summaryrefslogtreecommitdiff
path: root/gcc/ipa-prop.c
blob: 71ac0e104d240b41ceba6f453163a086d453740a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
/* Interprocedural analyses.
   Copyright (C) 2005-2020 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "rtl.h"
#include "tree.h"
#include "gimple.h"
#include "alloc-pool.h"
#include "tree-pass.h"
#include "ssa.h"
#include "tree-streamer.h"
#include "cgraph.h"
#include "diagnostic.h"
#include "fold-const.h"
#include "gimple-fold.h"
#include "tree-eh.h"
#include "calls.h"
#include "stor-layout.h"
#include "print-tree.h"
#include "gimplify.h"
#include "gimple-iterator.h"
#include "gimplify-me.h"
#include "gimple-walk.h"
#include "symbol-summary.h"
#include "ipa-prop.h"
#include "tree-cfg.h"
#include "tree-dfa.h"
#include "tree-inline.h"
#include "ipa-fnsummary.h"
#include "gimple-pretty-print.h"
#include "ipa-utils.h"
#include "dbgcnt.h"
#include "domwalk.h"
#include "builtins.h"
#include "tree-cfgcleanup.h"

/* Function summary where the parameter infos are actually stored. */
ipa_node_params_t *ipa_node_params_sum = NULL;

function_summary <ipcp_transformation *> *ipcp_transformation_sum = NULL;

/* Edge summary for IPA-CP edge information.  */
ipa_edge_args_sum_t *ipa_edge_args_sum;

/* Traits for a hash table for reusing already existing ipa_bits. */

struct ipa_bit_ggc_hash_traits : public ggc_cache_remove <ipa_bits *>
{
  typedef ipa_bits *value_type;
  typedef ipa_bits *compare_type;
  static hashval_t
  hash (const ipa_bits *p)
  {
    hashval_t t = (hashval_t) p->value.to_shwi ();
    return iterative_hash_host_wide_int (p->mask.to_shwi (), t);
  }
  static bool
  equal (const ipa_bits *a, const ipa_bits *b)
    {
      return a->value == b->value && a->mask == b->mask;
    }
  static const bool empty_zero_p = true;
  static void
  mark_empty (ipa_bits *&p)
    {
      p = NULL;
    }
  static bool
  is_empty (const ipa_bits *p)
    {
      return p == NULL;
    }
  static bool
  is_deleted (const ipa_bits *p)
    {
      return p == reinterpret_cast<const ipa_bits *> (1);
    }
  static void
  mark_deleted (ipa_bits *&p)
    {
      p = reinterpret_cast<ipa_bits *> (1);
    }
};

/* Hash table for avoid repeated allocations of equal ipa_bits.  */
static GTY ((cache)) hash_table<ipa_bit_ggc_hash_traits> *ipa_bits_hash_table;

/* Traits for a hash table for reusing value_ranges used for IPA.  Note that
   the equiv bitmap is not hashed and is expected to be NULL.  */

struct ipa_vr_ggc_hash_traits : public ggc_cache_remove <value_range *>
{
  typedef value_range *value_type;
  typedef value_range *compare_type;
  static hashval_t
  hash (const value_range *p)
    {
      inchash::hash hstate (p->kind ());
      inchash::add_expr (p->min (), hstate);
      inchash::add_expr (p->max (), hstate);
      return hstate.end ();
    }
  static bool
  equal (const value_range *a, const value_range *b)
    {
      return a->equal_p (*b);
    }
  static const bool empty_zero_p = true;
  static void
  mark_empty (value_range *&p)
    {
      p = NULL;
    }
  static bool
  is_empty (const value_range *p)
    {
      return p == NULL;
    }
  static bool
  is_deleted (const value_range *p)
    {
      return p == reinterpret_cast<const value_range *> (1);
    }
  static void
  mark_deleted (value_range *&p)
    {
      p = reinterpret_cast<value_range *> (1);
    }
};

/* Hash table for avoid repeated allocations of equal value_ranges.  */
static GTY ((cache)) hash_table<ipa_vr_ggc_hash_traits> *ipa_vr_hash_table;

/* Holders of ipa cgraph hooks: */
static struct cgraph_node_hook_list *function_insertion_hook_holder;

/* Description of a reference to an IPA constant.  */
struct ipa_cst_ref_desc
{
  /* Edge that corresponds to the statement which took the reference.  */
  struct cgraph_edge *cs;
  /* Linked list of duplicates created when call graph edges are cloned.  */
  struct ipa_cst_ref_desc *next_duplicate;
  /* Number of references in IPA structures, IPA_UNDESCRIBED_USE if the value
     if out of control.  */
  int refcount;
};

/* Allocation pool for reference descriptions.  */

static object_allocator<ipa_cst_ref_desc> ipa_refdesc_pool
  ("IPA-PROP ref descriptions");

/* Return true if DECL_FUNCTION_SPECIFIC_OPTIMIZATION of the decl associated
   with NODE should prevent us from analyzing it for the purposes of IPA-CP.  */

static bool
ipa_func_spec_opts_forbid_analysis_p (struct cgraph_node *node)
{
  tree fs_opts = DECL_FUNCTION_SPECIFIC_OPTIMIZATION (node->decl);

  if (!fs_opts)
    return false;
  return !opt_for_fn (node->decl, optimize) || !opt_for_fn (node->decl, flag_ipa_cp);
}

/* Return index of the formal whose tree is PTREE in function which corresponds
   to INFO.  */

static int
ipa_get_param_decl_index_1 (vec<ipa_param_descriptor, va_gc> *descriptors,
			    tree ptree)
{
  int i, count;

  count = vec_safe_length (descriptors);
  for (i = 0; i < count; i++)
    if ((*descriptors)[i].decl_or_type == ptree)
      return i;

  return -1;
}

/* Return index of the formal whose tree is PTREE in function which corresponds
   to INFO.  */

int
ipa_get_param_decl_index (class ipa_node_params *info, tree ptree)
{
  return ipa_get_param_decl_index_1 (info->descriptors, ptree);
}

/* Populate the param_decl field in parameter DESCRIPTORS that correspond to
   NODE.  */

static void
ipa_populate_param_decls (struct cgraph_node *node,
			  vec<ipa_param_descriptor, va_gc> &descriptors)
{
  tree fndecl;
  tree fnargs;
  tree parm;
  int param_num;

  fndecl = node->decl;
  gcc_assert (gimple_has_body_p (fndecl));
  fnargs = DECL_ARGUMENTS (fndecl);
  param_num = 0;
  for (parm = fnargs; parm; parm = DECL_CHAIN (parm))
    {
      descriptors[param_num].decl_or_type = parm;
      unsigned int cost = estimate_move_cost (TREE_TYPE (parm), true);
      descriptors[param_num].move_cost = cost;
      /* Watch overflow, move_cost is a bitfield.  */
      gcc_checking_assert (cost == descriptors[param_num].move_cost);
      param_num++;
    }
}

/* Return how many formal parameters FNDECL has.  */

int
count_formal_params (tree fndecl)
{
  tree parm;
  int count = 0;
  gcc_assert (gimple_has_body_p (fndecl));

  for (parm = DECL_ARGUMENTS (fndecl); parm; parm = DECL_CHAIN (parm))
    count++;

  return count;
}

/* Return the declaration of Ith formal parameter of the function corresponding
   to INFO.  Note there is no setter function as this array is built just once
   using ipa_initialize_node_params. */

void
ipa_dump_param (FILE *file, class ipa_node_params *info, int i)
{
  fprintf (file, "param #%i", i);
  if ((*info->descriptors)[i].decl_or_type)
    {
      fprintf (file, " ");
      print_generic_expr (file, (*info->descriptors)[i].decl_or_type);
    }
}

/* If necessary, allocate vector of parameter descriptors in info of NODE.
   Return true if they were allocated, false if not.  */

static bool
ipa_alloc_node_params (struct cgraph_node *node, int param_count)
{
  class ipa_node_params *info = IPA_NODE_REF_GET_CREATE (node);

  if (!info->descriptors && param_count)
    {
      vec_safe_grow_cleared (info->descriptors, param_count);
      return true;
    }
  else
    return false;
}

/* Initialize the ipa_node_params structure associated with NODE by counting
   the function parameters, creating the descriptors and populating their
   param_decls.  */

void
ipa_initialize_node_params (struct cgraph_node *node)
{
  class ipa_node_params *info = IPA_NODE_REF_GET_CREATE (node);

  if (!info->descriptors
      && ipa_alloc_node_params (node, count_formal_params (node->decl)))
    ipa_populate_param_decls (node, *info->descriptors);
}

/* Print the jump functions associated with call graph edge CS to file F.  */

static void
ipa_print_node_jump_functions_for_edge (FILE *f, struct cgraph_edge *cs)
{
  int i, count;

  count = ipa_get_cs_argument_count (IPA_EDGE_REF (cs));
  for (i = 0; i < count; i++)
    {
      struct ipa_jump_func *jump_func;
      enum jump_func_type type;

      jump_func = ipa_get_ith_jump_func (IPA_EDGE_REF (cs), i);
      type = jump_func->type;

      fprintf (f, "       param %d: ", i);
      if (type == IPA_JF_UNKNOWN)
	fprintf (f, "UNKNOWN\n");
      else if (type == IPA_JF_CONST)
	{
	  tree val = jump_func->value.constant.value;
	  fprintf (f, "CONST: ");
	  print_generic_expr (f, val);
	  if (TREE_CODE (val) == ADDR_EXPR
	      && TREE_CODE (TREE_OPERAND (val, 0)) == CONST_DECL)
	    {
	      fprintf (f, " -> ");
	      print_generic_expr (f, DECL_INITIAL (TREE_OPERAND (val, 0)));
	    }
	  fprintf (f, "\n");
	}
      else if (type == IPA_JF_PASS_THROUGH)
	{
	  fprintf (f, "PASS THROUGH: ");
	  fprintf (f, "%d, op %s",
		   jump_func->value.pass_through.formal_id,
		   get_tree_code_name(jump_func->value.pass_through.operation));
	  if (jump_func->value.pass_through.operation != NOP_EXPR)
	    {
	      fprintf (f, " ");
	      print_generic_expr (f, jump_func->value.pass_through.operand);
	    }
	  if (jump_func->value.pass_through.agg_preserved)
	    fprintf (f, ", agg_preserved");
	  fprintf (f, "\n");
	}
      else if (type == IPA_JF_ANCESTOR)
	{
	  fprintf (f, "ANCESTOR: ");
	  fprintf (f, "%d, offset " HOST_WIDE_INT_PRINT_DEC,
		   jump_func->value.ancestor.formal_id,
		   jump_func->value.ancestor.offset);
	  if (jump_func->value.ancestor.agg_preserved)
	    fprintf (f, ", agg_preserved");
	  fprintf (f, "\n");
	}

      if (jump_func->agg.items)
	{
	  struct ipa_agg_jf_item *item;
	  int j;

	  fprintf (f, "         Aggregate passed by %s:\n",
		   jump_func->agg.by_ref ? "reference" : "value");
	  FOR_EACH_VEC_ELT (*jump_func->agg.items, j, item)
	    {
	      fprintf (f, "           offset: " HOST_WIDE_INT_PRINT_DEC ", ",
		       item->offset);
	      fprintf (f, "type: ");
	      print_generic_expr (f, item->type);
	      fprintf (f, ", ");
	      if (item->jftype == IPA_JF_PASS_THROUGH)
		fprintf (f, "PASS THROUGH: %d,",
			 item->value.pass_through.formal_id);
	      else if (item->jftype == IPA_JF_LOAD_AGG)
		{
		  fprintf (f, "LOAD AGG: %d",
			   item->value.pass_through.formal_id);
		  fprintf (f, " [offset: " HOST_WIDE_INT_PRINT_DEC ", by %s],",
			   item->value.load_agg.offset,
			   item->value.load_agg.by_ref ? "reference"
						       : "value");
		}

	      if (item->jftype == IPA_JF_PASS_THROUGH
		  || item->jftype == IPA_JF_LOAD_AGG)
		{
		  fprintf (f, " op %s",
		     get_tree_code_name (item->value.pass_through.operation));
		  if (item->value.pass_through.operation != NOP_EXPR)
		    {
		      fprintf (f, " ");
		      print_generic_expr (f, item->value.pass_through.operand);
		    }
		}
	      else if (item->jftype == IPA_JF_CONST)
		{
		  fprintf (f, "CONST: ");
		  print_generic_expr (f, item->value.constant);
		}
	      else if (item->jftype == IPA_JF_UNKNOWN)
		fprintf (f, "UNKNOWN: " HOST_WIDE_INT_PRINT_DEC " bits",
			 tree_to_uhwi (TYPE_SIZE (item->type)));
	      fprintf (f, "\n");
	    }
	}

      class ipa_polymorphic_call_context *ctx
	= ipa_get_ith_polymorhic_call_context (IPA_EDGE_REF (cs), i);
      if (ctx && !ctx->useless_p ())
	{
	  fprintf (f, "         Context: ");
	  ctx->dump (dump_file);
	}

      if (jump_func->bits)
	{
	  fprintf (f, "         value: ");
	  print_hex (jump_func->bits->value, f);
	  fprintf (f, ", mask: ");
	  print_hex (jump_func->bits->mask, f);
	  fprintf (f, "\n");
	}
      else
	fprintf (f, "         Unknown bits\n");

      if (jump_func->m_vr)
	{
	  fprintf (f, "         VR  ");
	  fprintf (f, "%s[",
		   (jump_func->m_vr->kind () == VR_ANTI_RANGE) ? "~" : "");
	  print_decs (wi::to_wide (jump_func->m_vr->min ()), f);
	  fprintf (f, ", ");
	  print_decs (wi::to_wide (jump_func->m_vr->max ()), f);
	  fprintf (f, "]\n");
	}
      else
	fprintf (f, "         Unknown VR\n");
    }
}


/* Print the jump functions of all arguments on all call graph edges going from
   NODE to file F.  */

void
ipa_print_node_jump_functions (FILE *f, struct cgraph_node *node)
{
  struct cgraph_edge *cs;

  fprintf (f, "  Jump functions of caller  %s:\n", node->dump_name ());
  for (cs = node->callees; cs; cs = cs->next_callee)
    {

      fprintf (f, "    callsite  %s -> %s : \n",
	       node->dump_name (),
	       cs->callee->dump_name ());
      if (!ipa_edge_args_info_available_for_edge_p (cs))
	fprintf (f, "       no arg info\n");
      else
        ipa_print_node_jump_functions_for_edge (f, cs);
    }

  for (cs = node->indirect_calls; cs; cs = cs->next_callee)
    {
      class cgraph_indirect_call_info *ii;

      ii = cs->indirect_info;
      if (ii->agg_contents)
	fprintf (f, "    indirect %s callsite, calling param %i, "
		 "offset " HOST_WIDE_INT_PRINT_DEC ", %s",
		 ii->member_ptr ? "member ptr" : "aggregate",
		 ii->param_index, ii->offset,
		 ii->by_ref ? "by reference" : "by_value");
      else
	fprintf (f, "    indirect %s callsite, calling param %i, "
		 "offset " HOST_WIDE_INT_PRINT_DEC,
		 ii->polymorphic ? "polymorphic" : "simple", ii->param_index,
		 ii->offset);

      if (cs->call_stmt)
	{
	  fprintf (f, ", for stmt ");
	  print_gimple_stmt (f, cs->call_stmt, 0, TDF_SLIM);
	}
      else
	fprintf (f, "\n");
      if (ii->polymorphic)
	ii->context.dump (f);
      if (!ipa_edge_args_info_available_for_edge_p (cs))
	fprintf (f, "       no arg info\n");
      else
        ipa_print_node_jump_functions_for_edge (f, cs);
    }
}

/* Print ipa_jump_func data structures of all nodes in the call graph to F.  */

void
ipa_print_all_jump_functions (FILE *f)
{
  struct cgraph_node *node;

  fprintf (f, "\nJump functions:\n");
  FOR_EACH_FUNCTION (node)
    {
      ipa_print_node_jump_functions (f, node);
    }
}

/* Set jfunc to be a know-really nothing jump function.  */

static void
ipa_set_jf_unknown (struct ipa_jump_func *jfunc)
{
  jfunc->type = IPA_JF_UNKNOWN;
}

/* Set JFUNC to be a copy of another jmp (to be used by jump function
   combination code).  The two functions will share their rdesc.  */

static void
ipa_set_jf_cst_copy (struct ipa_jump_func *dst,
		     struct ipa_jump_func *src)

{
  gcc_checking_assert (src->type == IPA_JF_CONST);
  dst->type = IPA_JF_CONST;
  dst->value.constant = src->value.constant;
}

/* Set JFUNC to be a constant jmp function.  */

static void
ipa_set_jf_constant (struct ipa_jump_func *jfunc, tree constant,
		     struct cgraph_edge *cs)
{
  jfunc->type = IPA_JF_CONST;
  jfunc->value.constant.value = unshare_expr_without_location (constant);

  if (TREE_CODE (constant) == ADDR_EXPR
      && TREE_CODE (TREE_OPERAND (constant, 0)) == FUNCTION_DECL)
    {
      struct ipa_cst_ref_desc *rdesc;

      rdesc = ipa_refdesc_pool.allocate ();
      rdesc->cs = cs;
      rdesc->next_duplicate = NULL;
      rdesc->refcount = 1;
      jfunc->value.constant.rdesc = rdesc;
    }
  else
    jfunc->value.constant.rdesc = NULL;
}

/* Set JFUNC to be a simple pass-through jump function.  */
static void
ipa_set_jf_simple_pass_through (struct ipa_jump_func *jfunc, int formal_id,
				bool agg_preserved)
{
  jfunc->type = IPA_JF_PASS_THROUGH;
  jfunc->value.pass_through.operand = NULL_TREE;
  jfunc->value.pass_through.formal_id = formal_id;
  jfunc->value.pass_through.operation = NOP_EXPR;
  jfunc->value.pass_through.agg_preserved = agg_preserved;
}

/* Set JFUNC to be an unary pass through jump function.  */

static void
ipa_set_jf_unary_pass_through (struct ipa_jump_func *jfunc, int formal_id,
			       enum tree_code operation)
{
  jfunc->type = IPA_JF_PASS_THROUGH;
  jfunc->value.pass_through.operand = NULL_TREE;
  jfunc->value.pass_through.formal_id = formal_id;
  jfunc->value.pass_through.operation = operation;
  jfunc->value.pass_through.agg_preserved = false;
}
/* Set JFUNC to be an arithmetic pass through jump function.  */

static void
ipa_set_jf_arith_pass_through (struct ipa_jump_func *jfunc, int formal_id,
			       tree operand, enum tree_code operation)
{
  jfunc->type = IPA_JF_PASS_THROUGH;
  jfunc->value.pass_through.operand = unshare_expr_without_location (operand);
  jfunc->value.pass_through.formal_id = formal_id;
  jfunc->value.pass_through.operation = operation;
  jfunc->value.pass_through.agg_preserved = false;
}

/* Set JFUNC to be an ancestor jump function.  */

static void
ipa_set_ancestor_jf (struct ipa_jump_func *jfunc, HOST_WIDE_INT offset,
		     int formal_id, bool agg_preserved)
{
  jfunc->type = IPA_JF_ANCESTOR;
  jfunc->value.ancestor.formal_id = formal_id;
  jfunc->value.ancestor.offset = offset;
  jfunc->value.ancestor.agg_preserved = agg_preserved;
}

/* Get IPA BB information about the given BB.  FBI is the context of analyzis
   of this function body.  */

static struct ipa_bb_info *
ipa_get_bb_info (struct ipa_func_body_info *fbi, basic_block bb)
{
  gcc_checking_assert (fbi);
  return &fbi->bb_infos[bb->index];
}

/* Structure to be passed in between detect_type_change and
   check_stmt_for_type_change.  */

struct prop_type_change_info
{
  /* Offset into the object where there is the virtual method pointer we are
     looking for.  */
  HOST_WIDE_INT offset;
  /* The declaration or SSA_NAME pointer of the base that we are checking for
     type change.  */
  tree object;
  /* Set to true if dynamic type change has been detected.  */
  bool type_maybe_changed;
};

/* Return true if STMT can modify a virtual method table pointer.

   This function makes special assumptions about both constructors and
   destructors which are all the functions that are allowed to alter the VMT
   pointers.  It assumes that destructors begin with assignment into all VMT
   pointers and that constructors essentially look in the following way:

   1) The very first thing they do is that they call constructors of ancestor
   sub-objects that have them.

   2) Then VMT pointers of this and all its ancestors is set to new values
   corresponding to the type corresponding to the constructor.

   3) Only afterwards, other stuff such as constructor of member sub-objects
   and the code written by the user is run.  Only this may include calling
   virtual functions, directly or indirectly.

   There is no way to call a constructor of an ancestor sub-object in any
   other way.

   This means that we do not have to care whether constructors get the correct
   type information because they will always change it (in fact, if we define
   the type to be given by the VMT pointer, it is undefined).

   The most important fact to derive from the above is that if, for some
   statement in the section 3, we try to detect whether the dynamic type has
   changed, we can safely ignore all calls as we examine the function body
   backwards until we reach statements in section 2 because these calls cannot
   be ancestor constructors or destructors (if the input is not bogus) and so
   do not change the dynamic type (this holds true only for automatically
   allocated objects but at the moment we devirtualize only these).  We then
   must detect that statements in section 2 change the dynamic type and can try
   to derive the new type.  That is enough and we can stop, we will never see
   the calls into constructors of sub-objects in this code.  Therefore we can
   safely ignore all call statements that we traverse.
  */

static bool
stmt_may_be_vtbl_ptr_store (gimple *stmt)
{
  if (is_gimple_call (stmt))
    return false;
  if (gimple_clobber_p (stmt))
    return false;
  else if (is_gimple_assign (stmt))
    {
      tree lhs = gimple_assign_lhs (stmt);

      if (!AGGREGATE_TYPE_P (TREE_TYPE (lhs)))
	{
	  if (flag_strict_aliasing
	      && !POINTER_TYPE_P (TREE_TYPE (lhs)))
	    return false;

	  if (TREE_CODE (lhs) == COMPONENT_REF
	      && !DECL_VIRTUAL_P (TREE_OPERAND (lhs, 1)))
	    return false;
	  /* In the future we might want to use get_ref_base_and_extent to find
	     if there is a field corresponding to the offset and if so, proceed
	     almost like if it was a component ref.  */
	}
    }
  return true;
}

/* Callback of walk_aliased_vdefs and a helper function for detect_type_change
   to check whether a particular statement may modify the virtual table
   pointerIt stores its result into DATA, which points to a
   prop_type_change_info structure.  */

static bool
check_stmt_for_type_change (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef, void *data)
{
  gimple *stmt = SSA_NAME_DEF_STMT (vdef);
  struct prop_type_change_info *tci = (struct prop_type_change_info *) data;

  if (stmt_may_be_vtbl_ptr_store (stmt))
    {
      tci->type_maybe_changed = true;
      return true;
    }
  else
    return false;
}

/* See if ARG is PARAM_DECl describing instance passed by pointer
   or reference in FUNCTION.  Return false if the dynamic type may change
   in between beggining of the function until CALL is invoked.

   Generally functions are not allowed to change type of such instances,
   but they call destructors.  We assume that methods cannot destroy the THIS
   pointer.  Also as a special cases, constructor and destructors may change
   type of the THIS pointer.  */

static bool
param_type_may_change_p (tree function, tree arg, gimple *call)
{
  /* Pure functions cannot do any changes on the dynamic type;
     that require writting to memory.  */
  if (flags_from_decl_or_type (function) & (ECF_PURE | ECF_CONST))
    return false;
  /* We need to check if we are within inlined consturctor
     or destructor (ideally we would have way to check that the
     inline cdtor is actually working on ARG, but we don't have
     easy tie on this, so punt on all non-pure cdtors.
     We may also record the types of cdtors and once we know type
     of the instance match them.

     Also code unification optimizations may merge calls from
     different blocks making return values unreliable.  So
     do nothing during late optimization.  */
  if (DECL_STRUCT_FUNCTION (function)->after_inlining)
    return true;
  if (TREE_CODE (arg) == SSA_NAME
      && SSA_NAME_IS_DEFAULT_DEF (arg)
      && TREE_CODE (SSA_NAME_VAR (arg)) == PARM_DECL)
    {
      /* Normal (non-THIS) argument.  */
      if ((SSA_NAME_VAR (arg) != DECL_ARGUMENTS (function)
	   || TREE_CODE (TREE_TYPE (function)) != METHOD_TYPE)
	  /* THIS pointer of an method - here we want to watch constructors
	     and destructors as those definitely may change the dynamic
	     type.  */
	  || (TREE_CODE (TREE_TYPE (function)) == METHOD_TYPE
	      && !DECL_CXX_CONSTRUCTOR_P (function)
	      && !DECL_CXX_DESTRUCTOR_P (function)
	      && (SSA_NAME_VAR (arg) == DECL_ARGUMENTS (function))))
	{
	  /* Walk the inline stack and watch out for ctors/dtors.  */
	  for (tree block = gimple_block (call); block && TREE_CODE (block) == BLOCK;
	       block = BLOCK_SUPERCONTEXT (block))
	    if (inlined_polymorphic_ctor_dtor_block_p (block, false))
	      return true;
	  return false;
	}
    }
  return true;
}

/* Detect whether the dynamic type of ARG of COMP_TYPE has changed (before
   callsite CALL) by looking for assignments to its virtual table pointer.  If
   it is, return true.  ARG is the object itself (not a pointer
   to it, unless dereferenced).  BASE is the base of the memory access as
   returned by get_ref_base_and_extent, as is the offset. 

   This is helper function for detect_type_change and detect_type_change_ssa
   that does the heavy work which is usually unnecesary.  */

static bool
detect_type_change_from_memory_writes (ipa_func_body_info *fbi, tree arg,
				       tree base, tree comp_type, gcall *call,
				       HOST_WIDE_INT offset)
{
  struct prop_type_change_info tci;
  ao_ref ao;

  gcc_checking_assert (DECL_P (arg)
		       || TREE_CODE (arg) == MEM_REF
		       || handled_component_p (arg));

  comp_type = TYPE_MAIN_VARIANT (comp_type);

  /* Const calls cannot call virtual methods through VMT and so type changes do
     not matter.  */
  if (!flag_devirtualize || !gimple_vuse (call)
      /* Be sure expected_type is polymorphic.  */
      || !comp_type
      || TREE_CODE (comp_type) != RECORD_TYPE
      || !TYPE_BINFO (TYPE_MAIN_VARIANT (comp_type))
      || !BINFO_VTABLE (TYPE_BINFO (TYPE_MAIN_VARIANT (comp_type))))
    return true;

  ao_ref_init (&ao, arg);
  ao.base = base;
  ao.offset = offset;
  ao.size = POINTER_SIZE;
  ao.max_size = ao.size;

  tci.offset = offset;
  tci.object = get_base_address (arg);
  tci.type_maybe_changed = false;

  int walked
    = walk_aliased_vdefs (&ao, gimple_vuse (call), check_stmt_for_type_change,
			  &tci, NULL, NULL, fbi->aa_walk_budget + 1);

  if (walked >= 0 && !tci.type_maybe_changed)
    return false;

  return true;
}

/* Detect whether the dynamic type of ARG of COMP_TYPE may have changed.
   If it is, return true.  ARG is the object itself (not a pointer
   to it, unless dereferenced).  BASE is the base of the memory access as
   returned by get_ref_base_and_extent, as is the offset.  */

static bool
detect_type_change (ipa_func_body_info *fbi, tree arg, tree base,
		    tree comp_type, gcall *call,
		    HOST_WIDE_INT offset)
{
  if (!flag_devirtualize)
    return false;

  if (TREE_CODE	(base) == MEM_REF
      && !param_type_may_change_p (current_function_decl,
				   TREE_OPERAND (base, 0),
				   call))
    return false;
  return detect_type_change_from_memory_writes (fbi, arg, base, comp_type,
						call, offset);
}

/* Like detect_type_change but ARG is supposed to be a non-dereferenced pointer
   SSA name (its dereference will become the base and the offset is assumed to
   be zero).  */

static bool
detect_type_change_ssa (ipa_func_body_info *fbi, tree arg, tree comp_type,
			gcall *call)
{
  gcc_checking_assert (TREE_CODE (arg) == SSA_NAME);
  if (!flag_devirtualize
      || !POINTER_TYPE_P (TREE_TYPE (arg)))
    return false;

  if (!param_type_may_change_p (current_function_decl, arg, call))
    return false;

  arg = build2 (MEM_REF, ptr_type_node, arg,
		build_int_cst (ptr_type_node, 0));

  return detect_type_change_from_memory_writes (fbi, arg, arg, comp_type,
						call, 0);
}

/* Callback of walk_aliased_vdefs.  Flags that it has been invoked to the
   boolean variable pointed to by DATA.  */

static bool
mark_modified (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef ATTRIBUTE_UNUSED,
		     void *data)
{
  bool *b = (bool *) data;
  *b = true;
  return true;
}

/* Find the nearest valid aa status for parameter specified by INDEX that
   dominates BB.  */

static struct ipa_param_aa_status *
find_dominating_aa_status (struct ipa_func_body_info *fbi, basic_block bb,
			   int index)
{
  while (true)
    {
      bb = get_immediate_dominator (CDI_DOMINATORS, bb);
      if (!bb)
	return NULL;
      struct ipa_bb_info *bi = ipa_get_bb_info (fbi, bb);
      if (!bi->param_aa_statuses.is_empty ()
	  && bi->param_aa_statuses[index].valid)
	return &bi->param_aa_statuses[index];
    }
}

/* Get AA status structure for the given BB and parameter with INDEX.  Allocate
   structures and/or intialize the result with a dominating description as
   necessary.  */

static struct ipa_param_aa_status *
parm_bb_aa_status_for_bb (struct ipa_func_body_info *fbi, basic_block bb,
			  int index)
{
  gcc_checking_assert (fbi);
  struct ipa_bb_info *bi = ipa_get_bb_info (fbi, bb);
  if (bi->param_aa_statuses.is_empty ())
    bi->param_aa_statuses.safe_grow_cleared (fbi->param_count);
  struct ipa_param_aa_status *paa = &bi->param_aa_statuses[index];
  if (!paa->valid)
    {
      gcc_checking_assert (!paa->parm_modified
			   && !paa->ref_modified
			   && !paa->pt_modified);
      struct ipa_param_aa_status *dom_paa;
      dom_paa = find_dominating_aa_status (fbi, bb, index);
      if (dom_paa)
	*paa = *dom_paa;
      else
	paa->valid = true;
    }

  return paa;
}

/* Return true if a load from a formal parameter PARM_LOAD is known to retrieve
   a value known not to be modified in this function before reaching the
   statement STMT.  FBI holds information about the function we have so far
   gathered but do not survive the summary building stage.  */

static bool
parm_preserved_before_stmt_p (struct ipa_func_body_info *fbi, int index,
			      gimple *stmt, tree parm_load)
{
  struct ipa_param_aa_status *paa;
  bool modified = false;
  ao_ref refd;

  tree base = get_base_address (parm_load);
  gcc_assert (TREE_CODE (base) == PARM_DECL);
  if (TREE_READONLY (base))
    return true;

  gcc_checking_assert (fbi);
  paa = parm_bb_aa_status_for_bb (fbi, gimple_bb (stmt), index);
  if (paa->parm_modified)
    return false;

  gcc_checking_assert (gimple_vuse (stmt) != NULL_TREE);
  ao_ref_init (&refd, parm_load);
  int walked = walk_aliased_vdefs (&refd, gimple_vuse (stmt), mark_modified,
				   &modified, NULL, NULL,
				   fbi->aa_walk_budget + 1);
  if (walked < 0)
    {
      modified = true;
      if (fbi)
	fbi->aa_walk_budget = 0;
    }
  else if (fbi)
    fbi->aa_walk_budget -= walked;
  if (paa && modified)
    paa->parm_modified = true;
  return !modified;
}

/* If STMT is an assignment that loads a value from an parameter declaration,
   return the index of the parameter in ipa_node_params which has not been
   modified.  Otherwise return -1.  */

static int
load_from_unmodified_param (struct ipa_func_body_info *fbi,
			    vec<ipa_param_descriptor, va_gc> *descriptors,
			    gimple *stmt)
{
  int index;
  tree op1;

  if (!gimple_assign_single_p (stmt))
    return -1;

  op1 = gimple_assign_rhs1 (stmt);
  if (TREE_CODE (op1) != PARM_DECL)
    return -1;

  index = ipa_get_param_decl_index_1 (descriptors, op1);
  if (index < 0
      || !parm_preserved_before_stmt_p (fbi, index, stmt, op1))
    return -1;

  return index;
}

/* Return true if memory reference REF (which must be a load through parameter
   with INDEX) loads data that are known to be unmodified in this function
   before reaching statement STMT.  */

static bool
parm_ref_data_preserved_p (struct ipa_func_body_info *fbi,
			   int index, gimple *stmt, tree ref)
{
  struct ipa_param_aa_status *paa;
  bool modified = false;
  ao_ref refd;

  gcc_checking_assert (fbi);
  paa = parm_bb_aa_status_for_bb (fbi, gimple_bb (stmt), index);
  if (paa->ref_modified)
    return false;

  gcc_checking_assert (gimple_vuse (stmt));
  ao_ref_init (&refd, ref);
  int walked = walk_aliased_vdefs (&refd, gimple_vuse (stmt), mark_modified,
				   &modified, NULL, NULL,
				   fbi->aa_walk_budget + 1);
  if (walked < 0)
    {
      modified = true;
      fbi->aa_walk_budget = 0;
    }
  else
    fbi->aa_walk_budget -= walked;
  if (modified)
    paa->ref_modified = true;
  return !modified;
}

/* Return true if the data pointed to by PARM (which is a parameter with INDEX)
   is known to be unmodified in this function before reaching call statement
   CALL into which it is passed.  FBI describes the function body.  */

static bool
parm_ref_data_pass_through_p (struct ipa_func_body_info *fbi, int index,
			      gimple *call, tree parm)
{
  bool modified = false;
  ao_ref refd;

  /* It's unnecessary to calculate anything about memory contnets for a const
     function because it is not goin to use it.  But do not cache the result
     either.  Also, no such calculations for non-pointers.  */
  if (!gimple_vuse (call)
      || !POINTER_TYPE_P (TREE_TYPE (parm)))
    return false;

  struct ipa_param_aa_status *paa = parm_bb_aa_status_for_bb (fbi,
							      gimple_bb (call),
							      index);
  if (paa->pt_modified)
    return false;

  ao_ref_init_from_ptr_and_size (&refd, parm, NULL_TREE);
  int walked = walk_aliased_vdefs (&refd, gimple_vuse (call), mark_modified,
				   &modified, NULL, NULL,
				   fbi->aa_walk_budget + 1);
  if (walked < 0)
    {
      fbi->aa_walk_budget = 0;
      modified = true;
    }
  else
    fbi->aa_walk_budget -= walked;
  if (modified)
    paa->pt_modified = true;
  return !modified;
}

/* Return true if we can prove that OP is a memory reference loading
   data from an aggregate passed as a parameter.

   The function works in two modes.  If GUARANTEED_UNMODIFIED is NULL, it return
   false if it cannot prove that the value has not been modified before the
   load in STMT.  If GUARANTEED_UNMODIFIED is not NULL, it will return true even
   if it cannot prove the value has not been modified, in that case it will
   store false to *GUARANTEED_UNMODIFIED, otherwise it will store true there.

   INFO and PARMS_AINFO describe parameters of the current function (but the
   latter can be NULL), STMT is the load statement.  If function returns true,
   *INDEX_P, *OFFSET_P and *BY_REF is filled with the parameter index, offset
   within the aggregate and whether it is a load from a value passed by
   reference respectively.  */

bool
ipa_load_from_parm_agg (struct ipa_func_body_info *fbi,
			vec<ipa_param_descriptor, va_gc> *descriptors,
			gimple *stmt, tree op, int *index_p,
			HOST_WIDE_INT *offset_p, poly_int64 *size_p,
			bool *by_ref_p, bool *guaranteed_unmodified)
{
  int index;
  HOST_WIDE_INT size;
  bool reverse;
  tree base = get_ref_base_and_extent_hwi (op, offset_p, &size, &reverse);

  if (!base)
    return false;

  if (DECL_P (base))
    {
      int index = ipa_get_param_decl_index_1 (descriptors, base);
      if (index >= 0
	  && parm_preserved_before_stmt_p (fbi, index, stmt, op))
	{
	  *index_p = index;
	  *by_ref_p = false;
	  if (size_p)
	    *size_p = size;
	  if (guaranteed_unmodified)
	    *guaranteed_unmodified = true;
	  return true;
	}
      return false;
    }

  if (TREE_CODE (base) != MEM_REF
	   || TREE_CODE (TREE_OPERAND (base, 0)) != SSA_NAME
	   || !integer_zerop (TREE_OPERAND (base, 1)))
    return false;

  if (SSA_NAME_IS_DEFAULT_DEF (TREE_OPERAND (base, 0)))
    {
      tree parm = SSA_NAME_VAR (TREE_OPERAND (base, 0));
      index = ipa_get_param_decl_index_1 (descriptors, parm);
    }
  else
    {
      /* This branch catches situations where a pointer parameter is not a
	 gimple register, for example:

	 void hip7(S*) (struct S * p)
	 {
	 void (*<T2e4>) (struct S *) D.1867;
	 struct S * p.1;

	 <bb 2>:
	 p.1_1 = p;
	 D.1867_2 = p.1_1->f;
	 D.1867_2 ();
	 gdp = &p;
      */

      gimple *def = SSA_NAME_DEF_STMT (TREE_OPERAND (base, 0));
      index = load_from_unmodified_param (fbi, descriptors, def);
    }

  if (index >= 0)
    {
      bool data_preserved = parm_ref_data_preserved_p (fbi, index, stmt, op);
      if (!data_preserved && !guaranteed_unmodified)
	return false;

      *index_p = index;
      *by_ref_p = true;
      if (size_p)
	*size_p = size;
      if (guaranteed_unmodified)
	*guaranteed_unmodified = data_preserved;
      return true;
    }
  return false;
}

/* If STMT is an assignment that loads a value from a parameter declaration,
   or from an aggregate passed as the parameter either by value or reference,
   return the index of the parameter in ipa_node_params.  Otherwise return -1.

   FBI holds gathered information about the function.  INFO describes
   parameters of the function, STMT is the assignment statement.  If it is a
   memory load from an aggregate, *OFFSET_P is filled with offset within the
   aggregate, and *BY_REF_P specifies whether the aggregate is passed by
   reference.  */

static int
load_from_unmodified_param_or_agg (struct ipa_func_body_info *fbi,
				   class ipa_node_params *info,
				   gimple *stmt,
				   HOST_WIDE_INT *offset_p,
				   bool *by_ref_p)
{
  int index = load_from_unmodified_param (fbi, info->descriptors, stmt);
  poly_int64 size;

  /* Load value from a parameter declaration.  */
  if (index >= 0)
    {
      *offset_p = -1;
      return index;
    }

  if (!gimple_assign_load_p (stmt))
    return -1;

  tree rhs = gimple_assign_rhs1 (stmt);

  /* Skip memory reference containing VIEW_CONVERT_EXPR.  */
  for (tree t = rhs; handled_component_p (t); t = TREE_OPERAND (t, 0))
    if (TREE_CODE (t) == VIEW_CONVERT_EXPR)
      return -1;

  /* Skip memory reference containing bit-field.  */
  if (TREE_CODE (rhs) == BIT_FIELD_REF
      || contains_bitfld_component_ref_p (rhs))
    return -1;

  if (!ipa_load_from_parm_agg (fbi, info->descriptors, stmt, rhs, &index,
			       offset_p, &size, by_ref_p))
    return -1;

  gcc_assert (!maybe_ne (tree_to_poly_int64 (TYPE_SIZE (TREE_TYPE (rhs))),
			 size));
  if (!*by_ref_p)
    {
      tree param_type = ipa_get_type (info, index);

      if (!param_type || !AGGREGATE_TYPE_P (param_type))
	return -1;
    }
  else if (TREE_THIS_VOLATILE (rhs))
    return -1;

  return index;
}

/* Given that an actual argument is an SSA_NAME (given in NAME) and is a result
   of an assignment statement STMT, try to determine whether we are actually
   handling any of the following cases and construct an appropriate jump
   function into JFUNC if so:

   1) The passed value is loaded from a formal parameter which is not a gimple
   register (most probably because it is addressable, the value has to be
   scalar) and we can guarantee the value has not changed.  This case can
   therefore be described by a simple pass-through jump function.  For example:

      foo (int a)
      {
        int a.0;

        a.0_2 = a;
        bar (a.0_2);

   2) The passed value can be described by a simple arithmetic pass-through
   jump function. E.g.

      foo (int a)
      {
        int D.2064;

        D.2064_4 = a.1(D) + 4;
        bar (D.2064_4);

   This case can also occur in combination of the previous one, e.g.:

      foo (int a, int z)
      {
        int a.0;
        int D.2064;

	a.0_3 = a;
	D.2064_4 = a.0_3 + 4;
	foo (D.2064_4);

   3) The passed value is an address of an object within another one (which
   also passed by reference).  Such situations are described by an ancestor
   jump function and describe situations such as:

     B::foo() (struct B * const this)
     {
       struct A * D.1845;

       D.1845_2 = &this_1(D)->D.1748;
       A::bar (D.1845_2);

   INFO is the structure describing individual parameters access different
   stages of IPA optimizations.  PARMS_AINFO contains the information that is
   only needed for intraprocedural analysis.  */

static void
compute_complex_assign_jump_func (struct ipa_func_body_info *fbi,
				  class ipa_node_params *info,
				  struct ipa_jump_func *jfunc,
				  gcall *call, gimple *stmt, tree name,
				  tree param_type)
{
  HOST_WIDE_INT offset, size;
  tree op1, tc_ssa, base, ssa;
  bool reverse;
  int index;

  op1 = gimple_assign_rhs1 (stmt);

  if (TREE_CODE (op1) == SSA_NAME)
    {
      if (SSA_NAME_IS_DEFAULT_DEF (op1))
	index = ipa_get_param_decl_index (info, SSA_NAME_VAR (op1));
      else
	index = load_from_unmodified_param (fbi, info->descriptors,
					    SSA_NAME_DEF_STMT (op1));
      tc_ssa = op1;
    }
  else
    {
      index = load_from_unmodified_param (fbi, info->descriptors, stmt);
      tc_ssa = gimple_assign_lhs (stmt);
    }

  if (index >= 0)
    {
      switch (gimple_assign_rhs_class (stmt))
	{
	case GIMPLE_BINARY_RHS:
	  {
	    tree op2 = gimple_assign_rhs2 (stmt);
	    if (!is_gimple_ip_invariant (op2)
		|| ((TREE_CODE_CLASS (gimple_assign_rhs_code (stmt))
		     != tcc_comparison)
		    && !useless_type_conversion_p (TREE_TYPE (name),
						   TREE_TYPE (op1))))
	      return;

	    ipa_set_jf_arith_pass_through (jfunc, index, op2,
					   gimple_assign_rhs_code (stmt));
	    break;
	  }
	case GIMPLE_SINGLE_RHS:
	  {
	    bool agg_p = parm_ref_data_pass_through_p (fbi, index, call,
						       tc_ssa);
	    ipa_set_jf_simple_pass_through (jfunc, index, agg_p);
	    break;
	  }
	case GIMPLE_UNARY_RHS:
	  if (!CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt)))
	    ipa_set_jf_unary_pass_through (jfunc, index,
					   gimple_assign_rhs_code (stmt));
	default:;
	}
      return;
    }

  if (TREE_CODE (op1) != ADDR_EXPR)
    return;
  op1 = TREE_OPERAND (op1, 0);
  if (TREE_CODE (TREE_TYPE (op1)) != RECORD_TYPE)
    return;
  base = get_ref_base_and_extent_hwi (op1, &offset, &size, &reverse);
  offset_int mem_offset;
  if (!base
      || TREE_CODE (base) != MEM_REF
      || !mem_ref_offset (base).is_constant (&mem_offset))
    return;
  offset += mem_offset.to_short_addr () * BITS_PER_UNIT;
  ssa = TREE_OPERAND (base, 0);
  if (TREE_CODE (ssa) != SSA_NAME
      || !SSA_NAME_IS_DEFAULT_DEF (ssa)
      || offset < 0)
    return;

  /* Dynamic types are changed in constructors and destructors.  */
  index = ipa_get_param_decl_index (info, SSA_NAME_VAR (ssa));
  if (index >= 0 && param_type && POINTER_TYPE_P (param_type))
    ipa_set_ancestor_jf (jfunc, offset,  index,
			 parm_ref_data_pass_through_p (fbi, index, call, ssa));
}

/* Extract the base, offset and MEM_REF expression from a statement ASSIGN if
   it looks like:

   iftmp.1_3 = &obj_2(D)->D.1762;

   The base of the MEM_REF must be a default definition SSA NAME of a
   parameter.  Return NULL_TREE if it looks otherwise.  If case of success, the
   whole MEM_REF expression is returned and the offset calculated from any
   handled components and the MEM_REF itself is stored into *OFFSET.  The whole
   RHS stripped off the ADDR_EXPR is stored into *OBJ_P.  */

static tree
get_ancestor_addr_info (gimple *assign, tree *obj_p, HOST_WIDE_INT *offset)
{
  HOST_WIDE_INT size;
  tree expr, parm, obj;
  bool reverse;

  if (!gimple_assign_single_p (assign))
    return NULL_TREE;
  expr = gimple_assign_rhs1 (assign);

  if (TREE_CODE (expr) != ADDR_EXPR)
    return NULL_TREE;
  expr = TREE_OPERAND (expr, 0);
  obj = expr;
  expr = get_ref_base_and_extent_hwi (expr, offset, &size, &reverse);

  offset_int mem_offset;
  if (!expr
      || TREE_CODE (expr) != MEM_REF
      || !mem_ref_offset (expr).is_constant (&mem_offset))
    return NULL_TREE;
  parm = TREE_OPERAND (expr, 0);
  if (TREE_CODE (parm) != SSA_NAME
      || !SSA_NAME_IS_DEFAULT_DEF (parm)
      || TREE_CODE (SSA_NAME_VAR (parm)) != PARM_DECL)
    return NULL_TREE;

  *offset += mem_offset.to_short_addr () * BITS_PER_UNIT;
  *obj_p = obj;
  return expr;
}


/* Given that an actual argument is an SSA_NAME that is a result of a phi
   statement PHI, try to find out whether NAME is in fact a
   multiple-inheritance typecast from a descendant into an ancestor of a formal
   parameter and thus can be described by an ancestor jump function and if so,
   write the appropriate function into JFUNC.

   Essentially we want to match the following pattern:

     if (obj_2(D) != 0B)
       goto <bb 3>;
     else
       goto <bb 4>;

   <bb 3>:
     iftmp.1_3 = &obj_2(D)->D.1762;

   <bb 4>:
     # iftmp.1_1 = PHI <iftmp.1_3(3), 0B(2)>
     D.1879_6 = middleman_1 (iftmp.1_1, i_5(D));
     return D.1879_6;  */

static void
compute_complex_ancestor_jump_func (struct ipa_func_body_info *fbi,
				    class ipa_node_params *info,
				    struct ipa_jump_func *jfunc,
				    gcall *call, gphi *phi)
{
  HOST_WIDE_INT offset;
  gimple *assign, *cond;
  basic_block phi_bb, assign_bb, cond_bb;
  tree tmp, parm, expr, obj;
  int index, i;

  if (gimple_phi_num_args (phi) != 2)
    return;

  if (integer_zerop (PHI_ARG_DEF (phi, 1)))
    tmp = PHI_ARG_DEF (phi, 0);
  else if (integer_zerop (PHI_ARG_DEF (phi, 0)))
    tmp = PHI_ARG_DEF (phi, 1);
  else
    return;
  if (TREE_CODE (tmp) != SSA_NAME
      || SSA_NAME_IS_DEFAULT_DEF (tmp)
      || !POINTER_TYPE_P (TREE_TYPE (tmp))
      || TREE_CODE (TREE_TYPE (TREE_TYPE (tmp))) != RECORD_TYPE)
    return;

  assign = SSA_NAME_DEF_STMT (tmp);
  assign_bb = gimple_bb (assign);
  if (!single_pred_p (assign_bb))
    return;
  expr = get_ancestor_addr_info (assign, &obj, &offset);
  if (!expr)
    return;
  parm = TREE_OPERAND (expr, 0);
  index = ipa_get_param_decl_index (info, SSA_NAME_VAR (parm));
  if (index < 0)
    return;

  cond_bb = single_pred (assign_bb);
  cond = last_stmt (cond_bb);
  if (!cond
      || gimple_code (cond) != GIMPLE_COND
      || gimple_cond_code (cond) != NE_EXPR
      || gimple_cond_lhs (cond) != parm
      || !integer_zerop (gimple_cond_rhs (cond)))
    return;

  phi_bb = gimple_bb (phi);
  for (i = 0; i < 2; i++)
    {
      basic_block pred = EDGE_PRED (phi_bb, i)->src;
      if (pred != assign_bb && pred != cond_bb)
	return;
    }

  ipa_set_ancestor_jf (jfunc, offset, index,
		       parm_ref_data_pass_through_p (fbi, index, call, parm));
}

/* Inspect the given TYPE and return true iff it has the same structure (the
   same number of fields of the same types) as a C++ member pointer.  If
   METHOD_PTR and DELTA are non-NULL, store the trees representing the
   corresponding fields there.  */

static bool
type_like_member_ptr_p (tree type, tree *method_ptr, tree *delta)
{
  tree fld;

  if (TREE_CODE (type) != RECORD_TYPE)
    return false;

  fld = TYPE_FIELDS (type);
  if (!fld || !POINTER_TYPE_P (TREE_TYPE (fld))
      || TREE_CODE (TREE_TYPE (TREE_TYPE (fld))) != METHOD_TYPE
      || !tree_fits_uhwi_p (DECL_FIELD_OFFSET (fld)))
    return false;

  if (method_ptr)
    *method_ptr = fld;

  fld = DECL_CHAIN (fld);
  if (!fld || INTEGRAL_TYPE_P (fld)
      || !tree_fits_uhwi_p (DECL_FIELD_OFFSET (fld)))
    return false;
  if (delta)
    *delta = fld;

  if (DECL_CHAIN (fld))
    return false;

  return true;
}

/* If RHS is an SSA_NAME and it is defined by a simple copy assign statement,
   return the rhs of its defining statement, and this statement is stored in
   *RHS_STMT.  Otherwise return RHS as it is.  */

static inline tree
get_ssa_def_if_simple_copy (tree rhs, gimple **rhs_stmt)
{
  while (TREE_CODE (rhs) == SSA_NAME && !SSA_NAME_IS_DEFAULT_DEF (rhs))
    {
      gimple *def_stmt = SSA_NAME_DEF_STMT (rhs);

      if (gimple_assign_single_p (def_stmt))
	rhs = gimple_assign_rhs1 (def_stmt);
      else
	break;
      *rhs_stmt = def_stmt;
    }
  return rhs;
}

/* Simple linked list, describing contents of an aggregate before call.  */

struct ipa_known_agg_contents_list
{
  /* Offset and size of the described part of the aggregate.  */
  HOST_WIDE_INT offset, size;

  /* Type of the described part of the aggregate.  */
  tree type;

  /* Known constant value or jump function data describing contents.  */
  struct ipa_load_agg_data value;

  /* Pointer to the next structure in the list.  */
  struct ipa_known_agg_contents_list *next;
};

/* Add an aggregate content item into a linked list of
   ipa_known_agg_contents_list structure, in which all elements
   are sorted ascendingly by offset.  */

static inline void
add_to_agg_contents_list (struct ipa_known_agg_contents_list **plist,
			  struct ipa_known_agg_contents_list *item)
{
  struct ipa_known_agg_contents_list *list = *plist;

  for (; list; list = list->next)
    {
      if (list->offset >= item->offset)
	break;

      plist = &list->next;
    }

  item->next = list;
  *plist = item;
}

/* Check whether a given aggregate content is clobbered by certain element in
   a linked list of ipa_known_agg_contents_list.  */

static inline bool
clobber_by_agg_contents_list_p (struct ipa_known_agg_contents_list *list,
				struct ipa_known_agg_contents_list *item)
{
  for (; list; list = list->next)
    {
      if (list->offset >= item->offset)
	return list->offset < item->offset + item->size;

      if (list->offset + list->size > item->offset)
	return true;
    }

  return false;
}

/* Build aggregate jump function from LIST, assuming there are exactly
   VALUE_COUNT entries there and that offset of the passed argument
   is ARG_OFFSET and store it into JFUNC.  */

static void
build_agg_jump_func_from_list (struct ipa_known_agg_contents_list *list,
			       int value_count, HOST_WIDE_INT arg_offset,
			       struct ipa_jump_func *jfunc)
{
  vec_alloc (jfunc->agg.items, value_count);
  for (; list; list = list->next)
    {
      struct ipa_agg_jf_item item;
      tree operand = list->value.pass_through.operand;

      if (list->value.pass_through.formal_id >= 0)
	{
	  /* Content value is derived from some formal paramerter.  */
	  if (list->value.offset >= 0)
	    item.jftype = IPA_JF_LOAD_AGG;
	  else
	    item.jftype = IPA_JF_PASS_THROUGH;

	  item.value.load_agg = list->value;
	  if (operand)
	    item.value.pass_through.operand
	      = unshare_expr_without_location (operand);
	}
      else if (operand)
	{
	  /* Content value is known constant.  */
	  item.jftype = IPA_JF_CONST;
	  item.value.constant = unshare_expr_without_location (operand);
	}
      else
	continue;

      item.type = list->type;
      gcc_assert (tree_to_shwi (TYPE_SIZE (list->type)) == list->size);

      item.offset = list->offset - arg_offset;
      gcc_assert ((item.offset % BITS_PER_UNIT) == 0);

      jfunc->agg.items->quick_push (item);
    }
}

/* Given an assignment statement STMT, try to collect information into
   AGG_VALUE that will be used to construct jump function for RHS of the
   assignment, from which content value of an aggregate part comes.

   Besides constant and simple pass-through jump functions, also try to
   identify whether it matches the following pattern that can be described by
   a load-value-from-aggregate jump function, which is a derivative of simple
   pass-through jump function.

     foo (int *p)
     {
       ...

       *(q_5 + 4) = *(p_3(D) + 28) op 1;
       bar (q_5);
     }

   Here IPA_LOAD_AGG_DATA data structure is informative enough to describe
   constant, simple pass-through and load-vale-from-aggregate. If value
   is constant, it will be kept in field OPERAND, and field FORMAL_ID is
   set to -1. For simple pass-through and load-value-from-aggregate, field
   FORMAL_ID specifies the related formal parameter index, and field
   OFFSET can be used to distinguish them, -1 means simple pass-through,
   otherwise means load-value-from-aggregate.  */

static void
analyze_agg_content_value (struct ipa_func_body_info *fbi,
			   struct ipa_load_agg_data *agg_value,
			   gimple *stmt)
{
  tree lhs = gimple_assign_lhs (stmt);
  tree rhs1 = gimple_assign_rhs1 (stmt);
  enum tree_code code;
  int index = -1;

  /* Initialize jump function data for the aggregate part.  */
  memset (agg_value, 0, sizeof (*agg_value));
  agg_value->pass_through.operation = NOP_EXPR;
  agg_value->pass_through.formal_id = -1;
  agg_value->offset = -1;

  if (AGGREGATE_TYPE_P (TREE_TYPE (lhs))  /* TODO: Support aggregate type.  */
      || TREE_THIS_VOLATILE (lhs)
      || TREE_CODE (lhs) == BIT_FIELD_REF
      || contains_bitfld_component_ref_p (lhs))
    return;

  /* Skip SSA copies.  */
  while (gimple_assign_rhs_class (stmt) == GIMPLE_SINGLE_RHS)
    {
      if (TREE_CODE (rhs1) != SSA_NAME || SSA_NAME_IS_DEFAULT_DEF (rhs1))
	break;

      stmt = SSA_NAME_DEF_STMT (rhs1);
      if (!is_gimple_assign (stmt))
	return;

      rhs1 = gimple_assign_rhs1 (stmt);
    }

  code = gimple_assign_rhs_code (stmt);
  switch (gimple_assign_rhs_class (stmt))
    {
    case GIMPLE_SINGLE_RHS:
      if (is_gimple_ip_invariant (rhs1))
	{
	  agg_value->pass_through.operand = rhs1;
	  return;
	}
      code = NOP_EXPR;
      break;

    case GIMPLE_UNARY_RHS:
      /* NOTE: A GIMPLE_UNARY_RHS operation might not be tcc_unary
	 (truth_not_expr is example), GIMPLE_BINARY_RHS does not imply
	 tcc_binary, this subtleness is somewhat misleading.

	 Since tcc_unary is widely used in IPA-CP code to check an operation
	 with one operand, here we only allow tc_unary operation to avoid
	 possible problem.  Then we can use (opclass == tc_unary) or not to
	 distinguish unary and binary.  */
      if (TREE_CODE_CLASS (code) != tcc_unary || CONVERT_EXPR_CODE_P (code))
	return;

      rhs1 = get_ssa_def_if_simple_copy (rhs1, &stmt);
      break;

    case GIMPLE_BINARY_RHS:
      {
	gimple *rhs1_stmt = stmt;
	gimple *rhs2_stmt = stmt;
	tree rhs2 = gimple_assign_rhs2 (stmt);

	rhs1 = get_ssa_def_if_simple_copy (rhs1, &rhs1_stmt);
	rhs2 = get_ssa_def_if_simple_copy (rhs2, &rhs2_stmt);

	if (is_gimple_ip_invariant (rhs2))
	  {
	    agg_value->pass_through.operand = rhs2;
	    stmt = rhs1_stmt;
	  }
	else if (is_gimple_ip_invariant (rhs1))
	  {
	    if (TREE_CODE_CLASS (code) == tcc_comparison)
	      code = swap_tree_comparison (code);
	    else if (!commutative_tree_code (code))
	      return;

	    agg_value->pass_through.operand = rhs1;
	    stmt = rhs2_stmt;
	    rhs1 = rhs2;
	  }
	else
	  return;

	if (TREE_CODE_CLASS (code) != tcc_comparison
	    && !useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs1)))
	  return;
      }
      break;

    default:
      return;
  }

  if (TREE_CODE (rhs1) != SSA_NAME)
    index = load_from_unmodified_param_or_agg (fbi, fbi->info, stmt,
					       &agg_value->offset,
					       &agg_value->by_ref);
  else if (SSA_NAME_IS_DEFAULT_DEF (rhs1))
    index = ipa_get_param_decl_index (fbi->info, SSA_NAME_VAR (rhs1));

  if (index >= 0)
    {
      if (agg_value->offset >= 0)
	agg_value->type = TREE_TYPE (rhs1);
      agg_value->pass_through.formal_id = index;
      agg_value->pass_through.operation = code;
    }
  else
    agg_value->pass_through.operand = NULL_TREE;
}

/* If STMT is a memory store to the object whose address is BASE, extract
   information (offset, size, and value) into CONTENT, and return true,
   otherwise we conservatively assume the whole object is modified with
   unknown content, and return false.  CHECK_REF means that access to object
   is expected to be in form of MEM_REF expression.  */

static bool
extract_mem_content (struct ipa_func_body_info *fbi,
		     gimple *stmt, tree base, bool check_ref,
		     struct ipa_known_agg_contents_list *content)
{
  HOST_WIDE_INT lhs_offset, lhs_size;
  bool reverse;

  if (!is_gimple_assign (stmt))
    return false;

  tree lhs = gimple_assign_lhs (stmt);
  tree lhs_base = get_ref_base_and_extent_hwi (lhs, &lhs_offset, &lhs_size,
					       &reverse);
  if (!lhs_base)
    return false;

  if (check_ref)
    {
      if (TREE_CODE (lhs_base) != MEM_REF
	  || TREE_OPERAND (lhs_base, 0) != base
	  || !integer_zerop (TREE_OPERAND (lhs_base, 1)))
	return false;
    }
  else if (lhs_base != base)
    return false;

  content->offset = lhs_offset;
  content->size = lhs_size;
  content->type = TREE_TYPE (lhs);
  content->next = NULL;

  analyze_agg_content_value (fbi, &content->value, stmt);
  return true;
}

/* Traverse statements from CALL backwards, scanning whether an aggregate given
   in ARG is filled in constants or values that are derived from caller's
   formal parameter in the way described by some kinds of jump functions.  FBI
   is the context of the caller function for interprocedural analysis.  ARG can
   either be an aggregate expression or a pointer to an aggregate.  ARG_TYPE is
   the type of the aggregate, JFUNC is the jump function for the aggregate.  */

static void
determine_known_aggregate_parts (struct ipa_func_body_info *fbi,
				 gcall *call, tree arg,
				 tree arg_type,
				 struct ipa_jump_func *jfunc)
{
  struct ipa_known_agg_contents_list *list = NULL, *all_list = NULL;
  bitmap visited = NULL;
  int item_count = 0, value_count = 0;
  HOST_WIDE_INT arg_offset, arg_size;
  tree arg_base;
  bool check_ref, by_ref;
  ao_ref r;
  int max_agg_items = opt_for_fn (fbi->node->decl, param_ipa_max_agg_items);

  if (max_agg_items == 0)
    return;

  /* The function operates in three stages.  First, we prepare check_ref, r,
     arg_base and arg_offset based on what is actually passed as an actual
     argument.  */

  if (POINTER_TYPE_P (arg_type))
    {
      by_ref = true;
      if (TREE_CODE (arg) == SSA_NAME)
	{
	  tree type_size;
          if (!tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (arg_type)))
	      || !POINTER_TYPE_P (TREE_TYPE (arg)))
            return;
	  check_ref = true;
	  arg_base = arg;
	  arg_offset = 0;
	  type_size = TYPE_SIZE (TREE_TYPE (arg_type));
	  arg_size = tree_to_uhwi (type_size);
	  ao_ref_init_from_ptr_and_size (&r, arg_base, NULL_TREE);
	}
      else if (TREE_CODE (arg) == ADDR_EXPR)
	{
	  bool reverse;

	  arg = TREE_OPERAND (arg, 0);
	  arg_base = get_ref_base_and_extent_hwi (arg, &arg_offset,
						  &arg_size, &reverse);
	  if (!arg_base)
	    return;
	  if (DECL_P (arg_base))
	    {
	      check_ref = false;
	      ao_ref_init (&r, arg_base);
	    }
	  else
	    return;
	}
      else
	return;
    }
  else
    {
      bool reverse;

      gcc_checking_assert (AGGREGATE_TYPE_P (TREE_TYPE (arg)));

      by_ref = false;
      check_ref = false;
      arg_base = get_ref_base_and_extent_hwi (arg, &arg_offset,
					      &arg_size, &reverse);
      if (!arg_base)
	return;

      ao_ref_init (&r, arg);
    }

  /* Second stage traverses virtual SSA web backwards starting from the call
     statement, only looks at individual dominating virtual operand (its
     definition dominates the call), as long as it is confident that content
     of the aggregate is affected by definition of the virtual operand, it
     builds a sorted linked list of ipa_agg_jf_list describing that.  */

  for (tree dom_vuse = gimple_vuse (call); dom_vuse;)
    {
      gimple *stmt = SSA_NAME_DEF_STMT (dom_vuse);

      if (gimple_code (stmt) == GIMPLE_PHI)
	{
	  dom_vuse = get_continuation_for_phi (stmt, &r, true,
					       fbi->aa_walk_budget,
					       &visited, false, NULL, NULL);
	  continue;
	}

      if (stmt_may_clobber_ref_p_1 (stmt, &r))
	{
	  struct ipa_known_agg_contents_list *content
			= XALLOCA (struct ipa_known_agg_contents_list);

	  if (!extract_mem_content (fbi, stmt, arg_base, check_ref, content))
	    break;

	  /* Now we get a dominating virtual operand, and need to check
	     whether its value is clobbered any other dominating one.  */
	  if ((content->value.pass_through.formal_id >= 0
	       || content->value.pass_through.operand)
	      && !clobber_by_agg_contents_list_p (all_list, content))
	    {
	      struct ipa_known_agg_contents_list *copy
			= XALLOCA (struct ipa_known_agg_contents_list);

	      /* Add to the list consisting of only dominating virtual
		 operands, whose definitions can finally reach the call.  */
	      add_to_agg_contents_list (&list, (*copy = *content, copy));

	      if (++value_count == max_agg_items)
		break;
	    }

	  /* Add to the list consisting of all dominating virtual operands.  */
	  add_to_agg_contents_list (&all_list, content);

	  if (++item_count == 2 * max_agg_items)
	    break;
	}
      dom_vuse = gimple_vuse (stmt);
   }

  if (visited)
    BITMAP_FREE (visited);

  /* Third stage just goes over the list and creates an appropriate vector of
     ipa_agg_jf_item structures out of it, of course only if there are
     any meaningful items to begin with.  */

  if (value_count)
    {
      jfunc->agg.by_ref = by_ref;
      build_agg_jump_func_from_list (list, value_count, arg_offset, jfunc);
    }
}


/* Return the Ith param type of callee associated with call graph
   edge E.  */

tree
ipa_get_callee_param_type (struct cgraph_edge *e, int i)
{
  int n;
  tree type = (e->callee
	       ? TREE_TYPE (e->callee->decl)
	       : gimple_call_fntype (e->call_stmt));
  tree t = TYPE_ARG_TYPES (type);

  for (n = 0; n < i; n++)
    {
      if (!t)
        break;
      t = TREE_CHAIN (t);
    }
  if (t)
    return TREE_VALUE (t);
  if (!e->callee)
    return NULL;
  t = DECL_ARGUMENTS (e->callee->decl);
  for (n = 0; n < i; n++)
    {
      if (!t)
	return NULL;
      t = TREE_CHAIN (t);
    }
  if (t)
    return TREE_TYPE (t);
  return NULL;
}

/* Return ipa_bits with VALUE and MASK values, which can be either a newly
   allocated structure or a previously existing one shared with other jump
   functions and/or transformation summaries.  */

ipa_bits *
ipa_get_ipa_bits_for_value (const widest_int &value, const widest_int &mask)
{
  ipa_bits tmp;
  tmp.value = value;
  tmp.mask = mask;

  ipa_bits **slot = ipa_bits_hash_table->find_slot (&tmp, INSERT);
  if (*slot)
    return *slot;

  ipa_bits *res = ggc_alloc<ipa_bits> ();
  res->value = value;
  res->mask = mask;
  *slot = res;

  return res;
}

/* Assign to JF a pointer to ipa_bits structure with VALUE and MASK.  Use hash
   table in order to avoid creating multiple same ipa_bits structures.  */

static void
ipa_set_jfunc_bits (ipa_jump_func *jf, const widest_int &value,
		    const widest_int &mask)
{
  jf->bits = ipa_get_ipa_bits_for_value (value, mask);
}

/* Return a pointer to a value_range just like *TMP, but either find it in
   ipa_vr_hash_table or allocate it in GC memory.  TMP->equiv must be NULL.  */

static value_range *
ipa_get_value_range (value_range *tmp)
{
  value_range **slot = ipa_vr_hash_table->find_slot (tmp, INSERT);
  if (*slot)
    return *slot;

  value_range *vr = ggc_alloc<value_range> ();
  *vr = *tmp;
  *slot = vr;

  return vr;
}

/* Return a pointer to a value range consisting of TYPE, MIN, MAX and an empty
   equiv set. Use hash table in order to avoid creating multiple same copies of
   value_ranges.  */

static value_range *
ipa_get_value_range (enum value_range_kind kind, tree min, tree max)
{
  value_range tmp (min, max, kind);
  return ipa_get_value_range (&tmp);
}

/* Assign to JF a pointer to a value_range structure with TYPE, MIN and MAX and
   a NULL equiv bitmap.  Use hash table in order to avoid creating multiple
   same value_range structures.  */

static void
ipa_set_jfunc_vr (ipa_jump_func *jf, enum value_range_kind type,
		  tree min, tree max)
{
  jf->m_vr = ipa_get_value_range (type, min, max);
}

/* Assign to JF a pointer to a value_range just like TMP but either fetch a
   copy from ipa_vr_hash_table or allocate a new on in GC memory.  */

static void
ipa_set_jfunc_vr (ipa_jump_func *jf, value_range *tmp)
{
  jf->m_vr = ipa_get_value_range (tmp);
}

/* Compute jump function for all arguments of callsite CS and insert the
   information in the jump_functions array in the ipa_edge_args corresponding
   to this callsite.  */

static void
ipa_compute_jump_functions_for_edge (struct ipa_func_body_info *fbi,
				     struct cgraph_edge *cs)
{
  class ipa_node_params *info = IPA_NODE_REF (cs->caller);
  class ipa_edge_args *args = IPA_EDGE_REF_GET_CREATE (cs);
  gcall *call = cs->call_stmt;
  int n, arg_num = gimple_call_num_args (call);
  bool useful_context = false;

  if (arg_num == 0 || args->jump_functions)
    return;
  vec_safe_grow_cleared (args->jump_functions, arg_num);
  if (flag_devirtualize)
    vec_safe_grow_cleared (args->polymorphic_call_contexts, arg_num);

  if (gimple_call_internal_p (call))
    return;
  if (ipa_func_spec_opts_forbid_analysis_p (cs->caller))
    return;

  for (n = 0; n < arg_num; n++)
    {
      struct ipa_jump_func *jfunc = ipa_get_ith_jump_func (args, n);
      tree arg = gimple_call_arg (call, n);
      tree param_type = ipa_get_callee_param_type (cs, n);
      if (flag_devirtualize && POINTER_TYPE_P (TREE_TYPE (arg)))
	{
	  tree instance;
	  class ipa_polymorphic_call_context context (cs->caller->decl,
						       arg, cs->call_stmt,
						       &instance);
	  context.get_dynamic_type (instance, arg, NULL, cs->call_stmt,
				    &fbi->aa_walk_budget);
	  *ipa_get_ith_polymorhic_call_context (args, n) = context;
	  if (!context.useless_p ())
	    useful_context = true;
	}

      if (POINTER_TYPE_P (TREE_TYPE (arg)))
	{
	  bool addr_nonzero = false;
	  bool strict_overflow = false;

	  if (TREE_CODE (arg) == SSA_NAME
	      && param_type
	      && get_ptr_nonnull (arg))
	    addr_nonzero = true;
	  else if (tree_single_nonzero_warnv_p (arg, &strict_overflow))
	    addr_nonzero = true;

	  if (addr_nonzero)
	    {
	      tree z = build_int_cst (TREE_TYPE (arg), 0);
	      ipa_set_jfunc_vr (jfunc, VR_ANTI_RANGE, z, z);
	    }
	  else
	    gcc_assert (!jfunc->m_vr);
	}
      else
	{
	  wide_int min, max;
	  value_range_kind kind;
	  if (TREE_CODE (arg) == SSA_NAME
	      && param_type
	      && (kind = get_range_info (arg, &min, &max))
	      && (kind == VR_RANGE || kind == VR_ANTI_RANGE))
	    {
	      value_range resvr;
	      value_range tmpvr (wide_int_to_tree (TREE_TYPE (arg), min),
				 wide_int_to_tree (TREE_TYPE (arg), max),
				 kind);
	      range_fold_unary_expr (&resvr, NOP_EXPR, param_type,
				     &tmpvr, TREE_TYPE (arg));
	      if (!resvr.undefined_p () && !resvr.varying_p ())
		ipa_set_jfunc_vr (jfunc, &resvr);
	      else
		gcc_assert (!jfunc->m_vr);
	    }
	  else
	    gcc_assert (!jfunc->m_vr);
	}

      if (INTEGRAL_TYPE_P (TREE_TYPE (arg))
	  && (TREE_CODE (arg) == SSA_NAME || TREE_CODE (arg) == INTEGER_CST))
	{
	  if (TREE_CODE (arg) == SSA_NAME)
	    ipa_set_jfunc_bits (jfunc, 0,
				widest_int::from (get_nonzero_bits (arg),
						  TYPE_SIGN (TREE_TYPE (arg))));
	  else
	    ipa_set_jfunc_bits (jfunc, wi::to_widest (arg), 0);
	}
      else if (POINTER_TYPE_P (TREE_TYPE (arg)))
	{
	  unsigned HOST_WIDE_INT bitpos;
	  unsigned align;

	  get_pointer_alignment_1 (arg, &align, &bitpos);
	  widest_int mask = wi::bit_and_not
	    (wi::mask<widest_int> (TYPE_PRECISION (TREE_TYPE (arg)), false),
	     align / BITS_PER_UNIT - 1);
	  widest_int value = bitpos / BITS_PER_UNIT;
	  ipa_set_jfunc_bits (jfunc, value, mask);
	}
      else
	gcc_assert (!jfunc->bits);

      if (is_gimple_ip_invariant (arg)
	  || (VAR_P (arg)
	      && is_global_var (arg)
	      && TREE_READONLY (arg)))
	ipa_set_jf_constant (jfunc, arg, cs);
      else if (!is_gimple_reg_type (TREE_TYPE (arg))
	       && TREE_CODE (arg) == PARM_DECL)
	{
	  int index = ipa_get_param_decl_index (info, arg);

	  gcc_assert (index >=0);
	  /* Aggregate passed by value, check for pass-through, otherwise we
	     will attempt to fill in aggregate contents later in this
	     for cycle.  */
	  if (parm_preserved_before_stmt_p (fbi, index, call, arg))
	    {
	      ipa_set_jf_simple_pass_through (jfunc, index, false);
	      continue;
	    }
	}
      else if (TREE_CODE (arg) == SSA_NAME)
	{
	  if (SSA_NAME_IS_DEFAULT_DEF (arg))
	    {
	      int index = ipa_get_param_decl_index (info, SSA_NAME_VAR (arg));
	      if (index >= 0)
		{
		  bool agg_p;
		  agg_p = parm_ref_data_pass_through_p (fbi, index, call, arg);
		  ipa_set_jf_simple_pass_through (jfunc, index, agg_p);
		}
	    }
	  else
	    {
	      gimple *stmt = SSA_NAME_DEF_STMT (arg);
	      if (is_gimple_assign (stmt))
		compute_complex_assign_jump_func (fbi, info, jfunc,
						  call, stmt, arg, param_type);
	      else if (gimple_code (stmt) == GIMPLE_PHI)
		compute_complex_ancestor_jump_func (fbi, info, jfunc,
						    call,
						    as_a <gphi *> (stmt));
	    }
	}

      /* If ARG is pointer, we cannot use its type to determine the type of aggregate
	 passed (because type conversions are ignored in gimple).  Usually we can
	 safely get type from function declaration, but in case of K&R prototypes or
	 variadic functions we can try our luck with type of the pointer passed.
	 TODO: Since we look for actual initialization of the memory object, we may better
	 work out the type based on the memory stores we find.  */
      if (!param_type)
	param_type = TREE_TYPE (arg);

      if ((jfunc->type != IPA_JF_PASS_THROUGH
	      || !ipa_get_jf_pass_through_agg_preserved (jfunc))
	  && (jfunc->type != IPA_JF_ANCESTOR
	      || !ipa_get_jf_ancestor_agg_preserved (jfunc))
	  && (AGGREGATE_TYPE_P (TREE_TYPE (arg))
	      || POINTER_TYPE_P (param_type)))
	determine_known_aggregate_parts (fbi, call, arg, param_type, jfunc);
    }
  if (!useful_context)
    vec_free (args->polymorphic_call_contexts);
}

/* Compute jump functions for all edges - both direct and indirect - outgoing
   from BB.  */

static void
ipa_compute_jump_functions_for_bb (struct ipa_func_body_info *fbi, basic_block bb)
{
  struct ipa_bb_info *bi = ipa_get_bb_info (fbi, bb);
  int i;
  struct cgraph_edge *cs;

  FOR_EACH_VEC_ELT_REVERSE (bi->cg_edges, i, cs)
    {
      struct cgraph_node *callee = cs->callee;

      if (callee)
	{
	  callee = callee->ultimate_alias_target ();
	  /* We do not need to bother analyzing calls to unknown functions
	     unless they may become known during lto/whopr.  */
	  if (!callee->definition && !flag_lto)
	    continue;
	}
      ipa_compute_jump_functions_for_edge (fbi, cs);
    }
}

/* If STMT looks like a statement loading a value from a member pointer formal
   parameter, return that parameter and store the offset of the field to
   *OFFSET_P, if it is non-NULL.  Otherwise return NULL (but *OFFSET_P still
   might be clobbered).  If USE_DELTA, then we look for a use of the delta
   field rather than the pfn.  */

static tree
ipa_get_stmt_member_ptr_load_param (gimple *stmt, bool use_delta,
				    HOST_WIDE_INT *offset_p)
{
  tree rhs, rec, ref_field, ref_offset, fld, ptr_field, delta_field;

  if (!gimple_assign_single_p (stmt))
    return NULL_TREE;

  rhs = gimple_assign_rhs1 (stmt);
  if (TREE_CODE (rhs) == COMPONENT_REF)
    {
      ref_field = TREE_OPERAND (rhs, 1);
      rhs = TREE_OPERAND (rhs, 0);
    }
  else
    ref_field = NULL_TREE;
  if (TREE_CODE (rhs) != MEM_REF)
    return NULL_TREE;
  rec = TREE_OPERAND (rhs, 0);
  if (TREE_CODE (rec) != ADDR_EXPR)
    return NULL_TREE;
  rec = TREE_OPERAND (rec, 0);
  if (TREE_CODE (rec) != PARM_DECL
      || !type_like_member_ptr_p (TREE_TYPE (rec), &ptr_field, &delta_field))
    return NULL_TREE;
  ref_offset = TREE_OPERAND (rhs, 1);

  if (use_delta)
    fld = delta_field;
  else
    fld = ptr_field;
  if (offset_p)
    *offset_p = int_bit_position (fld);

  if (ref_field)
    {
      if (integer_nonzerop (ref_offset))
	return NULL_TREE;
      return ref_field == fld ? rec : NULL_TREE;
    }
  else
    return tree_int_cst_equal (byte_position (fld), ref_offset) ? rec
      : NULL_TREE;
}

/* Returns true iff T is an SSA_NAME defined by a statement.  */

static bool
ipa_is_ssa_with_stmt_def (tree t)
{
  if (TREE_CODE (t) == SSA_NAME
      && !SSA_NAME_IS_DEFAULT_DEF (t))
    return true;
  else
    return false;
}

/* Find the indirect call graph edge corresponding to STMT and mark it as a
   call to a parameter number PARAM_INDEX.  NODE is the caller.  Return the
   indirect call graph edge.
   If POLYMORPHIC is true record is as a destination of polymorphic call.  */

static struct cgraph_edge *
ipa_note_param_call (struct cgraph_node *node, int param_index,
		     gcall *stmt, bool polymorphic)
{
  struct cgraph_edge *cs;

  cs = node->get_edge (stmt);
  cs->indirect_info->param_index = param_index;
  cs->indirect_info->agg_contents = 0;
  cs->indirect_info->member_ptr = 0;
  cs->indirect_info->guaranteed_unmodified = 0;
  ipa_set_param_used_by_indirect_call (IPA_NODE_REF (node),
					  param_index, true);
  if (cs->indirect_info->polymorphic || polymorphic)
    ipa_set_param_used_by_polymorphic_call
	    (IPA_NODE_REF (node), param_index, true);
  return cs;
}

/* Analyze the CALL and examine uses of formal parameters of the caller NODE
   (described by INFO).  PARMS_AINFO is a pointer to a vector containing
   intermediate information about each formal parameter.  Currently it checks
   whether the call calls a pointer that is a formal parameter and if so, the
   parameter is marked with the called flag and an indirect call graph edge
   describing the call is created.  This is very simple for ordinary pointers
   represented in SSA but not-so-nice when it comes to member pointers.  The
   ugly part of this function does nothing more than trying to match the
   pattern of such a call.  An example of such a pattern is the gimple dump
   below, the call is on the last line:

     <bb 2>:
       f$__delta_5 = f.__delta;
       f$__pfn_24 = f.__pfn;

   or
     <bb 2>:
       f$__delta_5 = MEM[(struct  *)&f];
       f$__pfn_24 = MEM[(struct  *)&f + 4B];

   and a few lines below:

     <bb 5>
       D.2496_3 = (int) f$__pfn_24;
       D.2497_4 = D.2496_3 & 1;
       if (D.2497_4 != 0)
         goto <bb 3>;
       else
         goto <bb 4>;

     <bb 6>:
       D.2500_7 = (unsigned int) f$__delta_5;
       D.2501_8 = &S + D.2500_7;
       D.2502_9 = (int (*__vtbl_ptr_type) (void) * *) D.2501_8;
       D.2503_10 = *D.2502_9;
       D.2504_12 = f$__pfn_24 + -1;
       D.2505_13 = (unsigned int) D.2504_12;
       D.2506_14 = D.2503_10 + D.2505_13;
       D.2507_15 = *D.2506_14;
       iftmp.11_16 = (String:: *) D.2507_15;

     <bb 7>:
       # iftmp.11_1 = PHI <iftmp.11_16(3), f$__pfn_24(2)>
       D.2500_19 = (unsigned int) f$__delta_5;
       D.2508_20 = &S + D.2500_19;
       D.2493_21 = iftmp.11_1 (D.2508_20, 4);

   Such patterns are results of simple calls to a member pointer:

     int doprinting (int (MyString::* f)(int) const)
     {
       MyString S ("somestring");

       return (S.*f)(4);
     }

   Moreover, the function also looks for called pointers loaded from aggregates
   passed by value or reference.  */

static void
ipa_analyze_indirect_call_uses (struct ipa_func_body_info *fbi, gcall *call,
				tree target)
{
  class ipa_node_params *info = fbi->info;
  HOST_WIDE_INT offset;
  bool by_ref;

  if (SSA_NAME_IS_DEFAULT_DEF (target))
    {
      tree var = SSA_NAME_VAR (target);
      int index = ipa_get_param_decl_index (info, var);
      if (index >= 0)
	ipa_note_param_call (fbi->node, index, call, false);
      return;
    }

  int index;
  gimple *def = SSA_NAME_DEF_STMT (target);
  bool guaranteed_unmodified;
  if (gimple_assign_single_p (def)
      && ipa_load_from_parm_agg (fbi, info->descriptors, def,
				 gimple_assign_rhs1 (def), &index, &offset,
				 NULL, &by_ref, &guaranteed_unmodified))
    {
      struct cgraph_edge *cs = ipa_note_param_call (fbi->node, index,
	 					    call, false);
      cs->indirect_info->offset = offset;
      cs->indirect_info->agg_contents = 1;
      cs->indirect_info->by_ref = by_ref;
      cs->indirect_info->guaranteed_unmodified = guaranteed_unmodified;
      return;
    }

  /* Now we need to try to match the complex pattern of calling a member
     pointer. */
  if (gimple_code (def) != GIMPLE_PHI
      || gimple_phi_num_args (def) != 2
      || !POINTER_TYPE_P (TREE_TYPE (target))
      || TREE_CODE (TREE_TYPE (TREE_TYPE (target))) != METHOD_TYPE)
    return;

  /* First, we need to check whether one of these is a load from a member
     pointer that is a parameter to this function. */
  tree n1 = PHI_ARG_DEF (def, 0);
  tree n2 = PHI_ARG_DEF (def, 1);
  if (!ipa_is_ssa_with_stmt_def (n1) || !ipa_is_ssa_with_stmt_def (n2))
    return;
  gimple *d1 = SSA_NAME_DEF_STMT (n1);
  gimple *d2 = SSA_NAME_DEF_STMT (n2);

  tree rec;
  basic_block bb, virt_bb;
  basic_block join = gimple_bb (def);
  if ((rec = ipa_get_stmt_member_ptr_load_param (d1, false, &offset)))
    {
      if (ipa_get_stmt_member_ptr_load_param (d2, false, NULL))
	return;

      bb = EDGE_PRED (join, 0)->src;
      virt_bb = gimple_bb (d2);
    }
  else if ((rec = ipa_get_stmt_member_ptr_load_param (d2, false, &offset)))
    {
      bb = EDGE_PRED (join, 1)->src;
      virt_bb = gimple_bb (d1);
    }
  else
    return;

  /* Second, we need to check that the basic blocks are laid out in the way
     corresponding to the pattern. */

  if (!single_pred_p (virt_bb) || !single_succ_p (virt_bb)
      || single_pred (virt_bb) != bb
      || single_succ (virt_bb) != join)
    return;

  /* Third, let's see that the branching is done depending on the least
     significant bit of the pfn. */

  gimple *branch = last_stmt (bb);
  if (!branch || gimple_code (branch) != GIMPLE_COND)
    return;

  if ((gimple_cond_code (branch) != NE_EXPR
       && gimple_cond_code (branch) != EQ_EXPR)
      || !integer_zerop (gimple_cond_rhs (branch)))
    return;

  tree cond = gimple_cond_lhs (branch);
  if (!ipa_is_ssa_with_stmt_def (cond))
    return;

  def = SSA_NAME_DEF_STMT (cond);
  if (!is_gimple_assign (def)
      || gimple_assign_rhs_code (def) != BIT_AND_EXPR
      || !integer_onep (gimple_assign_rhs2 (def)))
    return;

  cond = gimple_assign_rhs1 (def);
  if (!ipa_is_ssa_with_stmt_def (cond))
    return;

  def = SSA_NAME_DEF_STMT (cond);

  if (is_gimple_assign (def)
      && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def)))
    {
      cond = gimple_assign_rhs1 (def);
      if (!ipa_is_ssa_with_stmt_def (cond))
	return;
      def = SSA_NAME_DEF_STMT (cond);
    }

  tree rec2;
  rec2 = ipa_get_stmt_member_ptr_load_param (def,
					     (TARGET_PTRMEMFUNC_VBIT_LOCATION
					      == ptrmemfunc_vbit_in_delta),
					     NULL);
  if (rec != rec2)
    return;

  index = ipa_get_param_decl_index (info, rec);
  if (index >= 0
      && parm_preserved_before_stmt_p (fbi, index, call, rec))
    {
      struct cgraph_edge *cs = ipa_note_param_call (fbi->node, index,
	 					    call, false);
      cs->indirect_info->offset = offset;
      cs->indirect_info->agg_contents = 1;
      cs->indirect_info->member_ptr = 1;
      cs->indirect_info->guaranteed_unmodified = 1;
    }

  return;
}

/* Analyze a CALL to an OBJ_TYPE_REF which is passed in TARGET and if the
   object referenced in the expression is a formal parameter of the caller
   FBI->node (described by FBI->info), create a call note for the
   statement.  */

static void
ipa_analyze_virtual_call_uses (struct ipa_func_body_info *fbi,
			       gcall *call, tree target)
{
  tree obj = OBJ_TYPE_REF_OBJECT (target);
  int index;
  HOST_WIDE_INT anc_offset;

  if (!flag_devirtualize)
    return;

  if (TREE_CODE (obj) != SSA_NAME)
    return;

  class ipa_node_params *info = fbi->info;
  if (SSA_NAME_IS_DEFAULT_DEF (obj))
    {
      if (TREE_CODE (SSA_NAME_VAR (obj)) != PARM_DECL)
	return;

      anc_offset = 0;
      index = ipa_get_param_decl_index (info, SSA_NAME_VAR (obj));
      gcc_assert (index >= 0);
      if (detect_type_change_ssa (fbi, obj, obj_type_ref_class (target),
				  call))
	return;
    }
  else
    {
      gimple *stmt = SSA_NAME_DEF_STMT (obj);
      tree expr;

      expr = get_ancestor_addr_info (stmt, &obj, &anc_offset);
      if (!expr)
	return;
      index = ipa_get_param_decl_index (info,
					SSA_NAME_VAR (TREE_OPERAND (expr, 0)));
      gcc_assert (index >= 0);
      if (detect_type_change (fbi, obj, expr, obj_type_ref_class (target),
			      call, anc_offset))
	return;
    }

  struct cgraph_edge *cs = ipa_note_param_call (fbi->node, index,
     						call, true);
  class cgraph_indirect_call_info *ii = cs->indirect_info;
  ii->offset = anc_offset;
  ii->otr_token = tree_to_uhwi (OBJ_TYPE_REF_TOKEN (target));
  ii->otr_type = obj_type_ref_class (target);
  ii->polymorphic = 1;
}

/* Analyze a call statement CALL whether and how it utilizes formal parameters
   of the caller (described by INFO).  PARMS_AINFO is a pointer to a vector
   containing intermediate information about each formal parameter.  */

static void
ipa_analyze_call_uses (struct ipa_func_body_info *fbi, gcall *call)
{
  tree target = gimple_call_fn (call);

  if (!target
      || (TREE_CODE (target) != SSA_NAME
          && !virtual_method_call_p (target)))
    return;

  struct cgraph_edge *cs = fbi->node->get_edge (call);
  /* If we previously turned the call into a direct call, there is
     no need to analyze.  */
  if (cs && !cs->indirect_unknown_callee)
    return;

  if (cs->indirect_info->polymorphic && flag_devirtualize)
    {
      tree instance;
      tree target = gimple_call_fn (call);
      ipa_polymorphic_call_context context (current_function_decl,
					    target, call, &instance);

      gcc_checking_assert (cs->indirect_info->otr_type
			   == obj_type_ref_class (target));
      gcc_checking_assert (cs->indirect_info->otr_token
			   == tree_to_shwi (OBJ_TYPE_REF_TOKEN (target)));

      cs->indirect_info->vptr_changed
	= !context.get_dynamic_type (instance,
				     OBJ_TYPE_REF_OBJECT (target),
				     obj_type_ref_class (target), call,
				     &fbi->aa_walk_budget);
      cs->indirect_info->context = context;
    }

  if (TREE_CODE (target) == SSA_NAME)
    ipa_analyze_indirect_call_uses (fbi, call, target);
  else if (virtual_method_call_p (target))
    ipa_analyze_virtual_call_uses (fbi, call, target);
}


/* Analyze the call statement STMT with respect to formal parameters (described
   in INFO) of caller given by FBI->NODE.  Currently it only checks whether
   formal parameters are called.  */

static void
ipa_analyze_stmt_uses (struct ipa_func_body_info *fbi, gimple *stmt)
{
  if (is_gimple_call (stmt))
    ipa_analyze_call_uses (fbi, as_a <gcall *> (stmt));
}

/* Callback of walk_stmt_load_store_addr_ops for the visit_load.
   If OP is a parameter declaration, mark it as used in the info structure
   passed in DATA.  */

static bool
visit_ref_for_mod_analysis (gimple *, tree op, tree, void *data)
{
  class ipa_node_params *info = (class ipa_node_params *) data;

  op = get_base_address (op);
  if (op
      && TREE_CODE (op) == PARM_DECL)
    {
      int index = ipa_get_param_decl_index (info, op);
      gcc_assert (index >= 0);
      ipa_set_param_used (info, index, true);
    }

  return false;
}

/* Scan the statements in BB and inspect the uses of formal parameters.  Store
   the findings in various structures of the associated ipa_node_params
   structure, such as parameter flags, notes etc.  FBI holds various data about
   the function being analyzed.  */

static void
ipa_analyze_params_uses_in_bb (struct ipa_func_body_info *fbi, basic_block bb)
{
  gimple_stmt_iterator gsi;
  for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
    {
      gimple *stmt = gsi_stmt (gsi);

      if (is_gimple_debug (stmt))
	continue;

      ipa_analyze_stmt_uses (fbi, stmt);
      walk_stmt_load_store_addr_ops (stmt, fbi->info,
				     visit_ref_for_mod_analysis,
				     visit_ref_for_mod_analysis,
				     visit_ref_for_mod_analysis);
    }
  for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
    walk_stmt_load_store_addr_ops (gsi_stmt (gsi), fbi->info,
				   visit_ref_for_mod_analysis,
				   visit_ref_for_mod_analysis,
				   visit_ref_for_mod_analysis);
}

/* Calculate controlled uses of parameters of NODE.  */

static void
ipa_analyze_controlled_uses (struct cgraph_node *node)
{
  class ipa_node_params *info = IPA_NODE_REF (node);

  for (int i = 0; i < ipa_get_param_count (info); i++)
    {
      tree parm = ipa_get_param (info, i);
      int controlled_uses = 0;

      /* For SSA regs see if parameter is used.  For non-SSA we compute
	 the flag during modification analysis.  */
      if (is_gimple_reg (parm))
	{
	  tree ddef = ssa_default_def (DECL_STRUCT_FUNCTION (node->decl),
				       parm);
	  if (ddef && !has_zero_uses (ddef))
	    {
	      imm_use_iterator imm_iter;
	      use_operand_p use_p;

	      ipa_set_param_used (info, i, true);
	      FOR_EACH_IMM_USE_FAST (use_p, imm_iter, ddef)
		if (!is_gimple_call (USE_STMT (use_p)))
		  {
		    if (!is_gimple_debug (USE_STMT (use_p)))
		      {
			controlled_uses = IPA_UNDESCRIBED_USE;
			break;
		      }
		  }
		else
		  controlled_uses++;
	    }
	  else
	    controlled_uses = 0;
	}
      else
	controlled_uses = IPA_UNDESCRIBED_USE;
      ipa_set_controlled_uses (info, i, controlled_uses);
    }
}

/* Free stuff in BI.  */

static void
free_ipa_bb_info (struct ipa_bb_info *bi)
{
  bi->cg_edges.release ();
  bi->param_aa_statuses.release ();
}

/* Dominator walker driving the analysis.  */

class analysis_dom_walker : public dom_walker
{
public:
  analysis_dom_walker (struct ipa_func_body_info *fbi)
    : dom_walker (CDI_DOMINATORS), m_fbi (fbi) {}

  virtual edge before_dom_children (basic_block);

private:
  struct ipa_func_body_info *m_fbi;
};

edge
analysis_dom_walker::before_dom_children (basic_block bb)
{
  ipa_analyze_params_uses_in_bb (m_fbi, bb);
  ipa_compute_jump_functions_for_bb (m_fbi, bb);
  return NULL;
}

/* Release body info FBI.  */

void
ipa_release_body_info (struct ipa_func_body_info *fbi)
{
  int i;
  struct ipa_bb_info *bi;

  FOR_EACH_VEC_ELT (fbi->bb_infos, i, bi)
    free_ipa_bb_info (bi);
  fbi->bb_infos.release ();
}

/* Initialize the array describing properties of formal parameters
   of NODE, analyze their uses and compute jump functions associated
   with actual arguments of calls from within NODE.  */

void
ipa_analyze_node (struct cgraph_node *node)
{
  struct ipa_func_body_info fbi;
  class ipa_node_params *info;

  ipa_check_create_node_params ();
  ipa_check_create_edge_args ();
  info = IPA_NODE_REF_GET_CREATE (node);

  if (info->analysis_done)
    return;
  info->analysis_done = 1;

  if (ipa_func_spec_opts_forbid_analysis_p (node))
    {
      for (int i = 0; i < ipa_get_param_count (info); i++)
	{
	  ipa_set_param_used (info, i, true);
	  ipa_set_controlled_uses (info, i, IPA_UNDESCRIBED_USE);
	}
      return;
    }

  struct function *func = DECL_STRUCT_FUNCTION (node->decl);
  push_cfun (func);
  calculate_dominance_info (CDI_DOMINATORS);
  ipa_initialize_node_params (node);
  ipa_analyze_controlled_uses (node);

  fbi.node = node;
  fbi.info = IPA_NODE_REF (node);
  fbi.bb_infos = vNULL;
  fbi.bb_infos.safe_grow_cleared (last_basic_block_for_fn (cfun));
  fbi.param_count = ipa_get_param_count (info);
  fbi.aa_walk_budget = opt_for_fn (node->decl, param_ipa_max_aa_steps);

  for (struct cgraph_edge *cs = node->callees; cs; cs = cs->next_callee)
    {
      ipa_bb_info *bi = ipa_get_bb_info (&fbi, gimple_bb (cs->call_stmt));
      bi->cg_edges.safe_push (cs);
    }

  for (struct cgraph_edge *cs = node->indirect_calls; cs; cs = cs->next_callee)
    {
      ipa_bb_info *bi = ipa_get_bb_info (&fbi, gimple_bb (cs->call_stmt));
      bi->cg_edges.safe_push (cs);
    }

  analysis_dom_walker (&fbi).walk (ENTRY_BLOCK_PTR_FOR_FN (cfun));

  ipa_release_body_info (&fbi);
  free_dominance_info (CDI_DOMINATORS);
  pop_cfun ();
}

/* Update the jump functions associated with call graph edge E when the call
   graph edge CS is being inlined, assuming that E->caller is already (possibly
   indirectly) inlined into CS->callee and that E has not been inlined.  */

static void
update_jump_functions_after_inlining (struct cgraph_edge *cs,
				      struct cgraph_edge *e)
{
  class ipa_edge_args *top = IPA_EDGE_REF (cs);
  class ipa_edge_args *args = IPA_EDGE_REF (e);
  if (!args)
    return;
  int count = ipa_get_cs_argument_count (args);
  int i;

  for (i = 0; i < count; i++)
    {
      struct ipa_jump_func *dst = ipa_get_ith_jump_func (args, i);
      class ipa_polymorphic_call_context *dst_ctx
	= ipa_get_ith_polymorhic_call_context (args, i);

      if (dst->agg.items)
	{
	  struct ipa_agg_jf_item *item;
	  int j;

	  FOR_EACH_VEC_ELT (*dst->agg.items, j, item)
	    {
	      int dst_fid;
	      struct ipa_jump_func *src;

	      if (item->jftype != IPA_JF_PASS_THROUGH
		  && item->jftype != IPA_JF_LOAD_AGG)
		continue;

	      dst_fid = item->value.pass_through.formal_id;
	      if (!top || dst_fid >= ipa_get_cs_argument_count (top))
		{
		  item->jftype = IPA_JF_UNKNOWN;
		  continue;
		}

	      item->value.pass_through.formal_id = -1;
	      src = ipa_get_ith_jump_func (top, dst_fid);
	      if (src->type == IPA_JF_CONST)
		{
		  if (item->jftype == IPA_JF_PASS_THROUGH
		      && item->value.pass_through.operation == NOP_EXPR)
		    {
		      item->jftype = IPA_JF_CONST;
		      item->value.constant = src->value.constant.value;
		      continue;
		    }
		}
	      else if (src->type == IPA_JF_PASS_THROUGH
		       && src->value.pass_through.operation == NOP_EXPR)
		{
		  if (item->jftype == IPA_JF_PASS_THROUGH
		      || !item->value.load_agg.by_ref
		      || src->value.pass_through.agg_preserved)
		    item->value.pass_through.formal_id
				= src->value.pass_through.formal_id;
		}
	      else if (src->type == IPA_JF_ANCESTOR)
		{
		  if (item->jftype == IPA_JF_PASS_THROUGH)
		    {
		      if (!src->value.ancestor.offset)
			item->value.pass_through.formal_id
				= src->value.ancestor.formal_id;
		    }
		  else if (src->value.ancestor.agg_preserved)
		    {
		      gcc_checking_assert (item->value.load_agg.by_ref);

		      item->value.pass_through.formal_id
				 = src->value.ancestor.formal_id;
		      item->value.load_agg.offset
				+= src->value.ancestor.offset;
		    }
		}

	      if (item->value.pass_through.formal_id < 0)
		item->jftype = IPA_JF_UNKNOWN;
	    }
	}

      if (!top)
	{
	  ipa_set_jf_unknown (dst);
	  continue;
	}

      if (dst->type == IPA_JF_ANCESTOR)
	{
	  struct ipa_jump_func *src;
	  int dst_fid = dst->value.ancestor.formal_id;
	  class ipa_polymorphic_call_context *src_ctx
	    = ipa_get_ith_polymorhic_call_context (top, dst_fid);

	  /* Variable number of arguments can cause havoc if we try to access
	     one that does not exist in the inlined edge.  So make sure we
	     don't.  */
	  if (dst_fid >= ipa_get_cs_argument_count (top))
	    {
	      ipa_set_jf_unknown (dst);
	      continue;
	    }

	  src = ipa_get_ith_jump_func (top, dst_fid);

	  if (src_ctx && !src_ctx->useless_p ())
	    {
	      class ipa_polymorphic_call_context ctx = *src_ctx;

	      /* TODO: Make type preserved safe WRT contexts.  */
	      if (!ipa_get_jf_ancestor_type_preserved (dst))
		ctx.possible_dynamic_type_change (e->in_polymorphic_cdtor);
	      ctx.offset_by (dst->value.ancestor.offset);
	      if (!ctx.useless_p ())
		{
		  if (!dst_ctx)
		    {
		      vec_safe_grow_cleared (args->polymorphic_call_contexts,
					     count);
		      dst_ctx = ipa_get_ith_polymorhic_call_context (args, i);
		    }

		  dst_ctx->combine_with (ctx);
		}
	    }

	  /* Parameter and argument in ancestor jump function must be pointer
	     type, which means access to aggregate must be by-reference.  */
	  gcc_assert (!src->agg.items || src->agg.by_ref);

	  if (src->agg.items && dst->value.ancestor.agg_preserved)
	    {
	      struct ipa_agg_jf_item *item;
	      int j;

	      /* Currently we do not produce clobber aggregate jump functions,
		 replace with merging when we do.  */
	      gcc_assert (!dst->agg.items);

	      dst->agg.items = vec_safe_copy (src->agg.items);
	      dst->agg.by_ref = src->agg.by_ref;
	      FOR_EACH_VEC_SAFE_ELT (dst->agg.items, j, item)
		item->offset -= dst->value.ancestor.offset;
	    }

	  if (src->type == IPA_JF_PASS_THROUGH
	      && src->value.pass_through.operation == NOP_EXPR)
	    {
	      dst->value.ancestor.formal_id = src->value.pass_through.formal_id;
	      dst->value.ancestor.agg_preserved &=
		src->value.pass_through.agg_preserved;
	    }
	  else if (src->type == IPA_JF_ANCESTOR)
	    {
	      dst->value.ancestor.formal_id = src->value.ancestor.formal_id;
	      dst->value.ancestor.offset += src->value.ancestor.offset;
	      dst->value.ancestor.agg_preserved &=
		src->value.ancestor.agg_preserved;
	    }
	  else
	    ipa_set_jf_unknown (dst);
	}
      else if (dst->type == IPA_JF_PASS_THROUGH)
	{
	  struct ipa_jump_func *src;
	  /* We must check range due to calls with variable number of arguments
	     and we cannot combine jump functions with operations.  */
	  if (dst->value.pass_through.operation == NOP_EXPR
	      && (top && dst->value.pass_through.formal_id
		  < ipa_get_cs_argument_count (top)))
	    {
	      int dst_fid = dst->value.pass_through.formal_id;
	      src = ipa_get_ith_jump_func (top, dst_fid);
	      bool dst_agg_p = ipa_get_jf_pass_through_agg_preserved (dst);
	      class ipa_polymorphic_call_context *src_ctx
		= ipa_get_ith_polymorhic_call_context (top, dst_fid);

	      if (src_ctx && !src_ctx->useless_p ())
		{
		  class ipa_polymorphic_call_context ctx = *src_ctx;

		  /* TODO: Make type preserved safe WRT contexts.  */
		  if (!ipa_get_jf_pass_through_type_preserved (dst))
		    ctx.possible_dynamic_type_change (e->in_polymorphic_cdtor);
		  if (!ctx.useless_p ())
		    {
		      if (!dst_ctx)
			{
			  vec_safe_grow_cleared (args->polymorphic_call_contexts,
					         count);
			  dst_ctx = ipa_get_ith_polymorhic_call_context (args, i);
			}
		      dst_ctx->combine_with (ctx);
		    }
		}
	      switch (src->type)
		{
		case IPA_JF_UNKNOWN:
		  ipa_set_jf_unknown (dst);
		  break;
		case IPA_JF_CONST:
		  ipa_set_jf_cst_copy (dst, src);
		  break;

		case IPA_JF_PASS_THROUGH:
		  {
		    int formal_id = ipa_get_jf_pass_through_formal_id (src);
		    enum tree_code operation;
		    operation = ipa_get_jf_pass_through_operation (src);

		    if (operation == NOP_EXPR)
		      {
			bool agg_p;
			agg_p = dst_agg_p
			  && ipa_get_jf_pass_through_agg_preserved (src);
			ipa_set_jf_simple_pass_through (dst, formal_id, agg_p);
		      }
		    else if (TREE_CODE_CLASS (operation) == tcc_unary)
		      ipa_set_jf_unary_pass_through (dst, formal_id, operation);
		    else
		      {
			tree operand = ipa_get_jf_pass_through_operand (src);
			ipa_set_jf_arith_pass_through (dst, formal_id, operand,
						       operation);
		      }
		    break;
		  }
		case IPA_JF_ANCESTOR:
		  {
		    bool agg_p;
		    agg_p = dst_agg_p
		      && ipa_get_jf_ancestor_agg_preserved (src);
		    ipa_set_ancestor_jf (dst,
					 ipa_get_jf_ancestor_offset (src),
					 ipa_get_jf_ancestor_formal_id (src),
					 agg_p);
		    break;
		  }
		default:
		  gcc_unreachable ();
		}

	      if (src->agg.items
		  && (dst_agg_p || !src->agg.by_ref))
		{
		  /* Currently we do not produce clobber aggregate jump
		     functions, replace with merging when we do.  */
		  gcc_assert (!dst->agg.items);

		  dst->agg.by_ref = src->agg.by_ref;
		  dst->agg.items = vec_safe_copy (src->agg.items);
		}
	    }
	  else
	    ipa_set_jf_unknown (dst);
	}
    }
}

/* If TARGET is an addr_expr of a function declaration, make it the 
   (SPECULATIVE)destination of an indirect edge IE and return the edge.
   Otherwise, return NULL.  */

struct cgraph_edge *
ipa_make_edge_direct_to_target (struct cgraph_edge *ie, tree target,
				bool speculative)
{
  struct cgraph_node *callee;
  bool unreachable = false;

  if (TREE_CODE (target) == ADDR_EXPR)
    target = TREE_OPERAND (target, 0);
  if (TREE_CODE (target) != FUNCTION_DECL)
    {
      target = canonicalize_constructor_val (target, NULL);
      if (!target || TREE_CODE (target) != FUNCTION_DECL)
	{
	  /* Member pointer call that goes through a VMT lookup.  */
	  if (ie->indirect_info->member_ptr
	      /* Or if target is not an invariant expression and we do not
		 know if it will evaulate to function at runtime.
		 This can happen when folding through &VAR, where &VAR
		 is IP invariant, but VAR itself is not.

		 TODO: Revisit this when GCC 5 is branched.  It seems that
		 member_ptr check is not needed and that we may try to fold
		 the expression and see if VAR is readonly.  */
	      || !is_gimple_ip_invariant (target))
	    {
	      if (dump_enabled_p ())
		{
		  dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, ie->call_stmt,
				   "discovered direct call non-invariant %s\n",
				   ie->caller->dump_name ());
		}
	      return NULL;
	    }


          if (dump_enabled_p ())
	    {
	      dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, ie->call_stmt,
			       "discovered direct call to non-function in %s, "
			       "making it __builtin_unreachable\n",
			       ie->caller->dump_name ());
	    }

	  target = builtin_decl_implicit (BUILT_IN_UNREACHABLE);
	  callee = cgraph_node::get_create (target);
	  unreachable = true;
	}
      else
	callee = cgraph_node::get (target);
    }
  else
    callee = cgraph_node::get (target);

  /* Because may-edges are not explicitely represented and vtable may be external,
     we may create the first reference to the object in the unit.  */
  if (!callee || callee->inlined_to)
    {

      /* We are better to ensure we can refer to it.
	 In the case of static functions we are out of luck, since we already	
	 removed its body.  In the case of public functions we may or may
	 not introduce the reference.  */
      if (!canonicalize_constructor_val (target, NULL)
	  || !TREE_PUBLIC (target))
	{
	  if (dump_file)
	    fprintf (dump_file, "ipa-prop: Discovered call to a known target "
		     "(%s -> %s) but cannot refer to it.  Giving up.\n",
		     ie->caller->dump_name (),
		     ie->callee->dump_name ());
	  return NULL;
	}
      callee = cgraph_node::get_create (target);
    }

  /* If the edge is already speculated.  */
  if (speculative && ie->speculative)
    {
      if (dump_file)
	{
	  cgraph_edge *e2 = ie->speculative_call_for_target (callee);
	  if (!e2)
	    {
	      if (dump_file)
		fprintf (dump_file, "ipa-prop: Discovered call to a "
			 "speculative target (%s -> %s) but the call is "
			 "already speculated to different target.  "
			 "Giving up.\n",
			 ie->caller->dump_name (), callee->dump_name ());
	    }
	  else
	    {
	      if (dump_file)
		fprintf (dump_file,
			 "ipa-prop: Discovered call to a speculative target "
			 "(%s -> %s) this agree with previous speculation.\n",
			 ie->caller->dump_name (), callee->dump_name ());
	    }
	}
      return NULL;
    }

  if (!dbg_cnt (devirt))
    return NULL;

  ipa_check_create_node_params ();

  /* We cannot make edges to inline clones.  It is bug that someone removed
     the cgraph node too early.  */
  gcc_assert (!callee->inlined_to);

  if (dump_file && !unreachable)
    {
      fprintf (dump_file, "ipa-prop: Discovered %s call to a %s target "
	       "(%s -> %s), for stmt ",
	       ie->indirect_info->polymorphic ? "a virtual" : "an indirect",
	       speculative ? "speculative" : "known",
	       ie->caller->dump_name (),
	       callee->dump_name ());
      if (ie->call_stmt)
	print_gimple_stmt (dump_file, ie->call_stmt, 2, TDF_SLIM);
      else
	fprintf (dump_file, "with uid %i\n", ie->lto_stmt_uid);
     }
  if (dump_enabled_p ())
    {
      dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, ie->call_stmt,
		       "converting indirect call in %s to direct call to %s\n",
		       ie->caller->dump_name (), callee->dump_name ());
    }
  if (!speculative)
    {
      struct cgraph_edge *orig = ie;
      ie = cgraph_edge::make_direct (ie, callee);
      /* If we resolved speculative edge the cost is already up to date
	 for direct call (adjusted by inline_edge_duplication_hook).  */
      if (ie == orig)
	{
	  ipa_call_summary *es = ipa_call_summaries->get (ie);
	  es->call_stmt_size -= (eni_size_weights.indirect_call_cost
				 - eni_size_weights.call_cost);
	  es->call_stmt_time -= (eni_time_weights.indirect_call_cost
				 - eni_time_weights.call_cost);
	}
    }
  else
    {
      if (!callee->can_be_discarded_p ())
	{
	  cgraph_node *alias;
	  alias = dyn_cast<cgraph_node *> (callee->noninterposable_alias ());
	  if (alias)
	    callee = alias;
	}
      /* make_speculative will update ie's cost to direct call cost. */
      ie = ie->make_speculative
	     (callee, ie->count.apply_scale (8, 10));
    }

  return ie;
}

/* Attempt to locate an interprocedural constant at a given REQ_OFFSET in
   CONSTRUCTOR and return it.  Return NULL if the search fails for some
   reason.  */

static tree
find_constructor_constant_at_offset (tree constructor, HOST_WIDE_INT req_offset)
{
  tree type = TREE_TYPE (constructor);
  if (TREE_CODE (type) != ARRAY_TYPE
      && TREE_CODE (type) != RECORD_TYPE)
    return NULL;

  unsigned ix;
  tree index, val;
  FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (constructor), ix, index, val)
    {
      HOST_WIDE_INT elt_offset;
      if (TREE_CODE (type) == ARRAY_TYPE)
       {
         offset_int off;
         tree unit_size = TYPE_SIZE_UNIT (TREE_TYPE (type));
         gcc_assert (TREE_CODE (unit_size) == INTEGER_CST);

         if (index)
           {
	     if (TREE_CODE (index) == RANGE_EXPR)
	       off = wi::to_offset (TREE_OPERAND (index, 0));
	     else
	       off = wi::to_offset (index);
             if (TYPE_DOMAIN (type) && TYPE_MIN_VALUE (TYPE_DOMAIN (type)))
               {
                 tree low_bound = TYPE_MIN_VALUE (TYPE_DOMAIN (type));
                 gcc_assert (TREE_CODE (unit_size) == INTEGER_CST);
                 off = wi::sext (off - wi::to_offset (low_bound),
                                 TYPE_PRECISION (TREE_TYPE (index)));
               }
             off *= wi::to_offset (unit_size);
	     /* ???  Handle more than just the first index of a
	        RANGE_EXPR.  */
           }
         else
           off = wi::to_offset (unit_size) * ix;

         off = wi::lshift (off, LOG2_BITS_PER_UNIT);
         if (!wi::fits_shwi_p (off) || wi::neg_p (off))
           continue;
         elt_offset = off.to_shwi ();
       }
      else if (TREE_CODE (type) == RECORD_TYPE)
       {
         gcc_checking_assert (index && TREE_CODE (index) == FIELD_DECL);
         if (DECL_BIT_FIELD (index))
           continue;
         elt_offset = int_bit_position (index);
       }
      else
       gcc_unreachable ();

      if (elt_offset > req_offset)
	return NULL;

      if (TREE_CODE (val) == CONSTRUCTOR)
	return find_constructor_constant_at_offset (val,
						    req_offset - elt_offset);

      if (elt_offset == req_offset
	  && is_gimple_reg_type (TREE_TYPE (val))
	  && is_gimple_ip_invariant (val))
	return val;
    }
  return NULL;
}

/* Check whether SCALAR could be used to look up an aggregate interprocedural
   invariant from a static constructor and if so, return it.  Otherwise return
   NULL. */

static tree
ipa_find_agg_cst_from_init (tree scalar, HOST_WIDE_INT offset, bool by_ref)
{
  if (by_ref)
    {
      if (TREE_CODE (scalar) != ADDR_EXPR)
	return NULL;
      scalar = TREE_OPERAND (scalar, 0);
    }

  if (!VAR_P (scalar)
      || !is_global_var (scalar)
      || !TREE_READONLY (scalar)
      || !DECL_INITIAL (scalar)
      || TREE_CODE (DECL_INITIAL (scalar)) != CONSTRUCTOR)
    return NULL;

  return find_constructor_constant_at_offset (DECL_INITIAL (scalar), offset);
}

/* Retrieve value from AGG, a set of known offset/value for an aggregate or
   static initializer of SCALAR (which can be NULL) for the given OFFSET or
   return NULL if there is none.  BY_REF specifies whether the value has to be
   passed by reference or by value.  If FROM_GLOBAL_CONSTANT is non-NULL, then
   the boolean it points to is set to true if the value comes from an
   initializer of a constant.  */

tree
ipa_find_agg_cst_for_param (struct ipa_agg_value_set *agg, tree scalar,
			    HOST_WIDE_INT offset, bool by_ref,
			    bool *from_global_constant)
{
  struct ipa_agg_value *item;
  int i;

  if (scalar)
    {
      tree res = ipa_find_agg_cst_from_init (scalar, offset, by_ref);
      if (res)
	{
	  if (from_global_constant)
	    *from_global_constant = true;
	  return res;
	}
    }

  if (!agg
      || by_ref != agg->by_ref)
    return NULL;

  FOR_EACH_VEC_ELT (agg->items, i, item)
    if (item->offset == offset)
      {
	/* Currently we do not have clobber values, return NULL for them once
	   we do.  */
	gcc_checking_assert (is_gimple_ip_invariant (item->value));
	if (from_global_constant)
	  *from_global_constant = false;
	return item->value;
      }
  return NULL;
}

/* Remove a reference to SYMBOL from the list of references of a node given by
   reference description RDESC.  Return true if the reference has been
   successfully found and removed.  */

static bool
remove_described_reference (symtab_node *symbol, struct ipa_cst_ref_desc *rdesc)
{
  struct ipa_ref *to_del;
  struct cgraph_edge *origin;

  origin = rdesc->cs;
  if (!origin)
    return false;
  to_del = origin->caller->find_reference (symbol, origin->call_stmt,
					   origin->lto_stmt_uid);
  if (!to_del)
    return false;

  to_del->remove_reference ();
  if (dump_file)
    fprintf (dump_file, "ipa-prop: Removed a reference from %s to %s.\n",
	     origin->caller->dump_name (), symbol->dump_name ());
  return true;
}

/* If JFUNC has a reference description with refcount different from
   IPA_UNDESCRIBED_USE, return the reference description, otherwise return
   NULL.  JFUNC must be a constant jump function.  */

static struct ipa_cst_ref_desc *
jfunc_rdesc_usable (struct ipa_jump_func *jfunc)
{
  struct ipa_cst_ref_desc *rdesc = ipa_get_jf_constant_rdesc (jfunc);
  if (rdesc && rdesc->refcount != IPA_UNDESCRIBED_USE)
    return rdesc;
  else
    return NULL;
}

/* If the value of constant jump function JFUNC is an address of a function
   declaration, return the associated call graph node.  Otherwise return
   NULL.  */

static cgraph_node *
cgraph_node_for_jfunc (struct ipa_jump_func *jfunc)
{
  gcc_checking_assert (jfunc->type == IPA_JF_CONST);
  tree cst = ipa_get_jf_constant (jfunc);
  if (TREE_CODE (cst) != ADDR_EXPR
      || TREE_CODE (TREE_OPERAND (cst, 0)) != FUNCTION_DECL)
    return NULL;

  return cgraph_node::get (TREE_OPERAND (cst, 0));
}


/* If JFUNC is a constant jump function with a usable rdesc, decrement its
   refcount and if it hits zero, remove reference to SYMBOL from the caller of
   the edge specified in the rdesc.  Return false if either the symbol or the
   reference could not be found, otherwise return true.  */

static bool
try_decrement_rdesc_refcount (struct ipa_jump_func *jfunc)
{
  struct ipa_cst_ref_desc *rdesc;
  if (jfunc->type == IPA_JF_CONST
      && (rdesc = jfunc_rdesc_usable (jfunc))
      && --rdesc->refcount == 0)
    {
      symtab_node *symbol = cgraph_node_for_jfunc (jfunc);
      if (!symbol)
	return false;

      return remove_described_reference (symbol, rdesc);
    }
  return true;
}

/* Try to find a destination for indirect edge IE that corresponds to a simple
   call or a call of a member function pointer and where the destination is a
   pointer formal parameter described by jump function JFUNC.  TARGET_TYPE is
   the type of the parameter to which the result of JFUNC is passed.  If it can
   be determined, return the newly direct edge, otherwise return NULL.
   NEW_ROOT and NEW_ROOT_INFO is the node and its info that JFUNC lattices are
   relative to.  */

static struct cgraph_edge *
try_make_edge_direct_simple_call (struct cgraph_edge *ie,
				  struct ipa_jump_func *jfunc, tree target_type,
				  struct cgraph_node *new_root,
				  class ipa_node_params *new_root_info)
{
  struct cgraph_edge *cs;
  tree target;
  bool agg_contents = ie->indirect_info->agg_contents;
  tree scalar = ipa_value_from_jfunc (new_root_info, jfunc, target_type);
  if (agg_contents)
    {
      bool from_global_constant;
      ipa_agg_value_set agg = ipa_agg_value_set_from_jfunc (new_root_info,
							    new_root,
							    &jfunc->agg);
      target = ipa_find_agg_cst_for_param (&agg, scalar,
					   ie->indirect_info->offset,
					   ie->indirect_info->by_ref,
					   &from_global_constant);
      agg.release ();
      if (target
	  && !from_global_constant
	  && !ie->indirect_info->guaranteed_unmodified)
	return NULL;
    }
  else
    target = scalar;
  if (!target)
    return NULL;
  cs = ipa_make_edge_direct_to_target (ie, target);

  if (cs && !agg_contents)
    {
      bool ok;
      gcc_checking_assert (cs->callee
			   && (cs != ie
			       || jfunc->type != IPA_JF_CONST
			       || !cgraph_node_for_jfunc (jfunc)
			       || cs->callee == cgraph_node_for_jfunc (jfunc)));
      ok = try_decrement_rdesc_refcount (jfunc);
      gcc_checking_assert (ok);
    }

  return cs;
}

/* Return the target to be used in cases of impossible devirtualization.  IE
   and target (the latter can be NULL) are dumped when dumping is enabled.  */

tree
ipa_impossible_devirt_target (struct cgraph_edge *ie, tree target)
{
  if (dump_file)
    {
      if (target)
	fprintf (dump_file,
		 "Type inconsistent devirtualization: %s->%s\n",
		 ie->caller->dump_name (),
		 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (target)));
      else
	fprintf (dump_file,
		 "No devirtualization target in %s\n",
		 ie->caller->dump_name ());
    }
  tree new_target = builtin_decl_implicit (BUILT_IN_UNREACHABLE);
  cgraph_node::get_create (new_target);
  return new_target;
}

/* Try to find a destination for indirect edge IE that corresponds to a virtual
   call based on a formal parameter which is described by jump function JFUNC
   and if it can be determined, make it direct and return the direct edge.
   Otherwise, return NULL.  CTX describes the polymorphic context that the
   parameter the call is based on brings along with it.  NEW_ROOT and
   NEW_ROOT_INFO is the node and its info that JFUNC lattices are relative
   to.  */

static struct cgraph_edge *
try_make_edge_direct_virtual_call (struct cgraph_edge *ie,
				   struct ipa_jump_func *jfunc,
				   class ipa_polymorphic_call_context ctx,
				   struct cgraph_node *new_root,
				   class ipa_node_params *new_root_info)
{
  tree target = NULL;
  bool speculative = false;

  if (!opt_for_fn (ie->caller->decl, flag_devirtualize))
    return NULL;

  gcc_assert (!ie->indirect_info->by_ref);

  /* Try to do lookup via known virtual table pointer value.  */
  if (!ie->indirect_info->vptr_changed
      || opt_for_fn (ie->caller->decl, flag_devirtualize_speculatively))
    {
      tree vtable;
      unsigned HOST_WIDE_INT offset;
      tree scalar = (jfunc->type == IPA_JF_CONST) ? ipa_get_jf_constant (jfunc)
	: NULL;
      ipa_agg_value_set agg = ipa_agg_value_set_from_jfunc (new_root_info,
							    new_root,
							    &jfunc->agg);
      tree t = ipa_find_agg_cst_for_param (&agg, scalar,
					   ie->indirect_info->offset,
					   true);
      agg.release ();
      if (t && vtable_pointer_value_to_vtable (t, &vtable, &offset))
	{
	  bool can_refer;
	  t = gimple_get_virt_method_for_vtable (ie->indirect_info->otr_token,
						 vtable, offset, &can_refer);
	  if (can_refer)
	    {
	      if (!t
		  || fndecl_built_in_p (t, BUILT_IN_UNREACHABLE)
		  || !possible_polymorphic_call_target_p
		       (ie, cgraph_node::get (t)))
		{
		  /* Do not speculate builtin_unreachable, it is stupid!  */
		  if (!ie->indirect_info->vptr_changed)
		    target = ipa_impossible_devirt_target (ie, target);
		  else
		    target = NULL;
		}
	      else
		{
		  target = t;
		  speculative = ie->indirect_info->vptr_changed;
		}
	    }
	}
    }

  ipa_polymorphic_call_context ie_context (ie);
  vec <cgraph_node *>targets;
  bool final;

  ctx.offset_by (ie->indirect_info->offset);
  if (ie->indirect_info->vptr_changed)
    ctx.possible_dynamic_type_change (ie->in_polymorphic_cdtor,
				      ie->indirect_info->otr_type);
  ctx.combine_with (ie_context, ie->indirect_info->otr_type);
  targets = possible_polymorphic_call_targets
    (ie->indirect_info->otr_type,
     ie->indirect_info->otr_token,
     ctx, &final);
  if (final && targets.length () <= 1)
    {
      speculative = false;
      if (targets.length () == 1)
	target = targets[0]->decl;
      else
	target = ipa_impossible_devirt_target (ie, NULL_TREE);
    }
  else if (!target && opt_for_fn (ie->caller->decl, flag_devirtualize_speculatively)
	   && !ie->speculative && ie->maybe_hot_p ())
    {
      cgraph_node *n;
      n = try_speculative_devirtualization (ie->indirect_info->otr_type,
					    ie->indirect_info->otr_token,
					    ie->indirect_info->context);
      if (n)
	{
	  target = n->decl;
	  speculative = true;
	}
    }

  if (target)
    {
      if (!possible_polymorphic_call_target_p
	  (ie, cgraph_node::get_create (target)))
	{
	  if (speculative)
	    return NULL;
	  target = ipa_impossible_devirt_target (ie, target);
	}
      return ipa_make_edge_direct_to_target (ie, target, speculative);
    }
  else
    return NULL;
}

/* Update the param called notes associated with NODE when CS is being inlined,
   assuming NODE is (potentially indirectly) inlined into CS->callee.
   Moreover, if the callee is discovered to be constant, create a new cgraph
   edge for it.  Newly discovered indirect edges will be added to *NEW_EDGES,
   unless NEW_EDGES is NULL.  Return true iff a new edge(s) were created.  */

static bool
update_indirect_edges_after_inlining (struct cgraph_edge *cs,
				      struct cgraph_node *node,
				      vec<cgraph_edge *> *new_edges)
{
  class ipa_edge_args *top;
  struct cgraph_edge *ie, *next_ie, *new_direct_edge;
  struct cgraph_node *new_root;
  class ipa_node_params *new_root_info, *inlined_node_info;
  bool res = false;

  ipa_check_create_edge_args ();
  top = IPA_EDGE_REF (cs);
  new_root = cs->caller->inlined_to
		? cs->caller->inlined_to : cs->caller;
  new_root_info = IPA_NODE_REF (new_root);
  inlined_node_info = IPA_NODE_REF (cs->callee->function_symbol ());

  for (ie = node->indirect_calls; ie; ie = next_ie)
    {
      class cgraph_indirect_call_info *ici = ie->indirect_info;
      struct ipa_jump_func *jfunc;
      int param_index;

      next_ie = ie->next_callee;

      if (ici->param_index == -1)
	continue;

      /* We must check range due to calls with variable number of arguments:  */
      if (!top || ici->param_index >= ipa_get_cs_argument_count (top))
	{
	  ici->param_index = -1;
	  continue;
	}

      param_index = ici->param_index;
      jfunc = ipa_get_ith_jump_func (top, param_index);
      cgraph_node *spec_target = NULL;

      /* FIXME: This may need updating for multiple calls.  */
      if (ie->speculative)
	spec_target = ie->first_speculative_call_target ()->callee;

      if (!opt_for_fn (node->decl, flag_indirect_inlining))
	new_direct_edge = NULL;
      else if (ici->polymorphic)
	{
          ipa_polymorphic_call_context ctx;
	  ctx = ipa_context_from_jfunc (new_root_info, cs, param_index, jfunc);
	  new_direct_edge = try_make_edge_direct_virtual_call (ie, jfunc, ctx,
							       new_root,
							       new_root_info);
	}
      else
	{
	  tree target_type =  ipa_get_type (inlined_node_info, param_index);
	  new_direct_edge = try_make_edge_direct_simple_call (ie, jfunc,
							      target_type,
							      new_root,
							      new_root_info);
	}

      /* If speculation was removed, then we need to do nothing.  */
      if (new_direct_edge && new_direct_edge != ie
	  && new_direct_edge->callee == spec_target)
	{
	  new_direct_edge->indirect_inlining_edge = 1;
	  top = IPA_EDGE_REF (cs);
	  res = true;
	  if (!new_direct_edge->speculative)
	    continue;
	}
      else if (new_direct_edge)
	{
	  new_direct_edge->indirect_inlining_edge = 1;
	  if (new_edges)
	    {
	      new_edges->safe_push (new_direct_edge);
	      res = true;
	    }
	  top = IPA_EDGE_REF (cs);
	  /* If speculative edge was introduced we still need to update
	     call info of the indirect edge.  */
	  if (!new_direct_edge->speculative)
	    continue;
	}
      if (jfunc->type == IPA_JF_PASS_THROUGH
          && ipa_get_jf_pass_through_operation (jfunc) == NOP_EXPR)
	{
	  if (ici->agg_contents
	      && !ipa_get_jf_pass_through_agg_preserved (jfunc)
	      && !ici->polymorphic)
	    ici->param_index = -1;
	  else
	    {
	      ici->param_index = ipa_get_jf_pass_through_formal_id (jfunc);
	      if (ici->polymorphic
		  && !ipa_get_jf_pass_through_type_preserved (jfunc))
		ici->vptr_changed = true;
	      ipa_set_param_used_by_indirect_call (new_root_info,
			     			   ici->param_index, true);
	      if (ici->polymorphic)
		ipa_set_param_used_by_polymorphic_call (new_root_info,
						        ici->param_index, true);
	    }
	}
      else if (jfunc->type == IPA_JF_ANCESTOR)
	{
	  if (ici->agg_contents
	      && !ipa_get_jf_ancestor_agg_preserved (jfunc)
	      && !ici->polymorphic)
	    ici->param_index = -1;
	  else
	    {
	      ici->param_index = ipa_get_jf_ancestor_formal_id (jfunc);
	      ici->offset += ipa_get_jf_ancestor_offset (jfunc);
	      if (ici->polymorphic
		  && !ipa_get_jf_ancestor_type_preserved (jfunc))
		ici->vptr_changed = true;
	      ipa_set_param_used_by_indirect_call (new_root_info,
			     			   ici->param_index, true);
	      if (ici->polymorphic)
		ipa_set_param_used_by_polymorphic_call (new_root_info,
						        ici->param_index, true);
	    }
	}
      else
	/* Either we can find a destination for this edge now or never. */
	ici->param_index = -1;
    }

  return res;
}

/* Recursively traverse subtree of NODE (including node) made of inlined
   cgraph_edges when CS has been inlined and invoke
   update_indirect_edges_after_inlining on all nodes and
   update_jump_functions_after_inlining on all non-inlined edges that lead out
   of this subtree.  Newly discovered indirect edges will be added to
   *NEW_EDGES, unless NEW_EDGES is NULL.  Return true iff a new edge(s) were
   created.  */

static bool
propagate_info_to_inlined_callees (struct cgraph_edge *cs,
				   struct cgraph_node *node,
				   vec<cgraph_edge *> *new_edges)
{
  struct cgraph_edge *e;
  bool res;

  res = update_indirect_edges_after_inlining (cs, node, new_edges);

  for (e = node->callees; e; e = e->next_callee)
    if (!e->inline_failed)
      res |= propagate_info_to_inlined_callees (cs, e->callee, new_edges);
    else
      update_jump_functions_after_inlining (cs, e);
  for (e = node->indirect_calls; e; e = e->next_callee)
    update_jump_functions_after_inlining (cs, e);

  return res;
}

/* Combine two controlled uses counts as done during inlining.  */

static int
combine_controlled_uses_counters (int c, int d)
{
  if (c == IPA_UNDESCRIBED_USE || d == IPA_UNDESCRIBED_USE)
    return IPA_UNDESCRIBED_USE;
  else
    return c + d - 1;
}

/* Propagate number of controlled users from CS->caleee to the new root of the
   tree of inlined nodes.  */

static void
propagate_controlled_uses (struct cgraph_edge *cs)
{
  class ipa_edge_args *args = IPA_EDGE_REF (cs);
  if (!args)
    return;
  struct cgraph_node *new_root = cs->caller->inlined_to
    ? cs->caller->inlined_to : cs->caller;
  class ipa_node_params *new_root_info = IPA_NODE_REF (new_root);
  class ipa_node_params *old_root_info = IPA_NODE_REF (cs->callee);
  int count, i;

  if (!old_root_info)
    return;

  count = MIN (ipa_get_cs_argument_count (args),
	       ipa_get_param_count (old_root_info));
  for (i = 0; i < count; i++)
    {
      struct ipa_jump_func *jf = ipa_get_ith_jump_func (args, i);
      struct ipa_cst_ref_desc *rdesc;

      if (jf->type == IPA_JF_PASS_THROUGH)
	{
	  int src_idx, c, d;
	  src_idx = ipa_get_jf_pass_through_formal_id (jf);
	  c = ipa_get_controlled_uses (new_root_info, src_idx);
	  d = ipa_get_controlled_uses (old_root_info, i);

	  gcc_checking_assert (ipa_get_jf_pass_through_operation (jf)
			       == NOP_EXPR || c == IPA_UNDESCRIBED_USE);
	  c = combine_controlled_uses_counters (c, d);
	  ipa_set_controlled_uses (new_root_info, src_idx, c);
	  if (c == 0 && new_root_info->ipcp_orig_node)
	    {
	      struct cgraph_node *n;
	      struct ipa_ref *ref;
	      tree t = new_root_info->known_csts[src_idx];

	      if (t && TREE_CODE (t) == ADDR_EXPR
		  && TREE_CODE (TREE_OPERAND (t, 0)) == FUNCTION_DECL
		  && (n = cgraph_node::get (TREE_OPERAND (t, 0)))
		  && (ref = new_root->find_reference (n, NULL, 0)))
		{
		  if (dump_file)
		    fprintf (dump_file, "ipa-prop: Removing cloning-created "
			     "reference from %s to %s.\n",
			     new_root->dump_name (),
			     n->dump_name ());
		  ref->remove_reference ();
		}
	    }
	}
      else if (jf->type == IPA_JF_CONST
	       && (rdesc = jfunc_rdesc_usable (jf)))
	{
	  int d = ipa_get_controlled_uses (old_root_info, i);
	  int c = rdesc->refcount;
	  rdesc->refcount = combine_controlled_uses_counters (c, d);
	  if (rdesc->refcount == 0)
	    {
	      tree cst = ipa_get_jf_constant (jf);
	      struct cgraph_node *n;
	      gcc_checking_assert (TREE_CODE (cst) == ADDR_EXPR
				   && TREE_CODE (TREE_OPERAND (cst, 0))
				   == FUNCTION_DECL);
	      n = cgraph_node::get (TREE_OPERAND (cst, 0));
	      if (n)
		{
		  struct cgraph_node *clone;
		  bool ok;
		  ok = remove_described_reference (n, rdesc);
		  gcc_checking_assert (ok);

		  clone = cs->caller;
		  while (clone->inlined_to
			 && clone->ipcp_clone
			 && clone != rdesc->cs->caller)
		    {
		      struct ipa_ref *ref;
		      ref = clone->find_reference (n, NULL, 0);
		      if (ref)
			{
			  if (dump_file)
			    fprintf (dump_file, "ipa-prop: Removing "
				     "cloning-created reference "
				     "from %s to %s.\n",
				     clone->dump_name (),
				     n->dump_name ());
			  ref->remove_reference ();
			}
		      clone = clone->callers->caller;
		    }
		}
	    }
	}
    }

  for (i = ipa_get_param_count (old_root_info);
       i < ipa_get_cs_argument_count (args);
       i++)
    {
      struct ipa_jump_func *jf = ipa_get_ith_jump_func (args, i);

      if (jf->type == IPA_JF_CONST)
	{
	  struct ipa_cst_ref_desc *rdesc = jfunc_rdesc_usable (jf);
	  if (rdesc)
	    rdesc->refcount = IPA_UNDESCRIBED_USE;
	}
      else if (jf->type == IPA_JF_PASS_THROUGH)
	ipa_set_controlled_uses (new_root_info,
				 jf->value.pass_through.formal_id,
				 IPA_UNDESCRIBED_USE);
    }
}

/* Update jump functions and call note functions on inlining the call site CS.
   CS is expected to lead to a node already cloned by
   cgraph_clone_inline_nodes.  Newly discovered indirect edges will be added to
   *NEW_EDGES, unless NEW_EDGES is NULL.  Return true iff a new edge(s) were +
   created.  */

bool
ipa_propagate_indirect_call_infos (struct cgraph_edge *cs,
				   vec<cgraph_edge *> *new_edges)
{
  bool changed;
  /* Do nothing if the preparation phase has not been carried out yet
     (i.e. during early inlining).  */
  if (!ipa_node_params_sum)
    return false;
  gcc_assert (ipa_edge_args_sum);

  propagate_controlled_uses (cs);
  changed = propagate_info_to_inlined_callees (cs, cs->callee, new_edges);
  ipa_node_params_sum->remove (cs->callee);

  class ipa_edge_args *args = IPA_EDGE_REF (cs);
  if (args)
    {
      bool ok = true;
      if (args->jump_functions)
	{
	  struct ipa_jump_func *jf;
	  int i;
	  FOR_EACH_VEC_ELT (*args->jump_functions, i, jf)
	    if (jf->type == IPA_JF_CONST
		&& ipa_get_jf_constant_rdesc (jf))
	      {
		ok = false;
		break;
	      }
	}
      if (ok)
        ipa_edge_args_sum->remove (cs);
    }
  if (ipcp_transformation_sum)
    ipcp_transformation_sum->remove (cs->callee);

  return changed;
}

/* Ensure that array of edge arguments infos is big enough to accommodate a
   structure for all edges and reallocates it if not.  Also, allocate
   associated hash tables is they do not already exist.  */

void
ipa_check_create_edge_args (void)
{
  if (!ipa_edge_args_sum)
    ipa_edge_args_sum
      = (new (ggc_alloc_no_dtor<ipa_edge_args_sum_t> ())
	 ipa_edge_args_sum_t (symtab, true));
  if (!ipa_bits_hash_table)
    ipa_bits_hash_table = hash_table<ipa_bit_ggc_hash_traits>::create_ggc (37);
  if (!ipa_vr_hash_table)
    ipa_vr_hash_table = hash_table<ipa_vr_ggc_hash_traits>::create_ggc (37);
}

/* Free all ipa_edge structures.  */

void
ipa_free_all_edge_args (void)
{
  if (!ipa_edge_args_sum)
    return;

  ggc_delete (ipa_edge_args_sum);
  ipa_edge_args_sum = NULL;
}

/* Free all ipa_node_params structures.  */

void
ipa_free_all_node_params (void)
{
  ggc_delete (ipa_node_params_sum);
  ipa_node_params_sum = NULL;
}

/* Initialize IPA CP transformation summary and also allocate any necessary hash
   tables if they do not already exist.  */

void
ipcp_transformation_initialize (void)
{
  if (!ipa_bits_hash_table)
    ipa_bits_hash_table = hash_table<ipa_bit_ggc_hash_traits>::create_ggc (37);
  if (!ipa_vr_hash_table)
    ipa_vr_hash_table = hash_table<ipa_vr_ggc_hash_traits>::create_ggc (37);
  if (ipcp_transformation_sum == NULL)
    ipcp_transformation_sum = ipcp_transformation_t::create_ggc (symtab);
}

/* Release the IPA CP transformation summary.  */

void
ipcp_free_transformation_sum (void)
{
  if (!ipcp_transformation_sum)
    return;

  ipcp_transformation_sum->~function_summary<ipcp_transformation *> ();
  ggc_free (ipcp_transformation_sum);
  ipcp_transformation_sum = NULL;
}

/* Set the aggregate replacements of NODE to be AGGVALS.  */

void
ipa_set_node_agg_value_chain (struct cgraph_node *node,
			      struct ipa_agg_replacement_value *aggvals)
{
  ipcp_transformation_initialize ();
  ipcp_transformation *s = ipcp_transformation_sum->get_create (node);
  s->agg_values = aggvals;
}

/* Hook that is called by cgraph.c when an edge is removed.  Adjust reference
   count data structures accordingly.  */

void
ipa_edge_args_sum_t::remove (cgraph_edge *cs, ipa_edge_args *args)
{
  if (args->jump_functions)
    {
      struct ipa_jump_func *jf;
      int i;
      FOR_EACH_VEC_ELT (*args->jump_functions, i, jf)
	{
	  struct ipa_cst_ref_desc *rdesc;
	  try_decrement_rdesc_refcount (jf);
	  if (jf->type == IPA_JF_CONST
	      && (rdesc = ipa_get_jf_constant_rdesc (jf))
	      && rdesc->cs == cs)
	    rdesc->cs = NULL;
	}
    }
}

/* Method invoked when an edge is duplicated.  Copy ipa_edge_args and adjust
   reference count data strucutres accordingly.  */

void
ipa_edge_args_sum_t::duplicate (cgraph_edge *src, cgraph_edge *dst,
				ipa_edge_args *old_args, ipa_edge_args *new_args)
{
  unsigned int i;

  new_args->jump_functions = vec_safe_copy (old_args->jump_functions);
  if (old_args->polymorphic_call_contexts)
    new_args->polymorphic_call_contexts
      = vec_safe_copy (old_args->polymorphic_call_contexts);

  for (i = 0; i < vec_safe_length (old_args->jump_functions); i++)
    {
      struct ipa_jump_func *src_jf = ipa_get_ith_jump_func (old_args, i);
      struct ipa_jump_func *dst_jf = ipa_get_ith_jump_func (new_args, i);

      dst_jf->agg.items = vec_safe_copy (dst_jf->agg.items);

      if (src_jf->type == IPA_JF_CONST)
	{
	  struct ipa_cst_ref_desc *src_rdesc = jfunc_rdesc_usable (src_jf);

	  if (!src_rdesc)
	    dst_jf->value.constant.rdesc = NULL;
	  else if (src->caller == dst->caller)
	    {
	      struct ipa_ref *ref;
	      symtab_node *n = cgraph_node_for_jfunc (src_jf);
	      gcc_checking_assert (n);
	      ref = src->caller->find_reference (n, src->call_stmt,
						 src->lto_stmt_uid);
	      gcc_checking_assert (ref);
	      dst->caller->clone_reference (ref, ref->stmt);

	      struct ipa_cst_ref_desc *dst_rdesc = ipa_refdesc_pool.allocate ();
	      dst_rdesc->cs = dst;
	      dst_rdesc->refcount = src_rdesc->refcount;
	      dst_rdesc->next_duplicate = NULL;
	      dst_jf->value.constant.rdesc = dst_rdesc;
	    }
	  else if (src_rdesc->cs == src)
	    {
	      struct ipa_cst_ref_desc *dst_rdesc = ipa_refdesc_pool.allocate ();
	      dst_rdesc->cs = dst;
	      dst_rdesc->refcount = src_rdesc->refcount;
	      dst_rdesc->next_duplicate = src_rdesc->next_duplicate;
	      src_rdesc->next_duplicate = dst_rdesc;
	      dst_jf->value.constant.rdesc = dst_rdesc;
	    }
	  else
	    {
	      struct ipa_cst_ref_desc *dst_rdesc;
	      /* This can happen during inlining, when a JFUNC can refer to a
		 reference taken in a function up in the tree of inline clones.
		 We need to find the duplicate that refers to our tree of
		 inline clones.  */

	      gcc_assert (dst->caller->inlined_to);
	      for (dst_rdesc = src_rdesc->next_duplicate;
		   dst_rdesc;
		   dst_rdesc = dst_rdesc->next_duplicate)
		{
		  struct cgraph_node *top;
		  top = dst_rdesc->cs->caller->inlined_to
		    ? dst_rdesc->cs->caller->inlined_to
		    : dst_rdesc->cs->caller;
		  if (dst->caller->inlined_to == top)
		    break;
		}
	      gcc_assert (dst_rdesc);
	      dst_jf->value.constant.rdesc = dst_rdesc;
	    }
	}
      else if (dst_jf->type == IPA_JF_PASS_THROUGH
	       && src->caller == dst->caller)
	{
	  struct cgraph_node *inline_root = dst->caller->inlined_to
	    ? dst->caller->inlined_to : dst->caller;
	  class ipa_node_params *root_info = IPA_NODE_REF (inline_root);
	  int idx = ipa_get_jf_pass_through_formal_id (dst_jf);

	  int c = ipa_get_controlled_uses (root_info, idx);
	  if (c != IPA_UNDESCRIBED_USE)
	    {
	      c++;
	      ipa_set_controlled_uses (root_info, idx, c);
	    }
	}
    }
}

/* Analyze newly added function into callgraph.  */

static void
ipa_add_new_function (cgraph_node *node, void *data ATTRIBUTE_UNUSED)
{
  if (node->has_gimple_body_p ())
    ipa_analyze_node (node);
}

/* Hook that is called by summary when a node is duplicated.  */

void
ipa_node_params_t::duplicate(cgraph_node *src, cgraph_node *dst,
			     ipa_node_params *old_info,
			     ipa_node_params *new_info)
{
  ipa_agg_replacement_value *old_av, *new_av;

  new_info->descriptors = vec_safe_copy (old_info->descriptors);
  new_info->lattices = NULL;
  new_info->ipcp_orig_node = old_info->ipcp_orig_node;
  new_info->known_csts = old_info->known_csts.copy ();
  new_info->known_contexts = old_info->known_contexts.copy ();

  new_info->analysis_done = old_info->analysis_done;
  new_info->node_enqueued = old_info->node_enqueued;
  new_info->versionable = old_info->versionable;

  old_av = ipa_get_agg_replacements_for_node (src);
  if (old_av)
    {
      new_av = NULL;
      while (old_av)
	{
	  struct ipa_agg_replacement_value *v;

	  v = ggc_alloc<ipa_agg_replacement_value> ();
	  memcpy (v, old_av, sizeof (*v));
	  v->next = new_av;
	  new_av = v;
	  old_av = old_av->next;
	}
      ipa_set_node_agg_value_chain (dst, new_av);
    }
}

/* Duplication of ipcp transformation summaries.  */

void
ipcp_transformation_t::duplicate(cgraph_node *, cgraph_node *dst,
			         ipcp_transformation *src_trans,
			         ipcp_transformation *dst_trans)
{
  /* Avoid redundant work of duplicating vectors we will never use.  */
  if (dst->inlined_to)
    return;
  dst_trans->bits = vec_safe_copy (src_trans->bits);
  dst_trans->m_vr = vec_safe_copy (src_trans->m_vr);
  ipa_agg_replacement_value *agg = src_trans->agg_values,
			    **aggptr = &dst_trans->agg_values;
  while (agg)
    {
      *aggptr = ggc_alloc<ipa_agg_replacement_value> ();
      **aggptr = *agg;
      agg = agg->next;
      aggptr = &(*aggptr)->next;
    }
}

/* Register our cgraph hooks if they are not already there.  */

void
ipa_register_cgraph_hooks (void)
{
  ipa_check_create_node_params ();
  ipa_check_create_edge_args ();

  function_insertion_hook_holder =
      symtab->add_cgraph_insertion_hook (&ipa_add_new_function, NULL);
}

/* Unregister our cgraph hooks if they are not already there.  */

static void
ipa_unregister_cgraph_hooks (void)
{
  symtab->remove_cgraph_insertion_hook (function_insertion_hook_holder);
  function_insertion_hook_holder = NULL;
}

/* Free all ipa_node_params and all ipa_edge_args structures if they are no
   longer needed after ipa-cp.  */

void
ipa_free_all_structures_after_ipa_cp (void)
{
  if (!optimize && !in_lto_p)
    {
      ipa_free_all_edge_args ();
      ipa_free_all_node_params ();
      ipcp_sources_pool.release ();
      ipcp_cst_values_pool.release ();
      ipcp_poly_ctx_values_pool.release ();
      ipcp_agg_lattice_pool.release ();
      ipa_unregister_cgraph_hooks ();
      ipa_refdesc_pool.release ();
    }
}

/* Free all ipa_node_params and all ipa_edge_args structures if they are no
   longer needed after indirect inlining.  */

void
ipa_free_all_structures_after_iinln (void)
{
  ipa_free_all_edge_args ();
  ipa_free_all_node_params ();
  ipa_unregister_cgraph_hooks ();
  ipcp_sources_pool.release ();
  ipcp_cst_values_pool.release ();
  ipcp_poly_ctx_values_pool.release ();
  ipcp_agg_lattice_pool.release ();
  ipa_refdesc_pool.release ();
}

/* Print ipa_tree_map data structures of all functions in the
   callgraph to F.  */

void
ipa_print_node_params (FILE *f, struct cgraph_node *node)
{
  int i, count;
  class ipa_node_params *info;

  if (!node->definition)
    return;
  info = IPA_NODE_REF (node);
  fprintf (f, "  function  %s parameter descriptors:\n", node->dump_name ());
  if (!info)
    {
      fprintf (f, " no params return\n");
      return;
    }
  count = ipa_get_param_count (info);
  for (i = 0; i < count; i++)
    {
      int c;

      fprintf (f, "    ");
      ipa_dump_param (f, info, i);
      if (ipa_is_param_used (info, i))
	fprintf (f, " used");
      if (ipa_is_param_used_by_ipa_predicates (info, i))
	fprintf (f, " used_by_ipa_predicates");
      if (ipa_is_param_used_by_indirect_call (info, i))
	fprintf (f, " used_by_indirect_call");
      if (ipa_is_param_used_by_polymorphic_call (info, i))
	fprintf (f, " used_by_polymorphic_call");
      c = ipa_get_controlled_uses (info, i);
      if (c == IPA_UNDESCRIBED_USE)
	fprintf (f, " undescribed_use");
      else
	fprintf (f, "  controlled_uses=%i", c);
      fprintf (f, "\n");
    }
}

/* Print ipa_tree_map data structures of all functions in the
   callgraph to F.  */

void
ipa_print_all_params (FILE * f)
{
  struct cgraph_node *node;

  fprintf (f, "\nFunction parameters:\n");
  FOR_EACH_FUNCTION (node)
    ipa_print_node_params (f, node);
}

/* Dump the AV linked list.  */

void
ipa_dump_agg_replacement_values (FILE *f, struct ipa_agg_replacement_value *av)
{
  bool comma = false;
  fprintf (f, "     Aggregate replacements:");
  for (; av; av = av->next)
    {
      fprintf (f, "%s %i[" HOST_WIDE_INT_PRINT_DEC "]=", comma ? "," : "",
	       av->index, av->offset);
      print_generic_expr (f, av->value);
      comma = true;
    }
  fprintf (f, "\n");
}

/* Stream out jump function JUMP_FUNC to OB.  */

static void
ipa_write_jump_function (struct output_block *ob,
			 struct ipa_jump_func *jump_func)
{
  struct ipa_agg_jf_item *item;
  struct bitpack_d bp;
  int i, count;
  int flag = 0;

  /* ADDR_EXPRs are very comon IP invariants; save some streamer data
     as well as WPA memory by handling them specially.  */
  if (jump_func->type == IPA_JF_CONST
      && TREE_CODE (jump_func->value.constant.value) == ADDR_EXPR)
    flag = 1;

  streamer_write_uhwi (ob, jump_func->type * 2 + flag);
  switch (jump_func->type)
    {
    case IPA_JF_UNKNOWN:
      break;
    case IPA_JF_CONST:
      gcc_assert (
	  EXPR_LOCATION (jump_func->value.constant.value) == UNKNOWN_LOCATION);
      stream_write_tree (ob,
			 flag
			 ? TREE_OPERAND (jump_func->value.constant.value, 0)
			 : jump_func->value.constant.value, true);
      break;
    case IPA_JF_PASS_THROUGH:
      streamer_write_uhwi (ob, jump_func->value.pass_through.operation);
      if (jump_func->value.pass_through.operation == NOP_EXPR)
	{
	  streamer_write_uhwi (ob, jump_func->value.pass_through.formal_id);
	  bp = bitpack_create (ob->main_stream);
	  bp_pack_value (&bp, jump_func->value.pass_through.agg_preserved, 1);
	  streamer_write_bitpack (&bp);
	}
      else if (TREE_CODE_CLASS (jump_func->value.pass_through.operation)
	       == tcc_unary)
	streamer_write_uhwi (ob, jump_func->value.pass_through.formal_id);
      else
	{
	  stream_write_tree (ob, jump_func->value.pass_through.operand, true);
	  streamer_write_uhwi (ob, jump_func->value.pass_through.formal_id);
	}
      break;
    case IPA_JF_ANCESTOR:
      streamer_write_uhwi (ob, jump_func->value.ancestor.offset);
      streamer_write_uhwi (ob, jump_func->value.ancestor.formal_id);
      bp = bitpack_create (ob->main_stream);
      bp_pack_value (&bp, jump_func->value.ancestor.agg_preserved, 1);
      streamer_write_bitpack (&bp);
      break;
    default:
      fatal_error (UNKNOWN_LOCATION, "invalid jump function in LTO stream");
    }

  count = vec_safe_length (jump_func->agg.items);
  streamer_write_uhwi (ob, count);
  if (count)
    {
      bp = bitpack_create (ob->main_stream);
      bp_pack_value (&bp, jump_func->agg.by_ref, 1);
      streamer_write_bitpack (&bp);
    }

  FOR_EACH_VEC_SAFE_ELT (jump_func->agg.items, i, item)
    {
      stream_write_tree (ob, item->type, true);
      streamer_write_uhwi (ob, item->offset);
      streamer_write_uhwi (ob, item->jftype);
      switch (item->jftype)
	{
	case IPA_JF_UNKNOWN:
	  break;
	case IPA_JF_CONST:
	  stream_write_tree (ob, item->value.constant, true);
	  break;
	case IPA_JF_PASS_THROUGH:
	case IPA_JF_LOAD_AGG:
	  streamer_write_uhwi (ob, item->value.pass_through.operation);
	  streamer_write_uhwi (ob, item->value.pass_through.formal_id);
	  if (TREE_CODE_CLASS (item->value.pass_through.operation)
							!= tcc_unary)
	    stream_write_tree (ob, item->value.pass_through.operand, true);
	  if (item->jftype == IPA_JF_LOAD_AGG)
	    {
	      stream_write_tree (ob, item->value.load_agg.type, true);
	      streamer_write_uhwi (ob, item->value.load_agg.offset);
	      bp = bitpack_create (ob->main_stream);
	      bp_pack_value (&bp, item->value.load_agg.by_ref, 1);
	      streamer_write_bitpack (&bp);
	    }
	  break;
	default:
	  fatal_error (UNKNOWN_LOCATION,
		       "invalid jump function in LTO stream");
	}
    }

  bp = bitpack_create (ob->main_stream);
  bp_pack_value (&bp, !!jump_func->bits, 1);
  streamer_write_bitpack (&bp);
  if (jump_func->bits)
    {
      streamer_write_widest_int (ob, jump_func->bits->value);
      streamer_write_widest_int (ob, jump_func->bits->mask);
    }
  bp_pack_value (&bp, !!jump_func->m_vr, 1);
  streamer_write_bitpack (&bp);
  if (jump_func->m_vr)
    {
      streamer_write_enum (ob->main_stream, value_rang_type,
			   VR_LAST, jump_func->m_vr->kind ());
      stream_write_tree (ob, jump_func->m_vr->min (), true);
      stream_write_tree (ob, jump_func->m_vr->max (), true);
    }
}

/* Read in jump function JUMP_FUNC from IB.  */

static void
ipa_read_jump_function (class lto_input_block *ib,
			struct ipa_jump_func *jump_func,
			struct cgraph_edge *cs,
			class data_in *data_in,
			bool prevails)
{
  enum jump_func_type jftype;
  enum tree_code operation;
  int i, count;
  int val = streamer_read_uhwi (ib);
  bool flag = val & 1;

  jftype = (enum jump_func_type) (val / 2);
  switch (jftype)
    {
    case IPA_JF_UNKNOWN:
      ipa_set_jf_unknown (jump_func);
      break;
    case IPA_JF_CONST:
      {
	tree t = stream_read_tree (ib, data_in);
	if (flag && prevails)
	  t = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (t)), t);
	ipa_set_jf_constant (jump_func, t, cs);
      }
      break;
    case IPA_JF_PASS_THROUGH:
      operation = (enum tree_code) streamer_read_uhwi (ib);
      if (operation == NOP_EXPR)
	{
	  int formal_id =  streamer_read_uhwi (ib);
	  struct bitpack_d bp = streamer_read_bitpack (ib);
	  bool agg_preserved = bp_unpack_value (&bp, 1);
	  ipa_set_jf_simple_pass_through (jump_func, formal_id, agg_preserved);
	}
      else if (TREE_CODE_CLASS (operation) == tcc_unary)
	{
	  int formal_id =  streamer_read_uhwi (ib);
	  ipa_set_jf_unary_pass_through (jump_func, formal_id, operation);
	}
      else
	{
	  tree operand = stream_read_tree (ib, data_in);
	  int formal_id =  streamer_read_uhwi (ib);
	  ipa_set_jf_arith_pass_through (jump_func, formal_id, operand,
					 operation);
	}
      break;
    case IPA_JF_ANCESTOR:
      {
	HOST_WIDE_INT offset = streamer_read_uhwi (ib);
	int formal_id = streamer_read_uhwi (ib);
	struct bitpack_d bp = streamer_read_bitpack (ib);
	bool agg_preserved = bp_unpack_value (&bp, 1);
	ipa_set_ancestor_jf (jump_func, offset, formal_id, agg_preserved);
	break;
      }
    default:
      fatal_error (UNKNOWN_LOCATION, "invalid jump function in LTO stream");
    }

  count = streamer_read_uhwi (ib);
  if (prevails)
    vec_alloc (jump_func->agg.items, count);
  if (count)
    {
      struct bitpack_d bp = streamer_read_bitpack (ib);
      jump_func->agg.by_ref = bp_unpack_value (&bp, 1);
    }
  for (i = 0; i < count; i++)
    {
      struct ipa_agg_jf_item item;
      item.type = stream_read_tree (ib, data_in);
      item.offset = streamer_read_uhwi (ib);
      item.jftype = (enum jump_func_type) streamer_read_uhwi (ib);

      switch (item.jftype)
	{
	case IPA_JF_UNKNOWN:
	  break;
	case IPA_JF_CONST:
	  item.value.constant = stream_read_tree (ib, data_in);
	  break;
	case IPA_JF_PASS_THROUGH:
	case IPA_JF_LOAD_AGG:
	  operation = (enum tree_code) streamer_read_uhwi (ib);
	  item.value.pass_through.operation = operation;
	  item.value.pass_through.formal_id = streamer_read_uhwi (ib);
	  if (TREE_CODE_CLASS (operation) == tcc_unary)
	    item.value.pass_through.operand = NULL_TREE;
	  else
	    item.value.pass_through.operand = stream_read_tree (ib, data_in);
	  if (item.jftype == IPA_JF_LOAD_AGG)
	    {
	      struct bitpack_d bp;
	      item.value.load_agg.type = stream_read_tree (ib, data_in);
	      item.value.load_agg.offset = streamer_read_uhwi (ib);
	      bp = streamer_read_bitpack (ib);
	      item.value.load_agg.by_ref = bp_unpack_value (&bp, 1);
	    }
	  break;
	default:
	  fatal_error (UNKNOWN_LOCATION,
		       "invalid jump function in LTO stream");
	}
      if (prevails)
        jump_func->agg.items->quick_push (item);
    }

  struct bitpack_d bp = streamer_read_bitpack (ib);
  bool bits_known = bp_unpack_value (&bp, 1);
  if (bits_known)
    {
      widest_int value = streamer_read_widest_int (ib);
      widest_int mask = streamer_read_widest_int (ib);
      if (prevails)
        ipa_set_jfunc_bits (jump_func, value, mask);
    }
  else
    jump_func->bits = NULL;

  struct bitpack_d vr_bp = streamer_read_bitpack (ib);
  bool vr_known = bp_unpack_value (&vr_bp, 1);
  if (vr_known)
    {
      enum value_range_kind type = streamer_read_enum (ib, value_range_kind,
						       VR_LAST);
      tree min = stream_read_tree (ib, data_in);
      tree max = stream_read_tree (ib, data_in);
      if (prevails)
        ipa_set_jfunc_vr (jump_func, type, min, max);
    }
  else
    jump_func->m_vr = NULL;
}

/* Stream out parts of cgraph_indirect_call_info corresponding to CS that are
   relevant to indirect inlining to OB.  */

static void
ipa_write_indirect_edge_info (struct output_block *ob,
			      struct cgraph_edge *cs)
{
  class cgraph_indirect_call_info *ii = cs->indirect_info;
  struct bitpack_d bp;

  streamer_write_hwi (ob, ii->param_index);
  bp = bitpack_create (ob->main_stream);
  bp_pack_value (&bp, ii->polymorphic, 1);
  bp_pack_value (&bp, ii->agg_contents, 1);
  bp_pack_value (&bp, ii->member_ptr, 1);
  bp_pack_value (&bp, ii->by_ref, 1);
  bp_pack_value (&bp, ii->guaranteed_unmodified, 1);
  bp_pack_value (&bp, ii->vptr_changed, 1);
  streamer_write_bitpack (&bp);
  if (ii->agg_contents || ii->polymorphic)
    streamer_write_hwi (ob, ii->offset);
  else
    gcc_assert (ii->offset == 0);

  if (ii->polymorphic)
    {
      streamer_write_hwi (ob, ii->otr_token);
      stream_write_tree (ob, ii->otr_type, true);
      ii->context.stream_out (ob);
    }
}

/* Read in parts of cgraph_indirect_call_info corresponding to CS that are
   relevant to indirect inlining from IB.  */

static void
ipa_read_indirect_edge_info (class lto_input_block *ib,
			     class data_in *data_in,
			     struct cgraph_edge *cs,
			     class ipa_node_params *info)
{
  class cgraph_indirect_call_info *ii = cs->indirect_info;
  struct bitpack_d bp;

  ii->param_index = (int) streamer_read_hwi (ib);
  bp = streamer_read_bitpack (ib);
  ii->polymorphic = bp_unpack_value (&bp, 1);
  ii->agg_contents = bp_unpack_value (&bp, 1);
  ii->member_ptr = bp_unpack_value (&bp, 1);
  ii->by_ref = bp_unpack_value (&bp, 1);
  ii->guaranteed_unmodified = bp_unpack_value (&bp, 1);
  ii->vptr_changed = bp_unpack_value (&bp, 1);
  if (ii->agg_contents || ii->polymorphic)
    ii->offset = (HOST_WIDE_INT) streamer_read_hwi (ib);
  else
    ii->offset = 0;
  if (ii->polymorphic)
    {
      ii->otr_token = (HOST_WIDE_INT) streamer_read_hwi (ib);
      ii->otr_type = stream_read_tree (ib, data_in);
      ii->context.stream_in (ib, data_in);
    }
  if (info && ii->param_index >= 0)
    {
      if (ii->polymorphic)
	ipa_set_param_used_by_polymorphic_call (info,
						ii->param_index , true);
      ipa_set_param_used_by_indirect_call (info,
					   ii->param_index, true);
    }
}

/* Stream out NODE info to OB.  */

static void
ipa_write_node_info (struct output_block *ob, struct cgraph_node *node)
{
  int node_ref;
  lto_symtab_encoder_t encoder;
  class ipa_node_params *info = IPA_NODE_REF (node);
  int j;
  struct cgraph_edge *e;
  struct bitpack_d bp;

  encoder = ob->decl_state->symtab_node_encoder;
  node_ref = lto_symtab_encoder_encode (encoder, node);
  streamer_write_uhwi (ob, node_ref);

  streamer_write_uhwi (ob, ipa_get_param_count (info));
  for (j = 0; j < ipa_get_param_count (info); j++)
    streamer_write_uhwi (ob, ipa_get_param_move_cost (info, j));
  bp = bitpack_create (ob->main_stream);
  gcc_assert (info->analysis_done
	      || ipa_get_param_count (info) == 0);
  gcc_assert (!info->node_enqueued);
  gcc_assert (!info->ipcp_orig_node);
  for (j = 0; j < ipa_get_param_count (info); j++)
    bp_pack_value (&bp, ipa_is_param_used (info, j), 1);
  streamer_write_bitpack (&bp);
  for (j = 0; j < ipa_get_param_count (info); j++)
    {
      streamer_write_hwi (ob, ipa_get_controlled_uses (info, j));
      stream_write_tree (ob, ipa_get_type (info, j), true);
    }
  for (e = node->callees; e; e = e->next_callee)
    {
      class ipa_edge_args *args = IPA_EDGE_REF (e);

      if (!args)
	{
	  streamer_write_uhwi (ob, 0);
	  continue;
	}

      streamer_write_uhwi (ob,
			   ipa_get_cs_argument_count (args) * 2
			   + (args->polymorphic_call_contexts != NULL));
      for (j = 0; j < ipa_get_cs_argument_count (args); j++)
	{
	  ipa_write_jump_function (ob, ipa_get_ith_jump_func (args, j));
	  if (args->polymorphic_call_contexts != NULL)
	    ipa_get_ith_polymorhic_call_context (args, j)->stream_out (ob);
	}
    }
  for (e = node->indirect_calls; e; e = e->next_callee)
    {
      class ipa_edge_args *args = IPA_EDGE_REF (e);
      if (!args)
	streamer_write_uhwi (ob, 0);
      else
	{
	  streamer_write_uhwi (ob,
			       ipa_get_cs_argument_count (args) * 2
			       + (args->polymorphic_call_contexts != NULL));
	  for (j = 0; j < ipa_get_cs_argument_count (args); j++)
	    {
	      ipa_write_jump_function (ob, ipa_get_ith_jump_func (args, j));
	      if (args->polymorphic_call_contexts != NULL)
		ipa_get_ith_polymorhic_call_context (args, j)->stream_out (ob);
	    }
	}
      ipa_write_indirect_edge_info (ob, e);
    }
}

/* Stream in edge E from IB.  */

static void
ipa_read_edge_info (class lto_input_block *ib,
		    class data_in *data_in,
		    struct cgraph_edge *e, bool prevails)
{
  int count = streamer_read_uhwi (ib);
  bool contexts_computed = count & 1;

  count /= 2;
  if (!count)
    return;
  if (prevails && e->possibly_call_in_translation_unit_p ())
    {
      class ipa_edge_args *args = IPA_EDGE_REF_GET_CREATE (e);
      vec_safe_grow_cleared (args->jump_functions, count);
      if (contexts_computed)
	vec_safe_grow_cleared (args->polymorphic_call_contexts, count);
      for (int k = 0; k < count; k++)
	{
	  ipa_read_jump_function (ib, ipa_get_ith_jump_func (args, k), e,
				  data_in, prevails);
	  if (contexts_computed)
	    ipa_get_ith_polymorhic_call_context (args, k)->stream_in
							     (ib, data_in);
	}
    }
  else
    {
      for (int k = 0; k < count; k++)
	{
	  struct ipa_jump_func dummy;
	  ipa_read_jump_function (ib, &dummy, e,
				  data_in, prevails);
	  if (contexts_computed)
	    {
	      class ipa_polymorphic_call_context ctx;
	      ctx.stream_in (ib, data_in);
	    }
	}
    }
}

/* Stream in NODE info from IB.  */

static void
ipa_read_node_info (class lto_input_block *ib, struct cgraph_node *node,
		    class data_in *data_in)
{
  int k;
  struct cgraph_edge *e;
  struct bitpack_d bp;
  bool prevails = node->prevailing_p ();
  class ipa_node_params *info = prevails
				? IPA_NODE_REF_GET_CREATE (node) : NULL;

  int param_count = streamer_read_uhwi (ib);
  if (prevails)
    {
      ipa_alloc_node_params (node, param_count);
      for (k = 0; k < param_count; k++)
        (*info->descriptors)[k].move_cost = streamer_read_uhwi (ib);
      if (ipa_get_param_count (info) != 0)
	info->analysis_done = true;
      info->node_enqueued = false;
    }
  else
    for (k = 0; k < param_count; k++)
      streamer_read_uhwi (ib);

  bp = streamer_read_bitpack (ib);
  for (k = 0; k < param_count; k++)
    {
      bool used = bp_unpack_value (&bp, 1);

      if (prevails)
        ipa_set_param_used (info, k, used);
    }
  for (k = 0; k < param_count; k++)
    {
      int nuses = streamer_read_hwi (ib);
      tree type = stream_read_tree (ib, data_in);

      if (prevails)
	{
	  ipa_set_controlled_uses (info, k, nuses);
	  (*info->descriptors)[k].decl_or_type = type;
	}
    }
  for (e = node->callees; e; e = e->next_callee)
    ipa_read_edge_info (ib, data_in, e, prevails);
  for (e = node->indirect_calls; e; e = e->next_callee)
    {
      ipa_read_edge_info (ib, data_in, e, prevails);
      ipa_read_indirect_edge_info (ib, data_in, e, info);
    }
}

/* Write jump functions for nodes in SET.  */

void
ipa_prop_write_jump_functions (void)
{
  struct cgraph_node *node;
  struct output_block *ob;
  unsigned int count = 0;
  lto_symtab_encoder_iterator lsei;
  lto_symtab_encoder_t encoder;

  if (!ipa_node_params_sum || !ipa_edge_args_sum)
    return;

  ob = create_output_block (LTO_section_jump_functions);
  encoder = ob->decl_state->symtab_node_encoder;
  ob->symbol = NULL;
  for (lsei = lsei_start_function_in_partition (encoder); !lsei_end_p (lsei);
       lsei_next_function_in_partition (&lsei))
    {
      node = lsei_cgraph_node (lsei);
      if (node->has_gimple_body_p ()
	  && IPA_NODE_REF (node) != NULL)
	count++;
    }

  streamer_write_uhwi (ob, count);

  /* Process all of the functions.  */
  for (lsei = lsei_start_function_in_partition (encoder); !lsei_end_p (lsei);
       lsei_next_function_in_partition (&lsei))
    {
      node = lsei_cgraph_node (lsei);
      if (node->has_gimple_body_p ()
	  && IPA_NODE_REF (node) != NULL)
        ipa_write_node_info (ob, node);
    }
  streamer_write_char_stream (ob->main_stream, 0);
  produce_asm (ob, NULL);
  destroy_output_block (ob);
}

/* Read section in file FILE_DATA of length LEN with data DATA.  */

static void
ipa_prop_read_section (struct lto_file_decl_data *file_data, const char *data,
		       size_t len)
{
  const struct lto_function_header *header =
    (const struct lto_function_header *) data;
  const int cfg_offset = sizeof (struct lto_function_header);
  const int main_offset = cfg_offset + header->cfg_size;
  const int string_offset = main_offset + header->main_size;
  class data_in *data_in;
  unsigned int i;
  unsigned int count;

  lto_input_block ib_main ((const char *) data + main_offset,
			   header->main_size, file_data->mode_table);

  data_in =
    lto_data_in_create (file_data, (const char *) data + string_offset,
			header->string_size, vNULL);
  count = streamer_read_uhwi (&ib_main);

  for (i = 0; i < count; i++)
    {
      unsigned int index;
      struct cgraph_node *node;
      lto_symtab_encoder_t encoder;

      index = streamer_read_uhwi (&ib_main);
      encoder = file_data->symtab_node_encoder;
      node = dyn_cast<cgraph_node *> (lto_symtab_encoder_deref (encoder,
								index));
      gcc_assert (node->definition);
      ipa_read_node_info (&ib_main, node, data_in);
    }
  lto_free_section_data (file_data, LTO_section_jump_functions, NULL, data,
			 len);
  lto_data_in_delete (data_in);
}

/* Read ipcp jump functions.  */

void
ipa_prop_read_jump_functions (void)
{
  struct lto_file_decl_data **file_data_vec = lto_get_file_decl_data ();
  struct lto_file_decl_data *file_data;
  unsigned int j = 0;

  ipa_check_create_node_params ();
  ipa_check_create_edge_args ();
  ipa_register_cgraph_hooks ();

  while ((file_data = file_data_vec[j++]))
    {
      size_t len;
      const char *data
	= lto_get_summary_section_data (file_data, LTO_section_jump_functions,
					&len);
      if (data)
        ipa_prop_read_section (file_data, data, len);
    }
}

void
write_ipcp_transformation_info (output_block *ob, cgraph_node *node)
{
  int node_ref;
  unsigned int count = 0;
  lto_symtab_encoder_t encoder;
  struct ipa_agg_replacement_value *aggvals, *av;

  aggvals = ipa_get_agg_replacements_for_node (node);
  encoder = ob->decl_state->symtab_node_encoder;
  node_ref = lto_symtab_encoder_encode (encoder, node);
  streamer_write_uhwi (ob, node_ref);

  for (av = aggvals; av; av = av->next)
    count++;
  streamer_write_uhwi (ob, count);

  for (av = aggvals; av; av = av->next)
    {
      struct bitpack_d bp;

      streamer_write_uhwi (ob, av->offset);
      streamer_write_uhwi (ob, av->index);
      stream_write_tree (ob, av->value, true);

      bp = bitpack_create (ob->main_stream);
      bp_pack_value (&bp, av->by_ref, 1);
      streamer_write_bitpack (&bp);
    }

  ipcp_transformation *ts = ipcp_get_transformation_summary (node);
  if (ts && vec_safe_length (ts->m_vr) > 0)
    {
      count = ts->m_vr->length ();
      streamer_write_uhwi (ob, count);
      for (unsigned i = 0; i < count; ++i)
	{
	  struct bitpack_d bp;
	  ipa_vr *parm_vr = &(*ts->m_vr)[i];
	  bp = bitpack_create (ob->main_stream);
	  bp_pack_value (&bp, parm_vr->known, 1);
	  streamer_write_bitpack (&bp);
	  if (parm_vr->known)
	    {
	      streamer_write_enum (ob->main_stream, value_rang_type,
				   VR_LAST, parm_vr->type);
	      streamer_write_wide_int (ob, parm_vr->min);
	      streamer_write_wide_int (ob, parm_vr->max);
	    }
	}
    }
  else
    streamer_write_uhwi (ob, 0);

  if (ts && vec_safe_length (ts->bits) > 0)
    {
      count = ts->bits->length ();
      streamer_write_uhwi (ob, count);

      for (unsigned i = 0; i < count; ++i)
	{
	  const ipa_bits *bits_jfunc = (*ts->bits)[i];
	  struct bitpack_d bp = bitpack_create (ob->main_stream);
	  bp_pack_value (&bp, !!bits_jfunc, 1);
	  streamer_write_bitpack (&bp);
	  if (bits_jfunc)
	    {
	      streamer_write_widest_int (ob, bits_jfunc->value);
	      streamer_write_widest_int (ob, bits_jfunc->mask);
	    }
	}
    }
  else
    streamer_write_uhwi (ob, 0);
}

/* Stream in the aggregate value replacement chain for NODE from IB.  */

static void
read_ipcp_transformation_info (lto_input_block *ib, cgraph_node *node,
			       data_in *data_in)
{
  struct ipa_agg_replacement_value *aggvals = NULL;
  unsigned int count, i;

  count = streamer_read_uhwi (ib);
  for (i = 0; i <count; i++)
    {
      struct ipa_agg_replacement_value *av;
      struct bitpack_d bp;

      av = ggc_alloc<ipa_agg_replacement_value> ();
      av->offset = streamer_read_uhwi (ib);
      av->index = streamer_read_uhwi (ib);
      av->value = stream_read_tree (ib, data_in);
      bp = streamer_read_bitpack (ib);
      av->by_ref = bp_unpack_value (&bp, 1);
      av->next = aggvals;
      aggvals = av;
    }
  ipa_set_node_agg_value_chain (node, aggvals);
  
  count = streamer_read_uhwi (ib);
  if (count > 0)
    {
      ipcp_transformation_initialize ();
      ipcp_transformation *ts = ipcp_transformation_sum->get_create (node);
      vec_safe_grow_cleared (ts->m_vr, count);
      for (i = 0; i < count; i++)
	{
	  ipa_vr *parm_vr;
	  parm_vr = &(*ts->m_vr)[i];
	  struct bitpack_d bp;
	  bp = streamer_read_bitpack (ib);
	  parm_vr->known = bp_unpack_value (&bp, 1);
	  if (parm_vr->known)
	    {
	      parm_vr->type = streamer_read_enum (ib, value_range_kind,
						  VR_LAST);
	      parm_vr->min = streamer_read_wide_int (ib);
	      parm_vr->max = streamer_read_wide_int (ib);
	    }
	}
    }
  count = streamer_read_uhwi (ib);
  if (count > 0)
    {
      ipcp_transformation_initialize ();
      ipcp_transformation *ts = ipcp_transformation_sum->get_create (node);
      vec_safe_grow_cleared (ts->bits, count);

      for (i = 0; i < count; i++)
	{
	  struct bitpack_d bp = streamer_read_bitpack (ib);
	  bool known = bp_unpack_value (&bp, 1);
	  if (known)
	    {
	      const widest_int value = streamer_read_widest_int (ib);
	      const widest_int mask = streamer_read_widest_int (ib);
	      ipa_bits *bits
		= ipa_get_ipa_bits_for_value (value, mask);
	      (*ts->bits)[i] = bits;
	    }
	}
    }
}

/* Write all aggregate replacement for nodes in set.  */

void
ipcp_write_transformation_summaries (void)
{
  struct cgraph_node *node;
  struct output_block *ob;
  unsigned int count = 0;
  lto_symtab_encoder_iterator lsei;
  lto_symtab_encoder_t encoder;

  ob = create_output_block (LTO_section_ipcp_transform);
  encoder = ob->decl_state->symtab_node_encoder;
  ob->symbol = NULL;
  for (lsei = lsei_start_function_in_partition (encoder); !lsei_end_p (lsei);
       lsei_next_function_in_partition (&lsei))
    {
      node = lsei_cgraph_node (lsei);
      if (node->has_gimple_body_p ())
	count++;
    }

  streamer_write_uhwi (ob, count);

  for (lsei = lsei_start_function_in_partition (encoder); !lsei_end_p (lsei);
       lsei_next_function_in_partition (&lsei))
    {
      node = lsei_cgraph_node (lsei);
      if (node->has_gimple_body_p ())
	write_ipcp_transformation_info (ob, node);
    }
  streamer_write_char_stream (ob->main_stream, 0);
  produce_asm (ob, NULL);
  destroy_output_block (ob);
}

/* Read replacements section in file FILE_DATA of length LEN with data
   DATA.  */

static void
read_replacements_section (struct lto_file_decl_data *file_data,
			   const char *data,
			   size_t len)
{
  const struct lto_function_header *header =
    (const struct lto_function_header *) data;
  const int cfg_offset = sizeof (struct lto_function_header);
  const int main_offset = cfg_offset + header->cfg_size;
  const int string_offset = main_offset + header->main_size;
  class data_in *data_in;
  unsigned int i;
  unsigned int count;

  lto_input_block ib_main ((const char *) data + main_offset,
			   header->main_size, file_data->mode_table);

  data_in = lto_data_in_create (file_data, (const char *) data + string_offset,
				header->string_size, vNULL);
  count = streamer_read_uhwi (&ib_main);

  for (i = 0; i < count; i++)
    {
      unsigned int index;
      struct cgraph_node *node;
      lto_symtab_encoder_t encoder;

      index = streamer_read_uhwi (&ib_main);
      encoder = file_data->symtab_node_encoder;
      node = dyn_cast<cgraph_node *> (lto_symtab_encoder_deref (encoder,
								index));
      gcc_assert (node->definition);
      read_ipcp_transformation_info (&ib_main, node, data_in);
    }
  lto_free_section_data (file_data, LTO_section_jump_functions, NULL, data,
			 len);
  lto_data_in_delete (data_in);
}

/* Read IPA-CP aggregate replacements.  */

void
ipcp_read_transformation_summaries (void)
{
  struct lto_file_decl_data **file_data_vec = lto_get_file_decl_data ();
  struct lto_file_decl_data *file_data;
  unsigned int j = 0;

  while ((file_data = file_data_vec[j++]))
    {
      size_t len;
      const char *data
	= lto_get_summary_section_data (file_data, LTO_section_ipcp_transform,
					&len);
      if (data)
        read_replacements_section (file_data, data, len);
    }
}

/* Adjust the aggregate replacements in AGGVAL to reflect parameters skipped in
   NODE.  */

static void
adjust_agg_replacement_values (struct cgraph_node *node,
			       struct ipa_agg_replacement_value *aggval)
{
  struct ipa_agg_replacement_value *v;

  if (!node->clone.param_adjustments)
    return;

  auto_vec<int, 16> new_indices;
  node->clone.param_adjustments->get_updated_indices (&new_indices);
  for (v = aggval; v; v = v->next)
    {
      gcc_checking_assert (v->index >= 0);

      if ((unsigned) v->index < new_indices.length ())
	v->index = new_indices[v->index];
      else
	/* This can happen if we know about a constant passed by reference by
	   an argument which is never actually used for anything, let alone
	   loading that constant.  */
	v->index = -1;
    }
}

/* Dominator walker driving the ipcp modification phase.  */

class ipcp_modif_dom_walker : public dom_walker
{
public:
  ipcp_modif_dom_walker (struct ipa_func_body_info *fbi,
			 vec<ipa_param_descriptor, va_gc> *descs,
			 struct ipa_agg_replacement_value *av,
			 bool *sc, bool *cc)
    : dom_walker (CDI_DOMINATORS), m_fbi (fbi), m_descriptors (descs),
      m_aggval (av), m_something_changed (sc), m_cfg_changed (cc) {}

  virtual edge before_dom_children (basic_block);

private:
  struct ipa_func_body_info *m_fbi;
  vec<ipa_param_descriptor, va_gc> *m_descriptors;
  struct ipa_agg_replacement_value *m_aggval;
  bool *m_something_changed, *m_cfg_changed;
};

edge
ipcp_modif_dom_walker::before_dom_children (basic_block bb)
{
  gimple_stmt_iterator gsi;
  for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
    {
      struct ipa_agg_replacement_value *v;
      gimple *stmt = gsi_stmt (gsi);
      tree rhs, val, t;
      HOST_WIDE_INT offset;
      poly_int64 size;
      int index;
      bool by_ref, vce;

      if (!gimple_assign_load_p (stmt))
	continue;
      rhs = gimple_assign_rhs1 (stmt);
      if (!is_gimple_reg_type (TREE_TYPE (rhs)))
	continue;

      vce = false;
      t = rhs;
      while (handled_component_p (t))
	{
	  /* V_C_E can do things like convert an array of integers to one
	     bigger integer and similar things we do not handle below.  */
	  if (TREE_CODE (t) == VIEW_CONVERT_EXPR)
	    {
	      vce = true;
	      break;
	    }
	  t = TREE_OPERAND (t, 0);
	}
      if (vce)
	continue;

      if (!ipa_load_from_parm_agg (m_fbi, m_descriptors, stmt, rhs, &index,
				   &offset, &size, &by_ref))
	continue;
      for (v = m_aggval; v; v = v->next)
	if (v->index == index
	    && v->offset == offset)
	  break;
      if (!v
	  || v->by_ref != by_ref
	  || maybe_ne (tree_to_poly_int64 (TYPE_SIZE (TREE_TYPE (v->value))),
		       size))
	continue;

      gcc_checking_assert (is_gimple_ip_invariant (v->value));
      if (!useless_type_conversion_p (TREE_TYPE (rhs), TREE_TYPE (v->value)))
	{
	  if (fold_convertible_p (TREE_TYPE (rhs), v->value))
	    val = fold_build1 (NOP_EXPR, TREE_TYPE (rhs), v->value);
	  else if (TYPE_SIZE (TREE_TYPE (rhs))
		   == TYPE_SIZE (TREE_TYPE (v->value)))
	    val = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (rhs), v->value);
	  else
	    {
	      if (dump_file)
		{
		  fprintf (dump_file, "    const ");
		  print_generic_expr (dump_file, v->value);
		  fprintf (dump_file, "  can't be converted to type of ");
		  print_generic_expr (dump_file, rhs);
		  fprintf (dump_file, "\n");
		}
	      continue;
	    }
	}
      else
	val = v->value;

      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  fprintf (dump_file, "Modifying stmt:\n  ");
	  print_gimple_stmt (dump_file, stmt, 0);
	}
      gimple_assign_set_rhs_from_tree (&gsi, val);
      update_stmt (stmt);

      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  fprintf (dump_file, "into:\n  ");
	  print_gimple_stmt (dump_file, stmt, 0);
	  fprintf (dump_file, "\n");
	}

      *m_something_changed = true;
      if (maybe_clean_eh_stmt (stmt)
	  && gimple_purge_dead_eh_edges (gimple_bb (stmt)))
	*m_cfg_changed = true;
    }
  return NULL;
}

/* Return true if we have recorded VALUE and MASK about PARM.
   Set VALUE and MASk accordingly.  */

bool
ipcp_get_parm_bits (tree parm, tree *value, widest_int *mask)
{
  cgraph_node *cnode = cgraph_node::get (current_function_decl);
  ipcp_transformation *ts = ipcp_get_transformation_summary (cnode);
  if (!ts || vec_safe_length (ts->bits) == 0)
    return false;

  int i = 0;
  for (tree p = DECL_ARGUMENTS (current_function_decl);
       p != parm; p = DECL_CHAIN (p))
    {
      i++;
      /* Ignore static chain.  */
      if (!p)
	return false;
    }

  if (cnode->clone.param_adjustments)
    {
      i = cnode->clone.param_adjustments->get_original_index (i);
      if (i < 0)
	return false;
    }

  vec<ipa_bits *, va_gc> &bits = *ts->bits;
  if (!bits[i])
    return false;
  *mask = bits[i]->mask;
  *value = wide_int_to_tree (TREE_TYPE (parm), bits[i]->value);
  return true;
}


/* Update bits info of formal parameters as described in
   ipcp_transformation.  */

static void
ipcp_update_bits (struct cgraph_node *node)
{
  ipcp_transformation *ts = ipcp_get_transformation_summary (node);

  if (!ts || vec_safe_length (ts->bits) == 0)
    return;
  vec<ipa_bits *, va_gc> &bits = *ts->bits;
  unsigned count = bits.length ();
  if (!count)
    return;

  auto_vec<int, 16> new_indices;
  bool need_remapping = false;
  if (node->clone.param_adjustments)
    {
      node->clone.param_adjustments->get_updated_indices (&new_indices);
      need_remapping = true;
    }
  auto_vec <tree, 16> parm_decls;
  push_function_arg_decls (&parm_decls, node->decl);

  for (unsigned i = 0; i < count; ++i)
    {
      tree parm;
      if (need_remapping)
	{
	  if (i >= new_indices.length ())
	    continue;
	  int idx = new_indices[i];
	  if (idx < 0)
	    continue;
	  parm = parm_decls[idx];
	}
      else
	parm = parm_decls[i];
      gcc_checking_assert (parm);


      if (!bits[i]
	  || !(INTEGRAL_TYPE_P (TREE_TYPE (parm))
	       || POINTER_TYPE_P (TREE_TYPE (parm)))
	  || !is_gimple_reg (parm))
	continue;

      tree ddef = ssa_default_def (DECL_STRUCT_FUNCTION (node->decl), parm);
      if (!ddef)
	continue;

      if (dump_file)
	{
	  fprintf (dump_file, "Adjusting mask for param %u to ", i);
	  print_hex (bits[i]->mask, dump_file);
	  fprintf (dump_file, "\n");
	}

      if (INTEGRAL_TYPE_P (TREE_TYPE (ddef)))
	{
	  unsigned prec = TYPE_PRECISION (TREE_TYPE (ddef));
	  signop sgn = TYPE_SIGN (TREE_TYPE (ddef));

	  wide_int nonzero_bits = wide_int::from (bits[i]->mask, prec, UNSIGNED)
				  | wide_int::from (bits[i]->value, prec, sgn);
	  set_nonzero_bits (ddef, nonzero_bits);
	}
      else
	{
	  unsigned tem = bits[i]->mask.to_uhwi ();
	  unsigned HOST_WIDE_INT bitpos = bits[i]->value.to_uhwi ();
	  unsigned align = tem & -tem;
	  unsigned misalign = bitpos & (align - 1);

	  if (align > 1)
	    {
	      if (dump_file)
		fprintf (dump_file, "Adjusting align: %u, misalign: %u\n", align, misalign); 

	      unsigned old_align, old_misalign;
	      struct ptr_info_def *pi = get_ptr_info (ddef);
	      bool old_known = get_ptr_info_alignment (pi, &old_align, &old_misalign);

	      if (old_known
		  && old_align > align)
		{
		  if (dump_file)
		    {
		      fprintf (dump_file, "But alignment was already %u.\n", old_align);
		      if ((old_misalign & (align - 1)) != misalign)
			fprintf (dump_file, "old_misalign (%u) and misalign (%u) mismatch\n",
				 old_misalign, misalign);
		    }
		  continue;
		}

	      if (old_known
		  && ((misalign & (old_align - 1)) != old_misalign)
		  && dump_file)
		fprintf (dump_file, "old_misalign (%u) and misalign (%u) mismatch\n",
			 old_misalign, misalign);

	      set_ptr_info_alignment (pi, align, misalign); 
	    }
	}
    }
}

bool
ipa_vr::nonzero_p (tree expr_type) const
{
  if (type == VR_ANTI_RANGE && wi::eq_p (min, 0) && wi::eq_p (max, 0))
    return true;

  unsigned prec = TYPE_PRECISION (expr_type);
  return (type == VR_RANGE
	  && TYPE_UNSIGNED (expr_type)
	  && wi::eq_p (min, wi::one (prec))
	  && wi::eq_p (max, wi::max_value (prec, TYPE_SIGN (expr_type))));
}

/* Update value range of formal parameters as described in
   ipcp_transformation.  */

static void
ipcp_update_vr (struct cgraph_node *node)
{
  ipcp_transformation *ts = ipcp_get_transformation_summary (node);
  if (!ts || vec_safe_length (ts->m_vr) == 0)
    return;
  const vec<ipa_vr, va_gc> &vr = *ts->m_vr;
  unsigned count = vr.length ();
  if (!count)
    return;

  auto_vec<int, 16> new_indices;
  bool need_remapping = false;
  if (node->clone.param_adjustments)
    {
      node->clone.param_adjustments->get_updated_indices (&new_indices);
      need_remapping = true;
    }
  auto_vec <tree, 16> parm_decls;
  push_function_arg_decls (&parm_decls, node->decl);

  for (unsigned i = 0; i < count; ++i)
    {
      tree parm;
      int remapped_idx;
      if (need_remapping)
	{
	  if (i >= new_indices.length ())
	    continue;
	  remapped_idx = new_indices[i];
	  if (remapped_idx < 0)
	    continue;
	}
      else
	remapped_idx = i;

      parm = parm_decls[remapped_idx];

      gcc_checking_assert (parm);
      tree ddef = ssa_default_def (DECL_STRUCT_FUNCTION (node->decl), parm);

      if (!ddef || !is_gimple_reg (parm))
	continue;

      if (vr[i].known
	  && (vr[i].type == VR_RANGE || vr[i].type == VR_ANTI_RANGE))
	{
	  tree type = TREE_TYPE (ddef);
	  unsigned prec = TYPE_PRECISION (type);
	  if (INTEGRAL_TYPE_P (TREE_TYPE (ddef)))
	    {
	      if (dump_file)
		{
		  fprintf (dump_file, "Setting value range of param %u "
			   "(now %i) ", i, remapped_idx);
		  fprintf (dump_file, "%s[",
			   (vr[i].type == VR_ANTI_RANGE) ? "~" : "");
		  print_decs (vr[i].min, dump_file);
		  fprintf (dump_file, ", ");
		  print_decs (vr[i].max, dump_file);
		  fprintf (dump_file, "]\n");
		}
	      set_range_info (ddef, vr[i].type,
			      wide_int_storage::from (vr[i].min, prec,
						      TYPE_SIGN (type)),
			      wide_int_storage::from (vr[i].max, prec,
						      TYPE_SIGN (type)));
	    }
	  else if (POINTER_TYPE_P (TREE_TYPE (ddef))
		   && vr[i].nonzero_p (TREE_TYPE (ddef)))
	    {
	      if (dump_file)
		fprintf (dump_file, "Setting nonnull for %u\n", i);
	      set_ptr_nonnull (ddef);
	    }
	}
    }
}

/* IPCP transformation phase doing propagation of aggregate values.  */

unsigned int
ipcp_transform_function (struct cgraph_node *node)
{
  vec<ipa_param_descriptor, va_gc> *descriptors = NULL;
  struct ipa_func_body_info fbi;
  struct ipa_agg_replacement_value *aggval;
  int param_count;
  bool cfg_changed = false, something_changed = false;

  gcc_checking_assert (cfun);
  gcc_checking_assert (current_function_decl);

  if (dump_file)
    fprintf (dump_file, "Modification phase of node %s\n",
	     node->dump_name ());

  ipcp_update_bits (node);
  ipcp_update_vr (node);
  aggval = ipa_get_agg_replacements_for_node (node);
  if (!aggval)
      return 0;
  param_count = count_formal_params (node->decl);
  if (param_count == 0)
    return 0;
  adjust_agg_replacement_values (node, aggval);
  if (dump_file)
    ipa_dump_agg_replacement_values (dump_file, aggval);

  fbi.node = node;
  fbi.info = NULL;
  fbi.bb_infos = vNULL;
  fbi.bb_infos.safe_grow_cleared (last_basic_block_for_fn (cfun));
  fbi.param_count = param_count;
  fbi.aa_walk_budget = opt_for_fn (node->decl, param_ipa_max_aa_steps);

  vec_safe_grow_cleared (descriptors, param_count);
  ipa_populate_param_decls (node, *descriptors);
  calculate_dominance_info (CDI_DOMINATORS);
  ipcp_modif_dom_walker (&fbi, descriptors, aggval, &something_changed,
			 &cfg_changed).walk (ENTRY_BLOCK_PTR_FOR_FN (cfun));

  int i;
  struct ipa_bb_info *bi;
  FOR_EACH_VEC_ELT (fbi.bb_infos, i, bi)
    free_ipa_bb_info (bi);
  fbi.bb_infos.release ();
  free_dominance_info (CDI_DOMINATORS);

  ipcp_transformation *s = ipcp_transformation_sum->get (node);
  s->agg_values = NULL;
  s->bits = NULL;
  s->m_vr = NULL;

  vec_free (descriptors);

  if (!something_changed)
    return 0;

  if (cfg_changed)
    delete_unreachable_blocks_update_callgraph (node, false);

  return TODO_update_ssa_only_virtuals;
}


/* Return true if OTHER describes same agg value.  */
bool
ipa_agg_value::equal_to (const ipa_agg_value &other)
{
  return offset == other.offset
	 && operand_equal_p (value, other.value, 0);
}
#include "gt-ipa-prop.h"