w0, w1, sign, &overflow);
      break;
    case FLOOR_DIV_EXPR:
      res = wi::div_floor (w0, w1, sign, &overflow);
      break;
    case ROUND_DIV_EXPR:
      res = wi::div_round (w0, w1, sign, &overflow);
      break;
    case CEIL_DIV_EXPR:
      res = wi::div_ceil (w0, w1, sign, &overflow);
      break;
    default:
      gcc_unreachable ();
    }

  if (overflow && TYPE_OVERFLOW_UNDEFINED (type))
    {
      // For division, the only case is -INF / -1 = +INF.
      res = wi::max_value (w0.get_precision (), sign);
      return false;
    }
  return overflow;
}

void
operator_div::wi_fold (value_range &r, tree type,
		       const wide_int &lh_lb, const wide_int &lh_ub,
		       const wide_int &rh_lb, const wide_int &rh_ub) const
{
  // If we know we will divide by zero, return undefined.
  if (rh_lb == 0 && rh_ub == 0)
    {
      r = value_range ();
      return;
    }

  const wide_int dividend_min = lh_lb;
  const wide_int dividend_max = lh_ub;
  const wide_int divisor_min = rh_lb;
  const wide_int divisor_max = rh_ub;
  signop sign = TYPE_SIGN (type);
  unsigned prec = TYPE_PRECISION (type);
  wide_int extra_min, extra_max;

  // If we know we won't divide by zero, just do the division.
  if (!wi_includes_zero_p (type, divisor_min, divisor_max))
    {
      wi_cross_product (r, type, dividend_min, dividend_max,
		       divisor_min, divisor_max);
      return;
    }

  // If flag_non_call_exceptions, we must not eliminate a division by zero.
  if (cfun->can_throw_non_call_exceptions)
    {
      r = value_range (type);
      return;
    }

  // If we're definitely dividing by zero, there's nothing to do.
  if (wi_zero_p (type, divisor_min, divisor_max))
    {
      r = value_range ();
      return;
    }

  // Perform the division in 2 parts, [LB, -1] and [1, UB], which will
  // skip any division by zero.

  // First divide by the negative numbers, if any.
  if (wi::neg_p (divisor_min, sign))
    wi_cross_product (r, type, dividend_min, dividend_max,
		      divisor_min, wi::minus_one (prec));
  else
    r = value_range ();

  // Then divide by the non-zero positive numbers, if any.
  if (wi::gt_p (divisor_max, wi::zero (prec), sign))
    {
      value_range tmp;
      wi_cross_product (tmp, type, dividend_min, dividend_max,
			wi::one (prec), divisor_max);
      r.union_ (tmp);
    }
  // We shouldn't still have undefined here.
  gcc_checking_assert (!r.undefined_p ());
}

operator_div op_trunc_div (TRUNC_DIV_EXPR);
operator_div op_floor_div (FLOOR_DIV_EXPR);
operator_div op_round_div (ROUND_DIV_EXPR);
operator_div op_ceil_div (CEIL_DIV_EXPR);


class operator_exact_divide : public operator_div
{
public:
  operator_exact_divide () : operator_div (TRUNC_DIV_EXPR) { }
  virtual bool op1_range (value_range &r, tree type,
			  const value_range &lhs,
			  const value_range &op2) const;

} op_exact_div;

bool
operator_exact_divide::op1_range (value_range &r, tree type,
				  const value_range &lhs,
				  const value_range &op2) const
{
  tree offset;
  // [2, 4] = op1 / [3,3]   since its exact divide, no need to worry about
  // remainders in the endpoints, so op1 = [2,4] * [3,3] = [6,12].
  // We wont bother trying to enumerate all the in between stuff :-P
  // TRUE accuraacy is [6,6][9,9][12,12].  This is unlikely to matter most of
  // the time however.
  // If op2 is a multiple of 2, we would be able to set some non-zero bits.
  if (op2.singleton_p (&offset)
      && !integer_zerop (offset))
    return range_op_handler (MULT_EXPR, type)->fold_range (r, type, lhs, op2);
  return false;
}


class operator_lshift : public cross_product_operator
{
public:
  virtual bool fold_range (value_range &r, tree type,
			   const value_range &op1,
			   const value_range &op2) const;

  virtual void wi_fold (value_range &r, tree type,
			const wide_int &lh_lb, const wide_int &lh_ub,
			const wide_int &rh_lb, const wide_int &rh_ub) const;
  virtual bool wi_op_overflows (wide_int &res,
				tree type,
				const wide_int &,
				const wide_int &) const;
} op_lshift;

bool
operator_lshift::fold_range (value_range &r, tree type,
			     const value_range &op1,
			     const value_range &op2) const
{
  if (undefined_shift_range_check (r, type, op2))
    return true;

  // Transform left shifts by constants into multiplies.
  if (op2.singleton_p ())
    {
      unsigned shift = op2.lower_bound ().to_uhwi ();
      wide_int tmp = wi::set_bit_in_zero (shift, TYPE_PRECISION (type));
      value_range mult (type, tmp, tmp);

      // Force wrapping multiplication.
      bool saved_flag_wrapv = flag_wrapv;
      bool saved_flag_wrapv_pointer = flag_wrapv_pointer;
      flag_wrapv = 1;
      flag_wrapv_pointer = 1;
      bool b = range_op_handler (MULT_EXPR, type)->fold_range (r, type, op1,
							       mult);
      flag_wrapv = saved_flag_wrapv;
      flag_wrapv_pointer = saved_flag_wrapv_pointer;
      return b;
    }
  else
    // Otherwise, invoke the generic fold routine.
    return range_operator::fold_range (r, type, op1, op2);
}

void
operator_lshift::wi_fold (value_range &r, tree type,
			  const wide_int &lh_lb, const wide_int &lh_ub,
			  const wide_int &rh_lb, const wide_int &rh_ub) const
{
  signop sign = TYPE_SIGN (type);
  unsigned prec = TYPE_PRECISION (type);
  int overflow_pos = sign == SIGNED ? prec - 1 : prec;
  int bound_shift = overflow_pos - rh_ub.to_shwi ();
  // If bound_shift == HOST_BITS_PER_WIDE_INT, the llshift can
  // overflow.  However, for that to happen, rh.max needs to be zero,
  // which means rh is a singleton range of zero, which means it
  // should be handled by the lshift fold_range above.
  wide_int bound = wi::set_bit_in_zero (bound_shift, prec);
  wide_int complement = ~(bound - 1);
  wide_int low_bound, high_bound;
  bool in_bounds = false;

  if (sign == UNSIGNED)
    {
      low_bound = bound;
      high_bound = complement;
      if (wi::ltu_p (lh_ub, low_bound))
	{
	  // [5, 6] << [1, 2] == [10, 24].
	  // We're shifting out only zeroes, the value increases
	  // monotonically.
	  in_bounds = true;
	}
      else if (wi::ltu_p (high_bound, lh_lb))
	{
	  // [0xffffff00, 0xffffffff] << [1, 2]
	  // == [0xfffffc00, 0xfffffffe].
	  // We're shifting out only ones, the value decreases
	  // monotonically.
	  in_bounds = true;
	}
    }
  else
    {
      // [-1, 1] << [1, 2] == [-4, 4]
      low_bound = complement;
      high_bound = bound;
      if (wi::lts_p (lh_ub, high_bound)
	  && wi::lts_p (low_bound, lh_lb))
	{
	  // For non-negative numbers, we're shifting out only zeroes,
	  // the value increases monotonically.  For negative numbers,
	  // we're shifting out only ones, the value decreases
	  // monotonically.
	  in_bounds = true;
	}
    }

  if (in_bounds)
    wi_cross_product (r, type, lh_lb, lh_ub, rh_lb, rh_ub);
  else
   r = value_range (type);
}

bool
operator_lshift::wi_op_overflows (wide_int &res, tree type,
				  const wide_int &w0, const wide_int &w1) const
{
  signop sign = TYPE_SIGN (type);
  if (wi::neg_p (w1))
    {
      // It's unclear from the C standard whether shifts can overflow.
      // The following code ignores overflow; perhaps a C standard
      // interpretation ruling is needed.
      res = wi::rshift (w0, -w1, sign);
    }
  else
    res = wi::lshift (w0, w1);
  return false;
}


class operator_rshift : public cross_product_operator
{
public:
  virtual bool fold_range (value_range &r, tree type,
			   const value_range &op1,
			   const value_range &op2) const;
  virtual void wi_fold (value_range &r, tree type,
		        const wide_int &lh_lb,
		        const wide_int &lh_ub,
		        const wide_int &rh_lb,
		        const wide_int &rh_ub) const;
  virtual bool wi_op_overflows (wide_int &res,
				tree type,
				const wide_int &w0,
				const wide_int &w1) const;
} op_rshift;

bool
operator_rshift::wi_op_overflows (wide_int &res,
				  tree type,
				  const wide_int &w0,
				  const wide_int &w1) const
{
  signop sign = TYPE_SIGN (type);
  if (wi::neg_p (w1))
    res = wi::lshift (w0, -w1);
  else
    {
      // It's unclear from the C standard whether shifts can overflow.
      // The following code ignores overflow; perhaps a C standard
      // interpretation ruling is needed.
      res = wi::rshift (w0, w1, sign);
    }
  return false;
}

bool
operator_rshift::fold_range (value_range &r, tree type,
			     const value_range &op1,
			     const value_range &op2) const
{
  // Invoke the generic fold routine if not undefined..
  if (undefined_shift_range_check (r, type, op2))
    return true;

  return range_operator::fold_range (r, type, op1, op2);
}

void
operator_rshift::wi_fold (value_range &r, tree type,
			  const wide_int &lh_lb, const wide_int &lh_ub,
			  const wide_int &rh_lb, const wide_int &rh_ub) const
{
  wi_cross_product (r, type, lh_lb, lh_ub, rh_lb, rh_ub);
}


class operator_cast: public range_operator
{
public:
  virtual bool fold_range (value_range &r, tree type,
			   const value_range &op1,
			   const value_range &op2) const;
  virtual bool op1_range (value_range &r, tree type,
			  const value_range &lhs,
			  const value_range &op2) const;

} op_convert;

bool
operator_cast::fold_range (value_range &r, tree type ATTRIBUTE_UNUSED,
			   const value_range &lh,
			   const value_range &rh) const
{
  if (empty_range_check (r, lh, rh))
    return true;
  
  tree inner = lh.type ();
  tree outer = rh.type ();
  gcc_checking_assert (rh.varying_p ());
  gcc_checking_assert (types_compatible_p (outer, type));
  signop inner_sign = TYPE_SIGN (inner);
  signop outer_sign = TYPE_SIGN (outer);
  unsigned inner_prec = TYPE_PRECISION (inner);
  unsigned outer_prec = TYPE_PRECISION (outer);

  // Start with an empty range and add subranges.
  r = value_range ();
  for (unsigned x = 0; x < lh.num_pairs (); ++x)
    {
      wide_int lh_lb = lh.lower_bound (x);
      wide_int lh_ub = lh.upper_bound (x);

      // If the conversion is not truncating we can convert the min
      // and max values and canonicalize the resulting range.
      // Otherwise, we can do the conversion if the size of the range
      // is less than what the precision of the target type can
      // represent.
      if (outer_prec >= inner_prec
	  || wi::rshift (wi::sub (lh_ub, lh_lb),
			 wi::uhwi (outer_prec, inner_prec),
			 inner_sign) == 0)
	{
	  wide_int min = wide_int::from (lh_lb, outer_prec, inner_sign);
	  wide_int max = wide_int::from (lh_ub, outer_prec, inner_sign);
	  if (!wi::eq_p (min, wi::min_value (outer_prec, outer_sign))
	      || !wi::eq_p (max, wi::max_value (outer_prec, outer_sign)))
	    {
	      value_range tmp;
	      create_possibly_reversed_range (tmp, type, min, max);
	      r.union_ (tmp);
	      continue;
	    }
	}
      r = value_range (type);
      break;
    }
  return true;
}

bool
operator_cast::op1_range (value_range &r, tree type,
			  const value_range &lhs,
			  const value_range &op2) const
{
  tree lhs_type = lhs.type ();
  value_range tmp;
  gcc_checking_assert (types_compatible_p (op2.type(), type));

  // If the precision of the LHS is smaller than the precision of the
  // RHS, then there would be truncation of the value on the RHS, and
  // so we can tell nothing about it.
  if (TYPE_PRECISION (lhs_type) < TYPE_PRECISION (type))
    {
      // If we've been passed an actual value for the RHS rather than
      // the type, see if it fits the LHS, and if so, then we can allow
      // it.
      fold_range (r, lhs_type, op2, value_range (lhs_type));
      fold_range (tmp, type, r, value_range (type));
      if (tmp == op2)
        {
	  // We know the value of the RHS fits in the LHS type, so
	  // convert the LHS and remove any values that arent in OP2.
	  fold_range (r, type, lhs, value_range (type));
	  r.intersect (op2);
	  return true;
	}
      // Special case if the LHS is a boolean.  A 0 means the RHS is
      // zero, and a 1 means the RHS is non-zero.
      if (TREE_CODE (lhs_type) == BOOLEAN_TYPE)
	{
	  // If the LHS is unknown, the result is whatever op2 already is.
	  if (!lhs.singleton_p ())
	    {
	      r = op2;
	      return true;
	    }
	  // Boolean casts are weird in GCC. It's actually an implied
	  // mask with 0x01, so all that is known is whether the
	  // rightmost bit is 0 or 1, which implies the only value
	  // *not* in the RHS is 0 or -1.
	  unsigned prec = TYPE_PRECISION (type);
	  if (lhs.zero_p ())
	    r = value_range (type, wi::minus_one (prec), wi::minus_one (prec),
			     VR_ANTI_RANGE);
	  else
	    r = value_range (type, wi::zero (prec), wi::zero (prec),
			     VR_ANTI_RANGE);
	  // And intersect it with what we know about op2.
	  r.intersect (op2);
	}
      else
	// Otherwise we'll have to assume it's whatever we know about op2.
	r = op2;
      return true;
    }

  // If the LHS precision is greater than the rhs precision, the LHS
  // range is restricted to the range of the RHS by this
  // assignment.
  if (TYPE_PRECISION (lhs_type) > TYPE_PRECISION (type))
    {
      // Cast the range of the RHS to the type of the LHS.
      fold_range (tmp, lhs_type, value_range (type), value_range (lhs_type));
      // Intersect this with the LHS range will produce the range, which
      // will be cast to the RHS type before returning.
      tmp.intersect (lhs);
    }
  else
    tmp = lhs;

  // Cast the calculated range to the type of the RHS.
  fold_range (r, type, tmp, value_range (type));
  return true;
}


class operator_logical_and : public range_operator
{
public:
  virtual bool fold_range (value_range &r, tree type,
			   const value_range &lh,
			   const value_range &rh) const;
  virtual bool op1_range (value_range &r, tree type,
			  const value_range &lhs,
			  const value_range &op2) const;
  virtual bool op2_range (value_range &r, tree type,
			  const value_range &lhs,
			  const value_range &op1) const;
} op_logical_and;


bool
operator_logical_and::fold_range (value_range &r, tree type,
				  const value_range &lh,
				  const value_range &rh) const
{
  if (empty_range_check (r, lh, rh))
    return true;

  // 0 && anything is 0.
  if ((wi::eq_p (lh.lower_bound (), 0) && wi::eq_p (lh.upper_bound (), 0))
      || (wi::eq_p (lh.lower_bound (), 0) && wi::eq_p (rh.upper_bound (), 0)))
    r = range_false (type);
  else if (lh.contains_p (build_zero_cst (lh.type ()))
	   || rh.contains_p (build_zero_cst (rh.type ())))
    // To reach this point, there must be a logical 1 on each side, and
    // the only remaining question is whether there is a zero or not.
    r = range_true_and_false (type);
  else
    r = range_true (type);
  return true;
}

bool
operator_logical_and::op1_range (value_range &r, tree type,
				 const value_range &lhs,
				 const value_range &op2 ATTRIBUTE_UNUSED) const
{
   switch (get_bool_state (r, lhs, type))
     {
     case BRS_TRUE:
       // A true result means both sides of the AND must be true.
       r = range_true (type);
       break;
     default:
       // Any other result means only one side has to be false, the
       // other side can be anything. So we cannott be sure of any
       // result here.
       r = range_true_and_false (type);
       break;
     }
  return true;
}

bool
operator_logical_and::op2_range (value_range &r, tree type,
				 const value_range &lhs,
				 const value_range &op1) const
{
  return operator_logical_and::op1_range (r, type, lhs, op1);
}


class operator_bitwise_and : public range_operator
{
public:
  virtual bool op1_range (value_range &r, tree type,
			  const value_range &lhs,
			  const value_range &op2) const;
  virtual bool op2_range (value_range &r, tree type,
			  const value_range &lhs,
			  const value_range &op1) const;
  virtual void wi_fold (value_range &r, tree type,
		        const wide_int &lh_lb,
		        const wide_int &lh_ub,
		        const wide_int &rh_lb,
		        const wide_int &rh_ub) const;
} op_bitwise_and;

// Optimize BIT_AND_EXPR and BIT_IOR_EXPR in terms of a mask if
// possible.  Basically, see if we can optimize:
//
//	[LB, UB] op Z
//   into:
//	[LB op Z, UB op Z]
//
// If the optimization was successful, accumulate the range in R and
// return TRUE.

static bool
wi_optimize_and_or (value_range &r,
		    enum tree_code code,
		    tree type,
		    const wide_int &lh_lb, const wide_int &lh_ub,
		    const wide_int &rh_lb, const wide_int &rh_ub)
{
  // Calculate the singleton mask among the ranges, if any.
  wide_int lower_bound, upper_bound, mask;
  if (wi::eq_p (rh_lb, rh_ub))
    {
      mask = rh_lb;
      lower_bound = lh_lb;
      upper_bound = lh_ub;
    }
  else if (wi::eq_p (lh_lb, lh_ub))
    {
      mask = lh_lb;
      lower_bound = rh_lb;
      upper_bound = rh_ub;
    }
  else
    return false;

  // If Z is a constant which (for op | its bitwise not) has n
  // consecutive least significant bits cleared followed by m 1
  // consecutive bits set immediately above it and either
  // m + n == precision, or (x >> (m + n)) == (y >> (m + n)).
  //
  // The least significant n bits of all the values in the range are
  // cleared or set, the m bits above it are preserved and any bits
  // above these are required to be the same for all values in the
  // range.
  wide_int w = mask;
  int m = 0, n = 0;
  if (code == BIT_IOR_EXPR)
    w = ~w;
  if (wi::eq_p (w, 0))
    n = w.get_precision ();
  else
    {
      n = wi::ctz (w);
      w = ~(w | wi::mask (n, false, w.get_precision ()));
      if (wi::eq_p (w, 0))
	m = w.get_precision () - n;
      else
	m = wi::ctz (w) - n;
    }
  wide_int new_mask = wi::mask (m + n, true, w.get_precision ());
  if ((new_mask & lower_bound) != (new_mask & upper_bound))
    return false;

  wide_int res_lb, res_ub;
  if (code == BIT_AND_EXPR)
    {
      res_lb = wi::bit_and (lower_bound, mask);
      res_ub = wi::bit_and (upper_bound, mask);
    }
  else if (code == BIT_IOR_EXPR)
    {
      res_lb = wi::bit_or (lower_bound, mask);
      res_ub = wi::bit_or (upper_bound, mask);
    }
  else
    gcc_unreachable ();
  value_range_with_overflow (r, type, res_lb, res_ub);
  return true;
}

// For range [LB, UB] compute two wide_int bit masks.
//
// In the MAYBE_NONZERO bit mask, if some bit is unset, it means that
// for all numbers in the range the bit is 0, otherwise it might be 0
// or 1.
//
// In the MUSTBE_NONZERO bit mask, if some bit is set, it means that
// for all numbers in the range the bit is 1, otherwise it might be 0
// or 1.

void
wi_set_zero_nonzero_bits (tree type,
			  const wide_int &lb, const wide_int &ub,
			  wide_int &maybe_nonzero,
			  wide_int &mustbe_nonzero)
{
  signop sign = TYPE_SIGN (type);

  if (wi::eq_p (lb, ub))
    maybe_nonzero = mustbe_nonzero = lb;
  else if (wi::ge_p (lb, 0, sign) || wi::lt_p (ub, 0, sign))
    {
      wide_int xor_mask = lb ^ ub;
      maybe_nonzero = lb | ub;
      mustbe_nonzero = lb & ub;
      if (xor_mask != 0)
	{
	  wide_int mask = wi::mask (wi::floor_log2 (xor_mask), false,
				    maybe_nonzero.get_precision ());
	  maybe_nonzero = maybe_nonzero | mask;
	  mustbe_nonzero = wi::bit_and_not (mustbe_nonzero, mask);
	}
    }
  else
    {
      maybe_nonzero = wi::minus_one (lb.get_precision ());
      mustbe_nonzero = wi::zero (lb.get_precision ());
    }
}

void
operator_bitwise_and::wi_fold (value_range &r, tree type,
			       const wide_int &lh_lb,
			       const wide_int &lh_ub,
			       const wide_int &rh_lb,
			       const wide_int &rh_ub) const
{
  if (wi_optimize_and_or (r, BIT_AND_EXPR, type, lh_lb, lh_ub, rh_lb, rh_ub))
    return;

  wide_int maybe_nonzero_lh, mustbe_nonzero_lh;
  wide_int maybe_nonzero_rh, mustbe_nonzero_rh;
  wi_set_zero_nonzero_bits (type, lh_lb, lh_ub,
			    maybe_nonzero_lh, mustbe_nonzero_lh);
  wi_set_zero_nonzero_bits (type, rh_lb, rh_ub,
			    maybe_nonzero_rh, mustbe_nonzero_rh);

  wide_int new_lb = mustbe_nonzero_lh & mustbe_nonzero_rh;
  wide_int new_ub = maybe_nonzero_lh & maybe_nonzero_rh;
  signop sign = TYPE_SIGN (type);
  unsigned prec = TYPE_PRECISION (type);
  // If both input ranges contain only negative values, we can
  // truncate the result range maximum to the minimum of the
  // input range maxima.
  if (wi::lt_p (lh_ub, 0, sign) && wi::lt_p (rh_ub, 0, sign))
    {
      new_ub = wi::min (new_ub, lh_ub, sign);
      new_ub = wi::min (new_ub, rh_ub, sign);
    }
  // If either input range contains only non-negative values
  // we can truncate the result range maximum to the respective
  // maximum of the input range.
  if (wi::ge_p (lh_lb, 0, sign))
    new_ub = wi::min (new_ub, lh_ub, sign);
  if (wi::ge_p (rh_lb, 0, sign))
    new_ub = wi::min (new_ub, rh_ub, sign);
  // PR68217: In case of signed & sign-bit-CST should
  // result in [-INF, 0] instead of [-INF, INF].
  if (wi::gt_p (new_lb, new_ub, sign))
    {
      wide_int sign_bit = wi::set_bit_in_zero (prec - 1, prec);
      if (sign == SIGNED
	  && ((wi::eq_p (lh_lb, lh_ub)
	       && !wi::cmps (lh_lb, sign_bit))
	      || (wi::eq_p (rh_lb, rh_ub)
		  && !wi::cmps (rh_lb, sign_bit))))
	{
	  new_lb = wi::min_value (prec, sign);
	  new_ub = wi::zero (prec);
	}
    }
  // If the limits got swapped around, return varying.
  if (wi::gt_p (new_lb, new_ub,sign))
    r = value_range (type);
  else
    value_range_with_overflow (r, type, new_lb, new_ub);
}

bool
operator_bitwise_and::op1_range (value_range &r, tree type,
				 const value_range &lhs,
				 const value_range &op2) const
{
  // If this is really a logical wi_fold, call that.
  if (types_compatible_p (type, boolean_type_node))
    return op_logical_and.op1_range (r, type, lhs, op2);

  // For now do nothing with bitwise AND of value_range's.
  r.set_varying (type);
  return true;
}

bool
operator_bitwise_and::op2_range (value_range &r, tree type,
				 const value_range &lhs,
				 const value_range &op1) const
{
  return operator_bitwise_and::op1_range (r, type, lhs, op1);
}


class operator_logical_or : public range_operator
{
public:
  virtual bool fold_range (value_range &r, tree type,
			   const value_range &lh,
			   const value_range &rh) const;
  virtual bool op1_range (value_range &r, tree type,
			  const value_range &lhs,
			  const value_range &op2) const;
  virtual bool op2_range (value_range &r, tree type,
			  const value_range &lhs,
			  const value_range &op1) const;
} op_logical_or;

bool
operator_logical_or::fold_range (value_range &r, tree type ATTRIBUTE_UNUSED,
				 const value_range &lh,
				 const value_range &rh) const
{
  if (empty_range_check (r, lh, rh))
    return true;

  r = lh;
  r.union_ (rh);
  return true;
}

bool
operator_logical_or::op1_range (value_range &r, tree type,
				const value_range &lhs,
				const value_range &op2 ATTRIBUTE_UNUSED) const
{
   switch (get_bool_state (r, lhs, type))
     {
     case BRS_FALSE:
       // A false result means both sides of the OR must be false.
       r = range_false (type);
       break;
     default:
       // Any other result means only one side has to be true, the
       // other side can be anything. so we can't be sure of any result
       // here.
       r = range_true_and_false (type);
       break;
    }
  return true;
}

bool
operator_logical_or::op2_range (value_range &r, tree type,
				const value_range &lhs,
				const value_range &op1) const
{
  return operator_logical_or::op1_range (r, type, lhs, op1);
}


class operator_bitwise_or : public range_operator
{
public:
  virtual bool op1_range (value_range &r, tree type,
			  const value_range &lhs,
			  const value_range &op2) const;
  virtual bool op2_range (value_range &r, tree type,
			  const value_range &lhs,
			  const value_range &op1) const;
  virtual void wi_fold (value_range &r, tree type,
		        const wide_int &lh_lb,
		        const wide_int &lh_ub,
		        const wide_int &rh_lb,
		        const wide_int &rh_ub) const;
} op_bitwise_or;

void
operator_bitwise_or::wi_fold (value_range &r, tree type,
			      const wide_int &lh_lb,
			      const wide_int &lh_ub,
			      const wide_int &rh_lb,
			      const wide_int &rh_ub) const
{
  if (wi_optimize_and_or (r, BIT_IOR_EXPR, type, lh_lb, lh_ub, rh_lb, rh_ub))
    return;

  wide_int maybe_nonzero_lh, mustbe_nonzero_lh;
  wide_int maybe_nonzero_rh, mustbe_nonzero_rh;
  wi_set_zero_nonzero_bits (type, lh_lb, lh_ub,
			    maybe_nonzero_lh, mustbe_nonzero_lh);
  wi_set_zero_nonzero_bits (type, rh_lb, rh_ub,
			    maybe_nonzero_rh, mustbe_nonzero_rh);
  wide_int new_lb = mustbe_nonzero_lh | mustbe_nonzero_rh;
  wide_int new_ub = maybe_nonzero_lh | maybe_nonzero_rh;
  signop sign = TYPE_SIGN (type);
  // If the input ranges contain only positive values we can
  // truncate the minimum of the result range to the maximum
  // of the input range minima.
  if (wi::ge_p (lh_lb, 0, sign)
      && wi::ge_p (rh_lb, 0, sign))
    {
      new_lb = wi::max (new_lb, lh_lb, sign);
      new_lb = wi::max (new_lb, rh_lb, sign);
    }
  // If either input range contains only negative values
  // we can truncate the minimum of the result range to the
  // respective minimum range.
  if (wi::lt_p (lh_ub, 0, sign))
    new_lb = wi::max (new_lb, lh_lb, sign);
  if (wi::lt_p (rh_ub, 0, sign))
    new_lb = wi::max (new_lb, rh_lb, sign);
  // If the limits got swapped around, return varying.
  if (wi::gt_p (new_lb, new_ub,sign))
    r = value_range (type);
  else
    value_range_with_overflow (r, type, new_lb, new_ub);
}

bool
operator_bitwise_or::op1_range (value_range &r, tree type,
				const value_range &lhs,
				const value_range &op2) const
{
  // If this is really a logical wi_fold, call that.
  if (types_compatible_p (type, boolean_type_node))
    return op_logical_or.op1_range (r, type, lhs, op2);

  // For now do nothing with bitwise OR of value_range's.
  r.set_varying (type);
  return true;
}

bool
operator_bitwise_or::op2_range (value_range &r, tree type,
				const value_range &lhs,
				const value_range &op1) const
{
  return operator_bitwise_or::op1_range (r, type, lhs, op1);
}


class operator_bitwise_xor : public range_operator
{
public:
  virtual void wi_fold (value_range &r, tree type,
		        const wide_int &lh_lb,
		        const wide_int &lh_ub,
		        const wide_int &rh_lb,
		        const wide_int &rh_ub) const;
} op_bitwise_xor;

void
operator_bitwise_xor::wi_fold (value_range &r, tree type,
			       const wide_int &lh_lb,
			       const wide_int &lh_ub,
			       const wide_int &rh_lb,
			       const wide_int &rh_ub) const
{
  signop sign = TYPE_SIGN (type);
  wide_int maybe_nonzero_lh, mustbe_nonzero_lh;
  wide_int maybe_nonzero_rh, mustbe_nonzero_rh;
  wi_set_zero_nonzero_bits (type, lh_lb, lh_ub,
			    maybe_nonzero_lh, mustbe_nonzero_lh);
  wi_set_zero_nonzero_bits (type, rh_lb, rh_ub,
			    maybe_nonzero_rh, mustbe_nonzero_rh);

  wide_int result_zero_bits = ((mustbe_nonzero_lh & mustbe_nonzero_rh)
			       | ~(maybe_nonzero_lh | maybe_nonzero_rh));
  wide_int result_one_bits
    = (wi::bit_and_not (mustbe_nonzero_lh, maybe_nonzero_rh)
       | wi::bit_and_not (mustbe_nonzero_rh, maybe_nonzero_lh));
  wide_int new_ub = ~result_zero_bits;
  wide_int new_lb = result_one_bits;

  // If the range has all positive or all negative values, the result
  // is better than VARYING.
  if (wi::lt_p (new_lb, 0, sign) || wi::ge_p (new_ub, 0, sign))
    value_range_with_overflow (r, type, new_lb, new_ub);
  else
    r = value_range (type);
}


class operator_trunc_mod : public range_operator
{
public:
  virtual void wi_fold (value_range &r, tree type,
		        const wide_int &lh_lb,
		        const wide_int &lh_ub,
		        const wide_int &rh_lb,
		        const wide_int &rh_ub) const;
} op_trunc_mod;

void
operator_trunc_mod::wi_fold (value_range &r, tree type,
			     const wide_int &lh_lb,
			     const wide_int &lh_ub,
			     const wide_int &rh_lb,
			     const wide_int &rh_ub) const
{
  wide_int new_lb, new_ub, tmp;
  signop sign = TYPE_SIGN (type);
  unsigned prec = TYPE_PRECISION (type);

  // Mod 0 is undefined.  Return undefined.
  if (wi_zero_p (type, rh_lb, rh_ub))
    {
      r = value_range ();
      return;
    }

  // ABS (A % B) < ABS (B) and either 0 <= A % B <= A or A <= A % B <= 0.
  new_ub = rh_ub - 1;
  if (sign == SIGNED)
    {
      tmp = -1 - rh_lb;
      new_ub = wi::smax (new_ub, tmp);
    }

  if (sign == UNSIGNED)
    new_lb = wi::zero (prec);
  else
    {
      new_lb = -new_ub;
      tmp = lh_lb;
      if (wi::gts_p (tmp, 0))
	tmp = wi::zero (prec);
      new_lb = wi::smax (new_lb, tmp);
    }
  tmp = lh_ub;
  if (sign == SIGNED && wi::neg_p (tmp))
    tmp = wi::zero (prec);
  new_ub = wi::min (new_ub, tmp, sign);

  value_range_with_overflow (r, type, new_lb, new_ub);
}


class operator_logical_not : public range_operator
{
public:
  virtual bool fold_range (value_range &r, tree type,
			   const value_range &lh,
			   const value_range &rh) const;
  virtual bool op1_range (value_range &r, tree type,
			  const value_range &lhs,
			  const value_range &op2) const;
} op_logical_not;

// Folding a logical NOT, oddly enough, involves doing nothing on the
// forward pass through.  During the initial walk backwards, the
// logical NOT reversed the desired outcome on the way back, so on the
// way forward all we do is pass the range forward.
//
// 	b_2 = x_1 < 20
// 	b_3 = !b_2
// 	if (b_3)
//  to determine the TRUE branch, walking  backward
//       if (b_3)		if ([1,1])
//       b_3 = !b_2		[1,1] = ![0,0]
// 	 b_2 = x_1 < 20		[0,0] = x_1 < 20,   false, so x_1 == [20, 255]
//   which is the result we are looking for.. so.. pass it through.

bool
operator_logical_not::fold_range (value_range &r, tree type,
				  const value_range &lh,
				  const value_range &rh ATTRIBUTE_UNUSED) const
{
  if (empty_range_check (r, lh, rh))
    return true;

  if (lh.varying_p () || lh.undefined_p ())
    r = lh;
  else
    {
      r = lh;
      r.invert ();
    }
  gcc_checking_assert (lh.type() == type);
  return true;
}

bool
operator_logical_not::op1_range (value_range &r,
				 tree type ATTRIBUTE_UNUSED,
				 const value_range &lhs,
				 const value_range &op2 ATTRIBUTE_UNUSED) const
{
  r = lhs;
  if (!lhs.varying_p () && !lhs.undefined_p ())
    r.invert ();
  return true;
}


class operator_bitwise_not : public range_operator
{
public:
  virtual bool fold_range (value_range &r, tree type,
			   const value_range &lh,
			   const value_range &rh) const;
  virtual bool op1_range (value_range &r, tree type,
			  const value_range &lhs,
			  const value_range &op2) const;
} op_bitwise_not;

bool
operator_bitwise_not::fold_range (value_range &r, tree type,
				  const value_range &lh,
				  const value_range &rh) const
{
  if (empty_range_check (r, lh, rh))
    return true;

  // ~X is simply -1 - X.
  value_range minusone (type, wi::minus_one (TYPE_PRECISION (type)),
			wi::minus_one (TYPE_PRECISION (type)));
  return range_op_handler (MINUS_EXPR, type)->fold_range (r, type, minusone,
							  lh);
}

bool
operator_bitwise_not::op1_range (value_range &r, tree type,
				 const value_range &lhs,
				 const value_range &op2) const
{
  // ~X is -1 - X and since bitwise NOT is involutary...do it again.
  return fold_range (r, type, lhs, op2);
}


class operator_cst : public range_operator
{
public:
  virtual bool fold_range (value_range &r, tree type,
			   const value_range &op1,
			   const value_range &op2) const;
} op_integer_cst;

bool
operator_cst::fold_range (value_range &r, tree type ATTRIBUTE_UNUSED,
			  const value_range &lh,
			  const value_range &rh ATTRIBUTE_UNUSED) const
{
  r = lh;
  return true;
}


class operator_identity : public range_operator
{
public:
  virtual bool fold_range (value_range &r, tree type,
			   const value_range &op1,
			   const value_range &op2) const;
  virtual bool op1_range (value_range &r, tree type,
			  const value_range &lhs,
			  const value_range &op2) const;
} op_identity;

bool
operator_identity::fold_range (value_range &r, tree type ATTRIBUTE_UNUSED,
			       const value_range &lh,
			       const value_range &rh ATTRIBUTE_UNUSED) const
{
  r = lh;
  return true;
}

bool
operator_identity::op1_range (value_range &r, tree type ATTRIBUTE_UNUSED,
			      const value_range &lhs,
			      const value_range &op2 ATTRIBUTE_UNUSED) const
{
  r = lhs;
  return true;
}


class operator_abs : public range_operator
{
 public:
  virtual void wi_fold (value_range &r, tree type,
		        const wide_int &lh_lb,
		        const wide_int &lh_ub,
		        const wide_int &rh_lb,
		        const wide_int &rh_ub) const;
  virtual bool op1_range (value_range &r, tree type,
			  const value_range &lhs,
			  const value_range &op2) const;
} op_abs;

void
operator_abs::wi_fold (value_range &r, tree type,
		       const wide_int &lh_lb, const wide_int &lh_ub,
		       const wide_int &rh_lb ATTRIBUTE_UNUSED,
		       const wide_int &rh_ub ATTRIBUTE_UNUSED) const
{
  wide_int min, max;
  signop sign = TYPE_SIGN (type);
  unsigned prec = TYPE_PRECISION (type);

  // Pass through LH for the easy cases.
  if (sign == UNSIGNED || wi::ge_p (lh_lb, 0, sign))
    {
      r = value_range (type, lh_lb, lh_ub);
      return;
    }

  // -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get
  // a useful range.
  wide_int min_value = wi::min_value (prec, sign);
  wide_int max_value = wi::max_value (prec, sign);
  if (!TYPE_OVERFLOW_UNDEFINED (type) && wi::eq_p (lh_lb, min_value))
    {
      r = value_range (type);
      return;
    }

  // ABS_EXPR may flip the range around, if the original range
  // included negative values.
  if (wi::eq_p (lh_lb, min_value))
    min = max_value;
  else
    min = wi::abs (lh_lb);
  if (wi::eq_p (lh_ub, min_value))
    max = max_value;
  else
    max = wi::abs (lh_ub);

  // If the range contains zero then we know that the minimum value in the
  // range will be zero.
  if (wi::le_p (lh_lb, 0, sign) && wi::ge_p (lh_ub, 0, sign))
    {
      if (wi::gt_p (min, max, sign))
	max = min;
      min = wi::zero (prec);
    }
  else
    {
      // If the range was reversed, swap MIN and MAX.
      if (wi::gt_p (min, max, sign))
	std::swap (min, max);
    }

  // If the new range has its limits swapped around (MIN > MAX), then
  // the operation caused one of them to wrap around.  The only thing
  // we know is that the result is positive.
  if (wi::gt_p (min, max, sign))
    {
      min = wi::zero (prec);
      max = max_value;
    }
  r = value_range (type, min, max);
}

bool
operator_abs::op1_range (value_range &r, tree type,
			 const value_range &lhs,
			 const value_range &op2) const
{
  if (empty_range_check (r, lhs, op2))
    return true;
  if (TYPE_UNSIGNED (type))
    {
      r = lhs;
      return true;
    }
  // Start with the positives because negatives are an impossible result.
  value_range positives = range_positives (type);
  positives.intersect (lhs);
  r = positives;
  // Then add the negative of each pair:
  // ABS(op1) = [5,20] would yield op1 => [-20,-5][5,20].
  for (unsigned i = 0; i < positives.num_pairs (); ++i)
    r.union_ (value_range (type,
			   -positives.upper_bound (i),
			   -positives.lower_bound (i)));
  return true;
}


class operator_absu : public range_operator
{
 public:
  virtual void wi_fold (value_range &r, tree type,
			const wide_int &lh_lb, const wide_int &lh_ub,
			const wide_int &rh_lb, const wide_int &rh_ub) const;
} op_absu;

void
operator_absu::wi_fold (value_range &r, tree type,
			const wide_int &lh_lb, const wide_int &lh_ub,
			const wide_int &rh_lb ATTRIBUTE_UNUSED,
			const wide_int &rh_ub ATTRIBUTE_UNUSED) const
{
  wide_int new_lb, new_ub;

  // Pass through VR0 the easy cases.
  if (wi::ges_p (lh_lb, 0))
    {
      new_lb = lh_lb;
      new_ub = lh_ub;
    }
  else
    {
      new_lb = wi::abs (lh_lb);
      new_ub = wi::abs (lh_ub);

      // If the range contains zero then we know that the minimum
      // value in the range will be zero.
      if (wi::ges_p (lh_ub, 0))
	{
	  if (wi::gtu_p (new_lb, new_ub))
	    new_ub = new_lb;
	  new_lb = wi::zero (TYPE_PRECISION (type));
	}
      else
	std::swap (new_lb, new_ub);
    }

  gcc_checking_assert (TYPE_UNSIGNED (type));
  r = value_range (type, new_lb, new_ub);
}


class operator_negate : public range_operator
{
 public:
  virtual bool fold_range (value_range &r, tree type,
			   const value_range &op1,
			   const value_range &op2) const;
  virtual bool op1_range (value_range &r, tree type,
			  const value_range &lhs,
			  const value_range &op2) const;
} op_negate;

bool
operator_negate::fold_range (value_range &r, tree type,
			     const value_range &lh,
			     const value_range &rh) const
{
  if (empty_range_check (r, lh, rh))
    return true;
  // -X is simply 0 - X.
  return range_op_handler (MINUS_EXPR, type)->fold_range (r, type,
							  range_zero (type),
							  lh);
}

bool
operator_negate::op1_range (value_range &r, tree type,
			    const value_range &lhs,
			    const value_range &op2) const
{
  // NEGATE is involutory.
  return fold_range (r, type, lhs, op2);
}


class operator_addr_expr : public range_operator
{
public:
  virtual bool fold_range (value_range &r, tree type,
			   const value_range &op1,
			   const value_range &op2) const;
  virtual bool op1_range (value_range &r, tree type,
			  const value_range &lhs,
			  const value_range &op2) const;
} op_addr;

bool
operator_addr_expr::fold_range (value_range &r, tree type,
				const value_range &lh,
				const value_range &rh) const
{
  if (empty_range_check (r, lh, rh))
    return true;

  // Return a non-null pointer of the LHS type (passed in op2).
  if (lh.zero_p ())
    r = range_zero (type);
  else if (!lh.contains_p (build_zero_cst (lh.type ())))
    r = range_nonzero (type);
  else
    r = value_range (type);
  return true;
}

bool
operator_addr_expr::op1_range (value_range &r, tree type,
			       const value_range &lhs,
			       const value_range &op2) const
{
  return operator_addr_expr::fold_range (r, type, lhs, op2);
}


class pointer_plus_operator : public range_operator
{
public:
  virtual void wi_fold (value_range &r, tree type,
		        const wide_int &lh_lb,
		        const wide_int &lh_ub,
		        const wide_int &rh_lb,
		        const wide_int &rh_ub) const;
} op_pointer_plus;

void
pointer_plus_operator::wi_fold (value_range &r, tree type,
				const wide_int &lh_lb,
				const wide_int &lh_ub,
				const wide_int &rh_lb,
				const wide_int &rh_ub) const
{
  // For pointer types, we are really only interested in asserting
  // whether the expression evaluates to non-NULL.
  //
  // With -fno-delete-null-pointer-checks we need to be more
  // conservative.  As some object might reside at address 0,
  // then some offset could be added to it and the same offset
  // subtracted again and the result would be NULL.
  // E.g.
  // static int a[12]; where &a[0] is NULL and
  // ptr = &a[6];
  // ptr -= 6;
  // ptr will be NULL here, even when there is POINTER_PLUS_EXPR
  // where the first range doesn't include zero and the second one
  // doesn't either.  As the second operand is sizetype (unsigned),
  // consider all ranges where the MSB could be set as possible
  // subtractions where the result might be NULL.
  if ((!wi_includes_zero_p (type, lh_lb, lh_ub)
       || !wi_includes_zero_p (type, rh_lb, rh_ub))
      && !TYPE_OVERFLOW_WRAPS (type)
      && (flag_delete_null_pointer_checks
	  || !wi::sign_mask (rh_ub)))
    r = range_nonzero (type);
  else if (lh_lb == lh_ub && lh_lb == 0
	   && rh_lb == rh_ub && rh_lb == 0)
    r = range_zero (type);
  else
   r = value_range (type);
}


class pointer_min_max_operator : public range_operator
{
public:
  virtual void wi_fold (value_range & r, tree type,
			const wide_int &lh_lb, const wide_int &lh_ub,
			const wide_int &rh_lb, const wide_int &rh_ub) const;
} op_ptr_min_max;

void
pointer_min_max_operator::wi_fold (value_range &r, tree type,
				   const wide_int &lh_lb,
				   const wide_int &lh_ub,
				   const wide_int &rh_lb,
				   const wide_int &rh_ub) const
{
  // For MIN/MAX expressions with pointers, we only care about
  // nullness.  If both are non null, then the result is nonnull.
  // If both are null, then the result is null.  Otherwise they
  // are varying.
  if (!wi_includes_zero_p (type, lh_lb, lh_ub)
      && !wi_includes_zero_p (type, rh_lb, rh_ub))
    r = range_nonzero (type);
  else if (wi_zero_p (type, lh_lb, lh_ub) && wi_zero_p (type, rh_lb, rh_ub))
    r = range_zero (type);
  else
    r = value_range (type);
}


class pointer_and_operator : public range_operator
{
public:
  virtual void wi_fold (value_range &r, tree type,
			const wide_int &lh_lb, const wide_int &lh_ub,
			const wide_int &rh_lb, const wide_int &rh_ub) const;
} op_pointer_and;

void
pointer_and_operator::wi_fold (value_range &r, tree type,
			       const wide_int &lh_lb,
			       const wide_int &lh_ub,
			       const wide_int &rh_lb ATTRIBUTE_UNUSED,
			       const wide_int &rh_ub ATTRIBUTE_UNUSED) const
{
  // For pointer types, we are really only interested in asserting
  // whether the expression evaluates to non-NULL.
  if (wi_zero_p (type, lh_lb, lh_ub) || wi_zero_p (type, lh_lb, lh_ub))
    r = range_zero (type);
  else 
    r = value_range (type);
}


class pointer_or_operator : public range_operator
{
public:
  virtual void wi_fold (value_range &r, tree type,
			const wide_int &lh_lb, const wide_int &lh_ub,
			const wide_int &rh_lb, const wide_int &rh_ub) const;
} op_pointer_or;

void
pointer_or_operator::wi_fold (value_range &r, tree type,
			      const wide_int &lh_lb,
			      const wide_int &lh_ub,
			      const wide_int &rh_lb,
			      const wide_int &rh_ub) const
{
  // For pointer types, we are really only interested in asserting
  // whether the expression evaluates to non-NULL.
  if (!wi_includes_zero_p (type, lh_lb, lh_ub)
      && !wi_includes_zero_p (type, rh_lb, rh_ub))
    r = range_nonzero (type);
  else if (wi_zero_p (type, lh_lb, lh_ub) && wi_zero_p (type, rh_lb, rh_ub))
    r = range_zero (type);
  else
    r = value_range (type);
}

// This implements the range operator tables as local objects in this file.

class range_op_table
{
public:
  inline range_operator *operator[] (enum tree_code code);
protected:
  void set (enum tree_code code, range_operator &op);
private:
  range_operator *m_range_tree[MAX_TREE_CODES];
};

// Return a pointer to the range_operator instance, if there is one
// associated with tree_code CODE.

range_operator *
range_op_table::operator[] (enum tree_code code)
{
  gcc_checking_assert (code > 0 && code < MAX_TREE_CODES);
  return m_range_tree[code];
}

// Add OP to the handler table for CODE.

void
range_op_table::set (enum tree_code code, range_operator &op)
{
  gcc_checking_assert (m_range_tree[code] == NULL);
  m_range_tree[code] = &op;
}

// Instantiate a range op table for integral operations.

class integral_table : public range_op_table
{
public:
  integral_table ();
} integral_tree_table;

integral_table::integral_table ()
{
  set (EQ_EXPR, op_equal);
  set (NE_EXPR, op_not_equal);
  set (LT_EXPR, op_lt);
  set (LE_EXPR, op_le);
  set (GT_EXPR, op_gt);
  set (GE_EXPR, op_ge);
  set (PLUS_EXPR, op_plus);
  set (MINUS_EXPR, op_minus);
  set (MIN_EXPR, op_min);
  set (MAX_EXPR, op_max);
  set (MULT_EXPR, op_mult);
  set (TRUNC_DIV_EXPR, op_trunc_div);
  set (FLOOR_DIV_EXPR, op_floor_div);
  set (ROUND_DIV_EXPR, op_round_div);
  set (CEIL_DIV_EXPR, op_ceil_div);
  set (EXACT_DIV_EXPR, op_exact_div);
  set (LSHIFT_EXPR, op_lshift);
  set (RSHIFT_EXPR, op_rshift);
  set (NOP_EXPR, op_convert);
  set (CONVERT_EXPR, op_convert);
  set (TRUTH_AND_EXPR, op_logical_and);
  set (BIT_AND_EXPR, op_bitwise_and);
  set (TRUTH_OR_EXPR, op_logical_or);
  set (BIT_IOR_EXPR, op_bitwise_or);
  set (BIT_XOR_EXPR, op_bitwise_xor);
  set (TRUNC_MOD_EXPR, op_trunc_mod);
  set (TRUTH_NOT_EXPR, op_logical_not);
  set (BIT_NOT_EXPR, op_bitwise_not);
  set (INTEGER_CST, op_integer_cst);
  set (SSA_NAME, op_identity);
  set (PAREN_EXPR, op_identity);
  set (OBJ_TYPE_REF, op_identity);
  set (ABS_EXPR, op_abs);
  set (ABSU_EXPR, op_absu);
  set (NEGATE_EXPR, op_negate);
  set (ADDR_EXPR, op_addr);
}

// Instantiate a range op table for pointer operations.

class pointer_table : public range_op_table
{
public:
  pointer_table ();
} pointer_tree_table;

pointer_table::pointer_table ()
{
  set (BIT_AND_EXPR, op_pointer_and);
  set (BIT_IOR_EXPR, op_pointer_or);
  set (MIN_EXPR, op_ptr_min_max);
  set (MAX_EXPR, op_ptr_min_max);
  set (POINTER_PLUS_EXPR, op_pointer_plus);

  set (EQ_EXPR, op_equal);
  set (NE_EXPR, op_not_equal);
  set (LT_EXPR, op_lt);
  set (LE_EXPR, op_le);
  set (GT_EXPR, op_gt);
  set (GE_EXPR, op_ge);
  set (SSA_NAME, op_identity);
  set (ADDR_EXPR, op_addr);
  set (NOP_EXPR, op_convert);
  set (CONVERT_EXPR, op_convert);

  set (BIT_NOT_EXPR, op_bitwise_not);
  set (BIT_XOR_EXPR, op_bitwise_xor);
}

// The tables are hidden and accessed via a simple extern function.

range_operator *
range_op_handler (enum tree_code code, tree type)
{
  // First check if there is apointer specialization.
  if (POINTER_TYPE_P (type))
    return pointer_tree_table[code];
  return integral_tree_table[code];
}

// Cast the range in R to TYPE.

void
range_cast (value_range &r, tree type)
{
  value_range tmp = r;
  range_operator *op = range_op_handler (CONVERT_EXPR, type);
  // Call op_convert, if it fails, the result is varying.
  if (!op->fold_range (r, type, tmp, value_range (type)))
    r = value_range (type);
}

#if CHECKING_P
#include "selftest.h"
#include "stor-layout.h"

namespace selftest
{
#define INT(N) build_int_cst (integer_type_node, (N))
#define UINT(N) build_int_cstu (unsigned_type_node, (N))
#define INT16(N) build_int_cst (short_integer_type_node, (N))
#define UINT16(N) build_int_cstu (short_unsigned_type_node, (N))
#define INT64(N) build_int_cstu (long_long_integer_type_node, (N))
#define UINT64(N) build_int_cstu (long_long_unsigned_type_node, (N))
#define UINT128(N) build_int_cstu (u128_type, (N))
#define UCHAR(N) build_int_cstu (unsigned_char_type_node, (N))
#define SCHAR(N) build_int_cst (signed_char_type_node, (N))

// Run all of the selftests within this file.

void
range_tests ()
{
  tree u128_type = build_nonstandard_integer_type (128, /*unsigned=*/1);
  value_range i1, i2, i3;
  value_range r0, r1, rold;

  // Test that NOT(255) is [0..254] in 8-bit land.
  value_range not_255 (UCHAR (255), UCHAR (255), VR_ANTI_RANGE);
  ASSERT_TRUE (not_255 == value_range (UCHAR (0), UCHAR (254)));

  // Test that NOT(0) is [1..255] in 8-bit land.
  value_range not_zero = range_nonzero (unsigned_char_type_node);
  ASSERT_TRUE (not_zero == value_range (UCHAR (1), UCHAR (255)));

  // Check that [0,127][0x..ffffff80,0x..ffffff]
  //  => ~[128, 0x..ffffff7f].
  r0 = value_range (UINT128 (0), UINT128 (127));
  tree high = build_minus_one_cst (u128_type);
  // low = -1 - 127 => 0x..ffffff80.
  tree low = fold_build2 (MINUS_EXPR, u128_type, high, UINT128(127));
  r1 = value_range (low, high); // [0x..ffffff80, 0x..ffffffff]
  // r0 = [0,127][0x..ffffff80,0x..fffffff].
  r0.union_ (r1);
  // r1 = [128, 0x..ffffff7f].
  r1 = value_range (UINT128(128),
			 fold_build2 (MINUS_EXPR, u128_type,
				      build_minus_one_cst (u128_type),
				      UINT128(128)));
  r0.invert ();
  ASSERT_TRUE (r0 == r1);

  r0.set_varying (integer_type_node);
  tree minint = wide_int_to_tree (integer_type_node, r0.lower_bound ());
  tree maxint = wide_int_to_tree (integer_type_node, r0.upper_bound ());

  r0.set_varying (short_integer_type_node);
  tree minshort = wide_int_to_tree (short_integer_type_node, r0.lower_bound ());
  tree maxshort = wide_int_to_tree (short_integer_type_node, r0.upper_bound ());

  r0.set_varying (unsigned_type_node);
  tree maxuint = wide_int_to_tree (unsigned_type_node, r0.upper_bound ());

  // Check that ~[0,5] => [6,MAX] for unsigned int.
  r0 = value_range (UINT (0), UINT (5));
  r0.invert ();
  ASSERT_TRUE (r0 == value_range (UINT(6), maxuint));

  // Check that ~[10,MAX] => [0,9] for unsigned int.
  r0 = value_range (UINT(10), maxuint);
  r0.invert ();
  ASSERT_TRUE (r0 == value_range (UINT (0), UINT (9)));

  // Check that ~[0,5] => [6,MAX] for unsigned 128-bit numbers.
  r0 = value_range (UINT128 (0), UINT128 (5), VR_ANTI_RANGE);
  r1 = value_range (UINT128(6), build_minus_one_cst (u128_type));
  ASSERT_TRUE (r0 == r1);

  // Check that [~5] is really [-MIN,4][6,MAX].
  r0 = value_range (INT (5), INT (5), VR_ANTI_RANGE);
  r1 = value_range (minint, INT (4));
  r1.union_ (value_range (INT (6), maxint));
  ASSERT_FALSE (r1.undefined_p ());
  ASSERT_TRUE (r0 == r1);

  r1 = value_range (INT (5), INT (5));
  value_range r2 (r1);
  ASSERT_TRUE (r1 == r2);

  r1 = value_range (INT (5), INT (10));

  r1 = value_range (integer_type_node,
	       wi::to_wide (INT (5)), wi::to_wide (INT (10)));
  ASSERT_TRUE (r1.contains_p (INT (7)));

  r1 = value_range (SCHAR (0), SCHAR (20));
  ASSERT_TRUE (r1.contains_p (SCHAR(15)));
  ASSERT_FALSE (r1.contains_p (SCHAR(300)));

  // If a range is in any way outside of the range for the converted
  // to range, default to the range for the new type.
  if (TYPE_PRECISION (TREE_TYPE (maxint))
      > TYPE_PRECISION (short_integer_type_node))
    {
      r1 = value_range (integer_zero_node, maxint);
      range_cast (r1, short_integer_type_node);
      ASSERT_TRUE (r1.lower_bound () == wi::to_wide (minshort)
		   && r1.upper_bound() == wi::to_wide (maxshort));
    }

  // (unsigned char)[-5,-1] => [251,255].
  r0 = rold = value_range (SCHAR (-5), SCHAR (-1));
  range_cast (r0, unsigned_char_type_node);
  ASSERT_TRUE (r0 == value_range (UCHAR (251), UCHAR (255)));
  range_cast (r0, signed_char_type_node);
  ASSERT_TRUE (r0 == rold);

  // (signed char)[15, 150] => [-128,-106][15,127].
  r0 = rold = value_range (UCHAR (15), UCHAR (150));
  range_cast (r0, signed_char_type_node);
  r1 = value_range (SCHAR (15), SCHAR (127));
  r2 = value_range (SCHAR (-128), SCHAR (-106));
  r1.union_ (r2);
  ASSERT_TRUE (r1 == r0);
  range_cast (r0, unsigned_char_type_node);
  ASSERT_TRUE (r0 == rold);

  // (unsigned char)[-5, 5] => [0,5][251,255].
  r0 = rold = value_range (SCHAR (-5), SCHAR (5));
  range_cast (r0, unsigned_char_type_node);
  r1 = value_range (UCHAR (251), UCHAR (255));
  r2 = value_range (UCHAR (0), UCHAR (5));
  r1.union_ (r2);
  ASSERT_TRUE (r0 == r1);
  range_cast (r0, signed_char_type_node);
  ASSERT_TRUE (r0 == rold);

  // (unsigned char)[-5,5] => [0,5][251,255].
  r0 = value_range (INT (-5), INT (5));
  range_cast (r0, unsigned_char_type_node);
  r1 = value_range (UCHAR (0), UCHAR (5));
  r1.union_ (value_range (UCHAR (251), UCHAR (255)));
  ASSERT_TRUE (r0 == r1);

  // (unsigned char)[5U,1974U] => [0,255].
  r0 = value_range (UINT (5), UINT (1974));
  range_cast (r0, unsigned_char_type_node);
  ASSERT_TRUE (r0 == value_range (UCHAR (0), UCHAR (255)));
  range_cast (r0, integer_type_node);
  // Going to a wider range should not sign extend.
  ASSERT_TRUE (r0 == value_range (INT (0), INT (255)));

  // (unsigned char)[-350,15] => [0,255].
  r0 = value_range (INT (-350), INT (15));
  range_cast (r0, unsigned_char_type_node);
  ASSERT_TRUE (r0 == (value_range
		      (TYPE_MIN_VALUE (unsigned_char_type_node),
		       TYPE_MAX_VALUE (unsigned_char_type_node))));

  // Casting [-120,20] from signed char to unsigned short.
  // => [0, 20][0xff88, 0xffff].
  r0 = value_range (SCHAR (-120), SCHAR (20));
  range_cast (r0, short_unsigned_type_node);
  r1 = value_range (UINT16 (0), UINT16 (20));
  r2 = value_range (UINT16 (0xff88), UINT16 (0xffff));
  r1.union_ (r2);
  ASSERT_TRUE (r0 == r1);
  // A truncating cast back to signed char will work because [-120, 20]
  // is representable in signed char.
  range_cast (r0, signed_char_type_node);
  ASSERT_TRUE (r0 == value_range (SCHAR (-120), SCHAR (20)));

  // unsigned char -> signed short
  //	(signed short)[(unsigned char)25, (unsigned char)250]
  // => [(signed short)25, (signed short)250]
  r0 = rold = value_range (UCHAR (25), UCHAR (250));
  range_cast (r0, short_integer_type_node);
  r1 = value_range (INT16 (25), INT16 (250));
  ASSERT_TRUE (r0 == r1);
  range_cast (r0, unsigned_char_type_node);
  ASSERT_TRUE (r0 == rold);

  // Test casting a wider signed [-MIN,MAX] to a nar`rower unsigned.
  r0 = value_range (TYPE_MIN_VALUE (long_long_integer_type_node),
	       TYPE_MAX_VALUE (long_long_integer_type_node));
  range_cast (r0, short_unsigned_type_node);
  r1 = value_range (TYPE_MIN_VALUE (short_unsigned_type_node),
	       TYPE_MAX_VALUE (short_unsigned_type_node));
  ASSERT_TRUE (r0 == r1);

  // NOT([10,20]) ==> [-MIN,9][21,MAX].
  r0 = r1 = value_range (INT (10), INT (20));
  r2 = value_range (minint, INT(9));
  r2.union_ (value_range (INT(21), maxint));
  ASSERT_FALSE (r2.undefined_p ());
  r1.invert ();
  ASSERT_TRUE (r1 == r2);
  // Test that NOT(NOT(x)) == x.
  r2.invert ();
  ASSERT_TRUE (r0 == r2);

  // Test that booleans and their inverse work as expected.
  r0 = range_zero (boolean_type_node);
  ASSERT_TRUE (r0 == value_range (build_zero_cst (boolean_type_node),
				       build_zero_cst (boolean_type_node)));
  r0.invert ();
  ASSERT_TRUE (r0 == value_range (build_one_cst (boolean_type_node),
				       build_one_cst (boolean_type_node)));

  // Casting NONZERO to a narrower type will wrap/overflow so
  // it's just the entire range for the narrower type.
  //
  // "NOT 0 at signed 32-bits" ==> [-MIN_32,-1][1, +MAX_32].  This is
  // is outside of the range of a smaller range, return the full
  // smaller range.
  if (TYPE_PRECISION (integer_type_node)
      > TYPE_PRECISION (short_integer_type_node))
    {
      r0 = range_nonzero (integer_type_node);
      range_cast (r0, short_integer_type_node);
      r1 = value_range (TYPE_MIN_VALUE (short_integer_type_node),
			     TYPE_MAX_VALUE (short_integer_type_node));
      ASSERT_TRUE (r0 == r1);
    }

  // Casting NONZERO from a narrower signed to a wider signed.
  //
  // NONZERO signed 16-bits is [-MIN_16,-1][1, +MAX_16].
  // Converting this to 32-bits signed is [-MIN_16,-1][1, +MAX_16].
  r0 = range_nonzero (short_integer_type_node);
  range_cast (r0, integer_type_node);
  r1 = value_range (INT (-32768), INT (-1));
  r2 = value_range (INT (1), INT (32767));
  r1.union_ (r2);
  ASSERT_TRUE (r0 == r1);

  // Make sure NULL and non-NULL of pointer types work, and that
  // inverses of them are consistent.
  tree voidp = build_pointer_type (void_type_node);
  r0 = range_zero (voidp);
  r1 = r0;
  r0.invert ();
  r0.invert ();
  ASSERT_TRUE (r0 == r1);

  // [10,20] U [15, 30] => [10, 30].
  r0 = value_range (INT (10), INT (20));
  r1 = value_range (INT (15), INT (30));
  r0.union_ (r1);
  ASSERT_TRUE (r0 == value_range (INT (10), INT (30)));

  // [15,40] U [] => [15,40].
  r0 = value_range (INT (15), INT (40));
  r1.set_undefined ();
  r0.union_ (r1);
  ASSERT_TRUE (r0 == value_range (INT (15), INT (40)));

  // [10,20] U [10,10] => [10,20].
  r0 = value_range (INT (10), INT (20));
  r1 = value_range (INT (10), INT (10));
  r0.union_ (r1);
  ASSERT_TRUE (r0 == value_range (INT (10), INT (20)));

  // [10,20] U [9,9] => [9,20].
  r0 = value_range (INT (10), INT (20));
  r1 = value_range (INT (9), INT (9));
  r0.union_ (r1);
  ASSERT_TRUE (r0 == value_range (INT (9), INT (20)));

  // [10,20] ^ [15,30] => [15,20].
  r0 = value_range (INT (10), INT (20));
  r1 = value_range (INT (15), INT (30));
  r0.intersect (r1);
  ASSERT_TRUE (r0 == value_range (INT (15), INT (20)));

  // Test the internal sanity of wide_int's wrt HWIs.
  ASSERT_TRUE (wi::max_value (TYPE_PRECISION (boolean_type_node),
			      TYPE_SIGN (boolean_type_node))
	       == wi::uhwi (1, TYPE_PRECISION (boolean_type_node)));

  // Test zero_p().
  r0 = value_range (INT (0), INT (0));
  ASSERT_TRUE (r0.zero_p ());

  // Test nonzero_p().
  r0 = value_range (INT (0), INT (0));
  r0.invert ();
  ASSERT_TRUE (r0.nonzero_p ());
}

} // namespace selftest

#endif // CHECKING_P