summaryrefslogtreecommitdiff
path: root/gcc/config/rs6000/rs6000-c.c
blob: ee2db96f2bdcc71ffb924bd127a42ca911bb2b9e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
/* Subroutines for the C front end on the PowerPC architecture.
   Copyright (C) 2002-2020 Free Software Foundation, Inc.

   Contributed by Zack Weinberg <zack@codesourcery.com>
   and Paolo Bonzini <bonzini@gnu.org>

   This file is part of GCC.

   GCC is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published
   by the Free Software Foundation; either version 3, or (at your
   option) any later version.

   GCC is distributed in the hope that it will be useful, but WITHOUT
   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
   License for more details.

   You should have received a copy of the GNU General Public License
   along with GCC; see the file COPYING3.  If not see
   <http://www.gnu.org/licenses/>.  */

#define IN_TARGET_CODE 1

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "target.h"
#include "c-family/c-common.h"
#include "memmodel.h"
#include "tm_p.h"
#include "stringpool.h"
#include "stor-layout.h"
#include "c-family/c-pragma.h"
#include "langhooks.h"
#include "c/c-tree.h"



/* Handle the machine specific pragma longcall.  Its syntax is

   # pragma longcall ( TOGGLE )

   where TOGGLE is either 0 or 1.

   rs6000_default_long_calls is set to the value of TOGGLE, changing
   whether or not new function declarations receive a longcall
   attribute by default.  */

void
rs6000_pragma_longcall (cpp_reader *pfile ATTRIBUTE_UNUSED)
{
#define SYNTAX_ERROR(gmsgid) do {					\
  warning (OPT_Wpragmas, gmsgid);					\
  warning (OPT_Wpragmas, "ignoring malformed %<#pragma longcall%>");	\
  return;								\
} while (0)



  tree x, n;

  /* If we get here, generic code has already scanned the directive
     leader and the word "longcall".  */

  if (pragma_lex (&x) != CPP_OPEN_PAREN)
    SYNTAX_ERROR ("missing open paren");
  if (pragma_lex (&n) != CPP_NUMBER)
    SYNTAX_ERROR ("missing number");
  if (pragma_lex (&x) != CPP_CLOSE_PAREN)
    SYNTAX_ERROR ("missing close paren");

  if (n != integer_zero_node && n != integer_one_node)
    SYNTAX_ERROR ("number must be 0 or 1");

  if (pragma_lex (&x) != CPP_EOF)
    warning (OPT_Wpragmas, "junk at end of %<#pragma longcall%>");

  rs6000_default_long_calls = (n == integer_one_node);
}

/* Handle defining many CPP flags based on TARGET_xxx.  As a general
   policy, rather than trying to guess what flags a user might want a
   #define for, it's better to define a flag for everything.  */

#define builtin_define(TXT) cpp_define (pfile, TXT)
#define builtin_assert(TXT) cpp_assert (pfile, TXT)

/* Keep the AltiVec keywords handy for fast comparisons.  */
static GTY(()) tree __vector_keyword;
static GTY(()) tree vector_keyword;
static GTY(()) tree __pixel_keyword;
static GTY(()) tree pixel_keyword;
static GTY(()) tree __bool_keyword;
static GTY(()) tree bool_keyword;
static GTY(()) tree _Bool_keyword;
static GTY(()) tree __int128_type;
static GTY(()) tree __uint128_type;

/* Preserved across calls.  */
static tree expand_bool_pixel;

static cpp_hashnode *
altivec_categorize_keyword (const cpp_token *tok)
{
  if (tok->type == CPP_NAME)
    {
      cpp_hashnode *ident = tok->val.node.node;

      if (ident == C_CPP_HASHNODE (vector_keyword))
	return C_CPP_HASHNODE (__vector_keyword);

      if (ident == C_CPP_HASHNODE (pixel_keyword))
	return C_CPP_HASHNODE (__pixel_keyword);

      if (ident == C_CPP_HASHNODE (bool_keyword))
	return C_CPP_HASHNODE (__bool_keyword);

      if (ident == C_CPP_HASHNODE (_Bool_keyword))
	return C_CPP_HASHNODE (__bool_keyword);

      return ident;
    }

  return 0;
}

static void
init_vector_keywords (void)
{
  /* Keywords without two leading underscores are context-sensitive, and hence
     implemented as conditional macros, controlled by the
     rs6000_macro_to_expand() function below.  If we have ISA 2.07 64-bit
     support, record the __int128_t and __uint128_t types.  */

  __vector_keyword = get_identifier ("__vector");
  C_CPP_HASHNODE (__vector_keyword)->flags |= NODE_CONDITIONAL;

  __pixel_keyword = get_identifier ("__pixel");
  C_CPP_HASHNODE (__pixel_keyword)->flags |= NODE_CONDITIONAL;

  __bool_keyword = get_identifier ("__bool");
  C_CPP_HASHNODE (__bool_keyword)->flags |= NODE_CONDITIONAL;

  vector_keyword = get_identifier ("vector");
  C_CPP_HASHNODE (vector_keyword)->flags |= NODE_CONDITIONAL;

  pixel_keyword = get_identifier ("pixel");
  C_CPP_HASHNODE (pixel_keyword)->flags |= NODE_CONDITIONAL;

  bool_keyword = get_identifier ("bool");
  C_CPP_HASHNODE (bool_keyword)->flags |= NODE_CONDITIONAL;

  _Bool_keyword = get_identifier ("_Bool");
  C_CPP_HASHNODE (_Bool_keyword)->flags |= NODE_CONDITIONAL;

  if (TARGET_VADDUQM)
    {
      __int128_type = get_identifier ("__int128_t");
      __uint128_type = get_identifier ("__uint128_t");
    }
}

/* Helper function to find out which RID_INT_N_* code is the one for
   __int128, if any.  Returns RID_MAX+1 if none apply, which is safe
   (for our purposes, since we always expect to have __int128) to
   compare against.  */
static int
rid_int128(void)
{
  int i;

  for (i = 0; i < NUM_INT_N_ENTS; i ++)
    if (int_n_enabled_p[i]
	&& int_n_data[i].bitsize == 128)
      return RID_INT_N_0 + i;

  return RID_MAX + 1;
}

/* Called to decide whether a conditional macro should be expanded.
   Since we have exactly one such macro (i.e, 'vector'), we do not
   need to examine the 'tok' parameter.  */

static cpp_hashnode *
rs6000_macro_to_expand (cpp_reader *pfile, const cpp_token *tok)
{
  cpp_hashnode *expand_this = tok->val.node.node;
  cpp_hashnode *ident;

  /* If the current machine does not have altivec, don't look for the
     keywords.  */
  if (!TARGET_ALTIVEC)
    return NULL;

  ident = altivec_categorize_keyword (tok);

  if (ident != expand_this)
    expand_this = NULL;

  if (ident == C_CPP_HASHNODE (__vector_keyword))
    {
      int idx = 0;
      do
	tok = cpp_peek_token (pfile, idx++);
      while (tok->type == CPP_PADDING);
      ident = altivec_categorize_keyword (tok);

      if (ident == C_CPP_HASHNODE (__pixel_keyword))
	{
	  expand_this = C_CPP_HASHNODE (__vector_keyword);
	  expand_bool_pixel = __pixel_keyword;
	}
      else if (ident == C_CPP_HASHNODE (__bool_keyword))
	{
	  expand_this = C_CPP_HASHNODE (__vector_keyword);
	  expand_bool_pixel = __bool_keyword;
	}
      /* The boost libraries have code with Iterator::vector vector in it.  If
	 we allow the normal handling, this module will be called recursively,
	 and the vector will be skipped.; */
      else if (ident && (ident != C_CPP_HASHNODE (__vector_keyword)))
	{
	  enum rid rid_code = (enum rid)(ident->rid_code);
	  bool is_macro = cpp_macro_p (ident);

	  /* If there is a function-like macro, check if it is going to be
	     invoked with or without arguments.  Without following ( treat
	     it like non-macro, otherwise the following cpp_get_token eats
	     what should be preserved.  */
	  if (is_macro && cpp_fun_like_macro_p (ident))
	    {
	      int idx2 = idx;
	      do
		tok = cpp_peek_token (pfile, idx2++);
	      while (tok->type == CPP_PADDING);
	      if (tok->type != CPP_OPEN_PAREN)
		is_macro = false;
	    }

	  if (is_macro)
	    {
	      do
		(void) cpp_get_token (pfile);
	      while (--idx > 0);
	      do
		tok = cpp_peek_token (pfile, idx++);
	      while (tok->type == CPP_PADDING);
	      ident = altivec_categorize_keyword (tok);
	      if (ident == C_CPP_HASHNODE (__pixel_keyword))
		{
		  expand_this = C_CPP_HASHNODE (__vector_keyword);
		  expand_bool_pixel = __pixel_keyword;
		  rid_code = RID_MAX;
		}
	      else if (ident == C_CPP_HASHNODE (__bool_keyword))
		{
		  expand_this = C_CPP_HASHNODE (__vector_keyword);
		  expand_bool_pixel = __bool_keyword;
		  rid_code = RID_MAX;
		}
	      else if (ident)
		rid_code = (enum rid)(ident->rid_code);
	    }

	  if (rid_code == RID_UNSIGNED || rid_code == RID_LONG
	      || rid_code == RID_SHORT || rid_code == RID_SIGNED
	      || rid_code == RID_INT || rid_code == RID_CHAR
	      || rid_code == RID_FLOAT
	      || (rid_code == RID_DOUBLE && TARGET_VSX)
	      || (rid_code == rid_int128 () && TARGET_VADDUQM))
	    {
	      expand_this = C_CPP_HASHNODE (__vector_keyword);
	      /* If the next keyword is bool or pixel, it
		 will need to be expanded as well.  */
	      do
		tok = cpp_peek_token (pfile, idx++);
	      while (tok->type == CPP_PADDING);
	      ident = altivec_categorize_keyword (tok);

	      if (ident == C_CPP_HASHNODE (__pixel_keyword))
		expand_bool_pixel = __pixel_keyword;
	      else if (ident == C_CPP_HASHNODE (__bool_keyword))
		expand_bool_pixel = __bool_keyword;
	      else
		{
		  /* Try two tokens down, too.  */
		  do
		    tok = cpp_peek_token (pfile, idx++);
		  while (tok->type == CPP_PADDING);
		  ident = altivec_categorize_keyword (tok);
		  if (ident == C_CPP_HASHNODE (__pixel_keyword))
		    expand_bool_pixel = __pixel_keyword;
		  else if (ident == C_CPP_HASHNODE (__bool_keyword))
		    expand_bool_pixel = __bool_keyword;
		}
	    }

	  /* Support vector __int128_t, but we don't need to worry about bool
	     or pixel on this type.  */
	  else if (TARGET_VADDUQM
		   && (ident == C_CPP_HASHNODE (__int128_type)
		       || ident == C_CPP_HASHNODE (__uint128_type)))
	    expand_this = C_CPP_HASHNODE (__vector_keyword);
	}
    }
  else if (expand_bool_pixel && ident == C_CPP_HASHNODE (__pixel_keyword))
    {
      expand_this = C_CPP_HASHNODE (__pixel_keyword);
      expand_bool_pixel = 0;
    }
  else if (expand_bool_pixel && ident == C_CPP_HASHNODE (__bool_keyword))
    {
      expand_this = C_CPP_HASHNODE (__bool_keyword);
      expand_bool_pixel = 0;
    }

  return expand_this;
}


/* Define or undefine a single macro.  */

static void
rs6000_define_or_undefine_macro (bool define_p, const char *name)
{
  if (TARGET_DEBUG_BUILTIN || TARGET_DEBUG_TARGET)
    fprintf (stderr, "#%s %s\n", (define_p) ? "define" : "undef", name);

  if (define_p)
    cpp_define (parse_in, name);
  else
    cpp_undef (parse_in, name);
}

/* Define or undefine macros based on the current target.  If the user does
   #pragma GCC target, we need to adjust the macros dynamically.  Note, some of
   the options needed for builtins have been moved to separate variables, so
   have both the target flags and the builtin flags as arguments.  */

void
rs6000_target_modify_macros (bool define_p, HOST_WIDE_INT flags,
			     HOST_WIDE_INT bu_mask)
{
  if (TARGET_DEBUG_BUILTIN || TARGET_DEBUG_TARGET)
    fprintf (stderr,
	     "rs6000_target_modify_macros (%s, " HOST_WIDE_INT_PRINT_HEX
	     ", " HOST_WIDE_INT_PRINT_HEX ")\n",
	     (define_p) ? "define" : "undef",
	     flags, bu_mask);

  /* Each of the flags mentioned below controls whether certain
     preprocessor macros will be automatically defined when
     preprocessing source files for compilation by this compiler.
     While most of these flags can be enabled or disabled
     explicitly by specifying certain command-line options when
     invoking the compiler, there are also many ways in which these
     flags are enabled or disabled implicitly, based on compiler
     defaults, configuration choices, and on the presence of certain
     related command-line options.  Many, but not all, of these
     implicit behaviors can be found in file "rs6000.c", the
     rs6000_option_override_internal() function.

     In general, each of the flags may be automatically enabled in
     any of the following conditions:

     1. If no -mcpu target is specified on the command line and no
	--with-cpu target is specified to the configure command line
	and the TARGET_DEFAULT macro for this default cpu host
	includes the flag, and the flag has not been explicitly disabled
	by command-line options.

     2. If the target specified with -mcpu=target on the command line, or
	in the absence of a -mcpu=target command-line option, if the
	target specified using --with-cpu=target on the configure
	command line, is disqualified because the associated binary
	tools (e.g. the assembler) lack support for the requested cpu,
	and the TARGET_DEFAULT macro for this default cpu host
	includes the flag, and the flag has not been explicitly disabled
	by command-line options.

     3. If either of the above two conditions apply except that the
	TARGET_DEFAULT macro is defined to equal zero, and
	TARGET_POWERPC64 and
	a) BYTES_BIG_ENDIAN and the flag to be enabled is either
	   MASK_PPC_GFXOPT or MASK_POWERPC64 (flags for "powerpc64"
	   target), or
	b) !BYTES_BIG_ENDIAN and the flag to be enabled is either
	   MASK_POWERPC64 or it is one of the flags included in
	   ISA_2_7_MASKS_SERVER (flags for "powerpc64le" target).

     4. If a cpu has been requested with a -mcpu=target command-line option
	and this cpu has not been disqualified due to shortcomings of the
	binary tools, and the set of flags associated with the requested cpu
	include the flag to be enabled.  See rs6000-cpus.def for macro
	definitions that represent various ABI standards
	(e.g. ISA_2_1_MASKS, ISA_3_0_MASKS_SERVER) and for a list of
	the specific flags that are associated with each of the cpu
	choices that can be specified as the target of a -mcpu=target
	compile option, or as the target of a --with-cpu=target
	configure option.  Target flags that are specified in either
	of these two ways are considered "implicit" since the flags
	are not mentioned specifically by name.

	Additional documentation describing behavior specific to
	particular flags is provided below, immediately preceding the
	use of each relevant flag.

     5. If there is no -mcpu=target command-line option, and the cpu
	requested by a --with-cpu=target command-line option has not
	been disqualified due to shortcomings of the binary tools, and
	the set of flags associated with the specified target include
	the flag to be enabled.  See the notes immediately above for a
	summary of the flags associated with particular cpu
	definitions.  */

  /* rs6000_isa_flags based options.  */
  rs6000_define_or_undefine_macro (define_p, "_ARCH_PPC");
  if ((flags & OPTION_MASK_PPC_GPOPT) != 0)
    rs6000_define_or_undefine_macro (define_p, "_ARCH_PPCSQ");
  if ((flags & OPTION_MASK_PPC_GFXOPT) != 0)
    rs6000_define_or_undefine_macro (define_p, "_ARCH_PPCGR");
  if ((flags & OPTION_MASK_POWERPC64) != 0)
    rs6000_define_or_undefine_macro (define_p, "_ARCH_PPC64");
  if ((flags & OPTION_MASK_MFCRF) != 0)
    rs6000_define_or_undefine_macro (define_p, "_ARCH_PWR4");
  if ((flags & OPTION_MASK_POPCNTB) != 0)
    rs6000_define_or_undefine_macro (define_p, "_ARCH_PWR5");
  if ((flags & OPTION_MASK_FPRND) != 0)
    rs6000_define_or_undefine_macro (define_p, "_ARCH_PWR5X");
  if ((flags & OPTION_MASK_CMPB) != 0)
    rs6000_define_or_undefine_macro (define_p, "_ARCH_PWR6");
  if ((flags & OPTION_MASK_POPCNTD) != 0)
    rs6000_define_or_undefine_macro (define_p, "_ARCH_PWR7");
  /* Note that the OPTION_MASK_DIRECT_MOVE flag is automatically
     turned on in the following condition:
     1. TARGET_P8_VECTOR is enabled and OPTION_MASK_DIRECT_MOVE is not
        explicitly disabled.
        Hereafter, the OPTION_MASK_DIRECT_MOVE flag is considered to
        have been turned on explicitly.
     Note that the OPTION_MASK_DIRECT_MOVE flag is automatically
     turned off in any of the following conditions:
     1. TARGET_HARD_FLOAT, TARGET_ALTIVEC, or TARGET_VSX is explicitly
	disabled and OPTION_MASK_DIRECT_MOVE was not explicitly
	enabled.
     2. TARGET_VSX is off.  */
  if ((flags & OPTION_MASK_DIRECT_MOVE) != 0)
    rs6000_define_or_undefine_macro (define_p, "_ARCH_PWR8");
  if ((flags & OPTION_MASK_MODULO) != 0)
    rs6000_define_or_undefine_macro (define_p, "_ARCH_PWR9");
  if ((flags & OPTION_MASK_FUTURE) != 0)
    rs6000_define_or_undefine_macro (define_p, "_ARCH_PWR_FUTURE");
  if ((flags & OPTION_MASK_SOFT_FLOAT) != 0)
    rs6000_define_or_undefine_macro (define_p, "_SOFT_FLOAT");
  if ((flags & OPTION_MASK_RECIP_PRECISION) != 0)
    rs6000_define_or_undefine_macro (define_p, "__RECIP_PRECISION__");
  /* Note that the OPTION_MASK_ALTIVEC flag is automatically turned on
     in any of the following conditions:
     1. The operating system is Darwin and it is configured for 64
	bit.  (See darwin_rs6000_override_options.)
     2. The operating system is Darwin and the operating system
	version is 10.5 or higher and the user has not explicitly
	disabled ALTIVEC by specifying -mcpu=G3 or -mno-altivec and
	the compiler is not producing code for integration within the
	kernel.  (See darwin_rs6000_override_options.)
     Note that the OPTION_MASK_ALTIVEC flag is automatically turned
     off in any of the following conditions:
     1. The operating system does not support saving of AltiVec
	registers (OS_MISSING_ALTIVEC).
     2. If an inner context (as introduced by
	__attribute__((__target__())) or #pragma GCC target()
	requests a target that normally enables the
	OPTION_MASK_ALTIVEC flag but the outer-most "main target"
	does not support the rs6000_altivec_abi, this flag is
	turned off for the inner context unless OPTION_MASK_ALTIVEC
	was explicitly enabled for the inner context.  */
  if ((flags & OPTION_MASK_ALTIVEC) != 0)
    {
      const char *vec_str = (define_p) ? "__VEC__=10206" : "__VEC__";
      rs6000_define_or_undefine_macro (define_p, "__ALTIVEC__");
      rs6000_define_or_undefine_macro (define_p, vec_str);

	  /* Define this when supporting context-sensitive keywords.  */
      if (!flag_iso)
	rs6000_define_or_undefine_macro (define_p, "__APPLE_ALTIVEC__");
    }
  /* Note that the OPTION_MASK_VSX flag is automatically turned on in
     the following conditions:
     1. TARGET_P8_VECTOR is explicitly turned on and the OPTION_MASK_VSX
        was not explicitly turned off.  Hereafter, the OPTION_MASK_VSX
        flag is considered to have been explicitly turned on.
     Note that the OPTION_MASK_VSX flag is automatically turned off in
     the following conditions:
     1. The operating system does not support saving of AltiVec
	registers (OS_MISSING_ALTIVEC).
     2. If the option TARGET_HARD_FLOAT is turned off.  Hereafter, the
	OPTION_MASK_VSX flag is considered to have been turned off
	explicitly.
     3. If TARGET_AVOID_XFORM is turned on explicitly at the outermost
	compilation context, or if it is turned on by any means in an
	inner compilation context.  Hereafter, the OPTION_MASK_VSX
	flag is considered to have been turned off explicitly.
     4. If TARGET_ALTIVEC was explicitly disabled.  Hereafter, the
	OPTION_MASK_VSX flag is considered to have been turned off
	explicitly.
     5. If an inner context (as introduced by
	__attribute__((__target__())) or #pragma GCC target()
	requests a target that normally enables the
	OPTION_MASK_VSX flag but the outer-most "main target"
	does not support the rs6000_altivec_abi, this flag is
	turned off for the inner context unless OPTION_MASK_VSX
	was explicitly enabled for the inner context.  */
  if ((flags & OPTION_MASK_VSX) != 0)
    rs6000_define_or_undefine_macro (define_p, "__VSX__");
  if ((flags & OPTION_MASK_HTM) != 0)
    {
      rs6000_define_or_undefine_macro (define_p, "__HTM__");
      /* Tell the user that our HTM insn patterns act as memory barriers.  */
      rs6000_define_or_undefine_macro (define_p, "__TM_FENCE__");
    }
  /* Note that the OPTION_MASK_P8_VECTOR flag is automatically turned
     on in the following conditions:
     1. TARGET_P9_VECTOR is explicitly turned on and
        OPTION_MASK_P8_VECTOR is not explicitly turned off.
        Hereafter, the OPTION_MASK_P8_VECTOR flag is considered to
        have been turned off explicitly.
     Note that the OPTION_MASK_P8_VECTOR flag is automatically turned
     off in the following conditions:
     1. If any of TARGET_HARD_FLOAT, TARGET_ALTIVEC, or TARGET_VSX
	were turned off explicitly and OPTION_MASK_P8_VECTOR flag was
	not turned on explicitly.
     2. If TARGET_ALTIVEC is turned off.  Hereafter, the
	OPTION_MASK_P8_VECTOR flag is considered to have been turned off
	explicitly.
     3. If TARGET_VSX is turned off and OPTION_MASK_P8_VECTOR was not
        explicitly enabled.  If TARGET_VSX is explicitly enabled, the
        OPTION_MASK_P8_VECTOR flag is hereafter also considered to
	have been turned off explicitly.  */
  if ((flags & OPTION_MASK_P8_VECTOR) != 0)
    rs6000_define_or_undefine_macro (define_p, "__POWER8_VECTOR__");
  /* Note that the OPTION_MASK_P9_VECTOR flag is automatically turned
     off in the following conditions:
     1. If TARGET_P8_VECTOR is turned off and OPTION_MASK_P9_VECTOR is
        not turned on explicitly. Hereafter, if OPTION_MASK_P8_VECTOR
        was turned on explicitly, the OPTION_MASK_P9_VECTOR flag is
        also considered to have been turned off explicitly.
     Note that the OPTION_MASK_P9_VECTOR is automatically turned on
     in the following conditions:
     1. If TARGET_P9_MINMAX was turned on explicitly.
        Hereafter, THE OPTION_MASK_P9_VECTOR flag is considered to
        have been turned on explicitly.  */
  if ((flags & OPTION_MASK_P9_VECTOR) != 0)
    rs6000_define_or_undefine_macro (define_p, "__POWER9_VECTOR__");
  /* Note that the OPTION_MASK_QUAD_MEMORY flag is automatically
     turned off in the following conditions:
     1. If TARGET_POWERPC64 is turned off.
     2. If WORDS_BIG_ENDIAN is false (non-atomic quad memory
	load/store are disabled on little endian).  */
  if ((flags & OPTION_MASK_QUAD_MEMORY) != 0)
    rs6000_define_or_undefine_macro (define_p, "__QUAD_MEMORY__");
  /* Note that the OPTION_MASK_QUAD_MEMORY_ATOMIC flag is automatically
     turned off in the following conditions:
     1. If TARGET_POWERPC64 is turned off.
     Note that the OPTION_MASK_QUAD_MEMORY_ATOMIC flag is
     automatically turned on in the following conditions:
     1. If TARGET_QUAD_MEMORY and this flag was not explicitly
	disabled.  */
  if ((flags & OPTION_MASK_QUAD_MEMORY_ATOMIC) != 0)
    rs6000_define_or_undefine_macro (define_p, "__QUAD_MEMORY_ATOMIC__");
  /* Note that the OPTION_MASK_CRYPTO flag is automatically turned off
     in the following conditions:
     1. If any of TARGET_HARD_FLOAT or TARGET_ALTIVEC or TARGET_VSX
	are turned off explicitly and OPTION_MASK_CRYPTO is not turned
	on explicitly.
     2. If TARGET_ALTIVEC is turned off.  */
  if ((flags & OPTION_MASK_CRYPTO) != 0)
    rs6000_define_or_undefine_macro (define_p, "__CRYPTO__");
  if ((flags & OPTION_MASK_FLOAT128_KEYWORD) != 0)
    {
      rs6000_define_or_undefine_macro (define_p, "__FLOAT128__");
      if (define_p)
	rs6000_define_or_undefine_macro (true, "__float128=__ieee128");
      else
	rs6000_define_or_undefine_macro (false, "__float128");
    }
  /* OPTION_MASK_FLOAT128_HARDWARE can be turned on if -mcpu=power9 is used or
     via the target attribute/pragma.  */
  if ((flags & OPTION_MASK_FLOAT128_HW) != 0)
    rs6000_define_or_undefine_macro (define_p, "__FLOAT128_HARDWARE__");

  /* options from the builtin masks.  */
  /* Note that RS6000_BTM_CELL is enabled only if (rs6000_cpu ==
     PROCESSOR_CELL) (e.g. -mcpu=cell).  */
  if ((bu_mask & RS6000_BTM_CELL) != 0)
    rs6000_define_or_undefine_macro (define_p, "__PPU__");
}

void
rs6000_cpu_cpp_builtins (cpp_reader *pfile)
{
  /* Define all of the common macros.  */
  rs6000_target_modify_macros (true, rs6000_isa_flags,
			       rs6000_builtin_mask_calculate ());

  if (TARGET_FRE)
    builtin_define ("__RECIP__");
  if (TARGET_FRES)
    builtin_define ("__RECIPF__");
  if (TARGET_FRSQRTE)
    builtin_define ("__RSQRTE__");
  if (TARGET_FRSQRTES)
    builtin_define ("__RSQRTEF__");
  if (TARGET_FLOAT128_TYPE)
    builtin_define ("__FLOAT128_TYPE__");
#ifdef TARGET_LIBC_PROVIDES_HWCAP_IN_TCB
  builtin_define ("__BUILTIN_CPU_SUPPORTS__");
#endif

  if (TARGET_EXTRA_BUILTINS && cpp_get_options (pfile)->lang != CLK_ASM)
    {
      /* Define the AltiVec syntactic elements.  */
      builtin_define ("__vector=__attribute__((altivec(vector__)))");
      builtin_define ("__pixel=__attribute__((altivec(pixel__))) unsigned short");
      builtin_define ("__bool=__attribute__((altivec(bool__))) unsigned");

      if (!flag_iso)
	{
	  builtin_define ("vector=vector");
	  builtin_define ("pixel=pixel");
	  builtin_define ("bool=bool");
	  builtin_define ("_Bool=_Bool");
	  init_vector_keywords ();

	  /* Enable context-sensitive macros.  */
	  cpp_get_callbacks (pfile)->macro_to_expand = rs6000_macro_to_expand;
	}
    }
  if (!TARGET_HARD_FLOAT)
    builtin_define ("_SOFT_DOUBLE");
  /* Used by lwarx/stwcx. errata work-around.  */
  if (rs6000_cpu == PROCESSOR_PPC405)
    builtin_define ("__PPC405__");
  /* Used by libstdc++.  */
  if (TARGET_NO_LWSYNC)
    builtin_define ("__NO_LWSYNC__");

  if (TARGET_EXTRA_BUILTINS)
    {
      /* For the VSX builtin functions identical to Altivec functions, just map
	 the altivec builtin into the vsx version (the altivec functions
	 generate VSX code if -mvsx).  */
      builtin_define ("__builtin_vsx_xxland=__builtin_vec_and");
      builtin_define ("__builtin_vsx_xxlandc=__builtin_vec_andc");
      builtin_define ("__builtin_vsx_xxlnor=__builtin_vec_nor");
      builtin_define ("__builtin_vsx_xxlor=__builtin_vec_or");
      builtin_define ("__builtin_vsx_xxlxor=__builtin_vec_xor");
      builtin_define ("__builtin_vsx_xxsel=__builtin_vec_sel");
      builtin_define ("__builtin_vsx_vperm=__builtin_vec_perm");

      /* Also map the a and m versions of the multiply/add instructions to the
	 builtin for people blindly going off the instruction manual.  */
      builtin_define ("__builtin_vsx_xvmaddadp=__builtin_vsx_xvmadddp");
      builtin_define ("__builtin_vsx_xvmaddmdp=__builtin_vsx_xvmadddp");
      builtin_define ("__builtin_vsx_xvmaddasp=__builtin_vsx_xvmaddsp");
      builtin_define ("__builtin_vsx_xvmaddmsp=__builtin_vsx_xvmaddsp");
      builtin_define ("__builtin_vsx_xvmsubadp=__builtin_vsx_xvmsubdp");
      builtin_define ("__builtin_vsx_xvmsubmdp=__builtin_vsx_xvmsubdp");
      builtin_define ("__builtin_vsx_xvmsubasp=__builtin_vsx_xvmsubsp");
      builtin_define ("__builtin_vsx_xvmsubmsp=__builtin_vsx_xvmsubsp");
      builtin_define ("__builtin_vsx_xvnmaddadp=__builtin_vsx_xvnmadddp");
      builtin_define ("__builtin_vsx_xvnmaddmdp=__builtin_vsx_xvnmadddp");
      builtin_define ("__builtin_vsx_xvnmaddasp=__builtin_vsx_xvnmaddsp");
      builtin_define ("__builtin_vsx_xvnmaddmsp=__builtin_vsx_xvnmaddsp");
      builtin_define ("__builtin_vsx_xvnmsubadp=__builtin_vsx_xvnmsubdp");
      builtin_define ("__builtin_vsx_xvnmsubmdp=__builtin_vsx_xvnmsubdp");
      builtin_define ("__builtin_vsx_xvnmsubasp=__builtin_vsx_xvnmsubsp");
      builtin_define ("__builtin_vsx_xvnmsubmsp=__builtin_vsx_xvnmsubsp");
    }

  /* Map the old _Float128 'q' builtins into the new 'f128' builtins.  */
  if (TARGET_FLOAT128_TYPE)
    {
      builtin_define ("__builtin_fabsq=__builtin_fabsf128");
      builtin_define ("__builtin_copysignq=__builtin_copysignf128");
      builtin_define ("__builtin_nanq=__builtin_nanf128");
      builtin_define ("__builtin_nansq=__builtin_nansf128");
      builtin_define ("__builtin_infq=__builtin_inff128");
      builtin_define ("__builtin_huge_valq=__builtin_huge_valf128");
    }

  /* Tell users they can use __builtin_bswap{16,64}.  */
  builtin_define ("__HAVE_BSWAP__");

  /* May be overridden by target configuration.  */
  RS6000_CPU_CPP_ENDIAN_BUILTINS();

  if (TARGET_LONG_DOUBLE_128)
    {
      builtin_define ("__LONG_DOUBLE_128__");
      builtin_define ("__LONGDOUBLE128");

      if (TARGET_IEEEQUAD)
	{
	  /* Older versions of GLIBC used __attribute__((__KC__)) to create the
	     IEEE 128-bit floating point complex type for C++ (which does not
	     support _Float128 _Complex).  If the default for long double is
	     IEEE 128-bit mode, the library would need to use
	     __attribute__((__TC__)) instead.  Defining __KF__ and __KC__
	     is a stop-gap to build with the older libraries, until we
	     get an updated library.  */
	  builtin_define ("__LONG_DOUBLE_IEEE128__");
	  builtin_define ("__KF__=__TF__");
	  builtin_define ("__KC__=__TC__");
	}
      else
	builtin_define ("__LONG_DOUBLE_IBM128__");
    }

  switch (TARGET_CMODEL)
    {
      /* Deliberately omit __CMODEL_SMALL__ since that was the default
	 before --mcmodel support was added.  */
    case CMODEL_MEDIUM:
      builtin_define ("__CMODEL_MEDIUM__");
      break;
    case CMODEL_LARGE:
      builtin_define ("__CMODEL_LARGE__");
      break;
    default:
      break;
    }

  switch (rs6000_current_abi)
    {
    case ABI_V4:
      builtin_define ("_CALL_SYSV");
      break;
    case ABI_AIX:
      builtin_define ("_CALL_AIXDESC");
      builtin_define ("_CALL_AIX");
      builtin_define ("_CALL_ELF=1");
      break;
    case ABI_ELFv2:
      builtin_define ("_CALL_ELF=2");
      break;
    case ABI_DARWIN:
      builtin_define ("_CALL_DARWIN");
      break;
    default:
      break;
    }

  /* Vector element order.  */
  if (BYTES_BIG_ENDIAN)
    builtin_define ("__VEC_ELEMENT_REG_ORDER__=__ORDER_BIG_ENDIAN__");
  else
    builtin_define ("__VEC_ELEMENT_REG_ORDER__=__ORDER_LITTLE_ENDIAN__");

  /* Let the compiled code know if 'f' class registers will not be available.  */
  if (TARGET_SOFT_FLOAT)
    builtin_define ("__NO_FPRS__");

  /* Whether aggregates passed by value are aligned to a 16 byte boundary
     if their alignment is 16 bytes or larger.  */
  if ((TARGET_MACHO && rs6000_darwin64_abi)
      || DEFAULT_ABI == ABI_ELFv2
      || (DEFAULT_ABI == ABI_AIX && !rs6000_compat_align_parm))
    builtin_define ("__STRUCT_PARM_ALIGN__=16");
}



/* Convert a type stored into a struct altivec_builtin_types as ID,
   into a tree.  The types are in rs6000_builtin_types: negative values
   create a pointer type for the type associated to ~ID.  Note it is
   a logical NOT, rather than a negation, otherwise you cannot represent
   a pointer type for ID 0.  */

static inline tree
rs6000_builtin_type (int id)
{
  tree t;
  t = rs6000_builtin_types[id < 0 ? ~id : id];
  return id < 0 ? build_pointer_type (t) : t;
}

/* Check whether the type of an argument, T, is compatible with a type ID
   stored into a struct altivec_builtin_types.  Integer types are considered
   compatible; otherwise, the language hook lang_hooks.types_compatible_p makes
   the decision.  Also allow long double and _Float128 to be compatible if
   -mabi=ieeelongdouble.  */

static inline bool
is_float128_p (tree t)
{
  return (t == float128_type_node
	  || (TARGET_IEEEQUAD
	      && TARGET_LONG_DOUBLE_128
	      && t == long_double_type_node));
}
  
static inline bool
rs6000_builtin_type_compatible (tree t, int id)
{
  tree builtin_type;
  builtin_type = rs6000_builtin_type (id);
  if (t == error_mark_node)
    return false;
  if (INTEGRAL_TYPE_P (t) && INTEGRAL_TYPE_P (builtin_type))
    return true;
  else if (TARGET_IEEEQUAD && TARGET_LONG_DOUBLE_128
	   && is_float128_p (t) && is_float128_p (builtin_type))
    return true;
  else
    return lang_hooks.types_compatible_p (t, builtin_type);
}


/* In addition to calling fold_convert for EXPR of type TYPE, also
   call c_fully_fold to remove any C_MAYBE_CONST_EXPRs that could be
   hiding there (PR47197).  */

static tree
fully_fold_convert (tree type, tree expr)
{
  tree result = fold_convert (type, expr);
  bool maybe_const = true;

  if (!c_dialect_cxx ())
    result = c_fully_fold (result, false, &maybe_const);

  return result;
}

/* Build a tree for a function call to an Altivec non-overloaded builtin.
   The overloaded builtin that matched the types and args is described
   by DESC.  The N arguments are given in ARGS, respectively.  

   Actually the only thing it does is calling fold_convert on ARGS, with
   a small exception for vec_{all,any}_{ge,le} predicates. */

static tree
altivec_build_resolved_builtin (tree *args, int n,
				const struct altivec_builtin_types *desc)
{
  tree impl_fndecl = rs6000_builtin_decls[desc->overloaded_code];
  tree ret_type = rs6000_builtin_type (desc->ret_type);
  tree argtypes = TYPE_ARG_TYPES (TREE_TYPE (impl_fndecl));
  tree arg_type[3];
  tree call;

  int i;
  for (i = 0; i < n; i++)
    arg_type[i] = TREE_VALUE (argtypes), argtypes = TREE_CHAIN (argtypes);

  /* The AltiVec overloading implementation is overall gross, but this
     is particularly disgusting.  The vec_{all,any}_{ge,le} builtins
     are completely different for floating-point vs. integer vector
     types, because the former has vcmpgefp, but the latter should use
     vcmpgtXX.

     In practice, the second and third arguments are swapped, and the
     condition (LT vs. EQ, which is recognizable by bit 1 of the first
     argument) is reversed.  Patch the arguments here before building
     the resolved CALL_EXPR.  */
  if (n == 3
      && desc->code == ALTIVEC_BUILTIN_VEC_VCMPGE_P
      && desc->overloaded_code != ALTIVEC_BUILTIN_VCMPGEFP_P
      && desc->overloaded_code != VSX_BUILTIN_XVCMPGEDP_P)
    {
      std::swap (args[1], args[2]);
      std::swap (arg_type[1], arg_type[2]);

      args[0] = fold_build2 (BIT_XOR_EXPR, TREE_TYPE (args[0]), args[0],
			     build_int_cst (NULL_TREE, 2));
    }

  switch (n)
    {
    case 0:
      call = build_call_expr (impl_fndecl, 0);
      break;
    case 1:
      call = build_call_expr (impl_fndecl, 1,
			      fully_fold_convert (arg_type[0], args[0]));
      break;
    case 2:
      call = build_call_expr (impl_fndecl, 2,
			      fully_fold_convert (arg_type[0], args[0]),
			      fully_fold_convert (arg_type[1], args[1]));
      break;
    case 3:
      call = build_call_expr (impl_fndecl, 3,
			      fully_fold_convert (arg_type[0], args[0]),
			      fully_fold_convert (arg_type[1], args[1]),
			      fully_fold_convert (arg_type[2], args[2]));
      break;
    default:
      gcc_unreachable ();
    }
  return fold_convert (ret_type, call);
}

/* Implementation of the resolve_overloaded_builtin target hook, to
   support Altivec's overloaded builtins.  */

tree
altivec_resolve_overloaded_builtin (location_t loc, tree fndecl,
				    void *passed_arglist)
{
  vec<tree, va_gc> *arglist = static_cast<vec<tree, va_gc> *> (passed_arglist);
  unsigned int nargs = vec_safe_length (arglist);
  enum rs6000_builtins fcode
    = (enum rs6000_builtins) DECL_MD_FUNCTION_CODE (fndecl);
  tree fnargs = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
  tree types[3], args[3];
  const struct altivec_builtin_types *desc;
  unsigned int n;

  if (!rs6000_overloaded_builtin_p (fcode))
    return NULL_TREE;

  if (TARGET_DEBUG_BUILTIN)
    fprintf (stderr, "altivec_resolve_overloaded_builtin, code = %4d, %s\n",
	     (int)fcode, IDENTIFIER_POINTER (DECL_NAME (fndecl)));
 
  /* vec_lvsl and vec_lvsr are deprecated for use with LE element order.  */
  if (fcode == ALTIVEC_BUILTIN_VEC_LVSL && !BYTES_BIG_ENDIAN)
    warning (OPT_Wdeprecated,
	     "%<vec_lvsl%> is deprecated for little endian; use "
	     "assignment for unaligned loads and stores");
  else if (fcode == ALTIVEC_BUILTIN_VEC_LVSR && !BYTES_BIG_ENDIAN)
    warning (OPT_Wdeprecated,
	     "%<vec_lvsr%> is deprecated for little endian; use "
	     "assignment for unaligned loads and stores");

  if (fcode == ALTIVEC_BUILTIN_VEC_MUL)
    {
      /* vec_mul needs to be special cased because there are no instructions
	 for it for the {un}signed char, {un}signed short, and {un}signed int
	 types.  */
      if (nargs != 2)
	{
	  error ("builtin %qs only accepts 2 arguments", "vec_mul");
	  return error_mark_node;
	}

      tree arg0 = (*arglist)[0];
      tree arg0_type = TREE_TYPE (arg0);
      tree arg1 = (*arglist)[1];
      tree arg1_type = TREE_TYPE (arg1);

      /* Both arguments must be vectors and the types must be compatible.  */
      if (TREE_CODE (arg0_type) != VECTOR_TYPE)
	goto bad;
      if (!lang_hooks.types_compatible_p (arg0_type, arg1_type))
	goto bad;

      switch (TYPE_MODE (TREE_TYPE (arg0_type)))
	{
	  case E_QImode:
	  case E_HImode:
	  case E_SImode:
	  case E_DImode:
	  case E_TImode:
	    {
	      /* For scalar types just use a multiply expression.  */
	      return fold_build2_loc (loc, MULT_EXPR, TREE_TYPE (arg0), arg0,
				      fold_convert (TREE_TYPE (arg0), arg1));
	    }
	  case E_SFmode:
	    {
	      /* For floats use the xvmulsp instruction directly.  */
	      tree call = rs6000_builtin_decls[VSX_BUILTIN_XVMULSP];
	      return build_call_expr (call, 2, arg0, arg1);
	    }
	  case E_DFmode:
	    {
	      /* For doubles use the xvmuldp instruction directly.  */
	      tree call = rs6000_builtin_decls[VSX_BUILTIN_XVMULDP];
	      return build_call_expr (call, 2, arg0, arg1);
	    }
	  /* Other types are errors.  */
	  default:
	    goto bad;
	}
    }

  if (fcode == ALTIVEC_BUILTIN_VEC_CMPNE)
    {
      /* vec_cmpne needs to be special cased because there are no instructions
	 for it (prior to power 9).  */
      if (nargs != 2)
	{
	  error ("builtin %qs only accepts 2 arguments", "vec_cmpne");
	  return error_mark_node;
	}

      tree arg0 = (*arglist)[0];
      tree arg0_type = TREE_TYPE (arg0);
      tree arg1 = (*arglist)[1];
      tree arg1_type = TREE_TYPE (arg1);

      /* Both arguments must be vectors and the types must be compatible.  */
      if (TREE_CODE (arg0_type) != VECTOR_TYPE)
	goto bad;
      if (!lang_hooks.types_compatible_p (arg0_type, arg1_type))
	goto bad;

      /* Power9 instructions provide the most efficient implementation of
	 ALTIVEC_BUILTIN_VEC_CMPNE if the mode is not DImode or TImode
	 or SFmode or DFmode.  */
      if (!TARGET_P9_VECTOR
	  || (TYPE_MODE (TREE_TYPE (arg0_type)) == DImode)
	  || (TYPE_MODE (TREE_TYPE (arg0_type)) == TImode)
	  || (TYPE_MODE (TREE_TYPE (arg0_type)) == SFmode)
	  || (TYPE_MODE (TREE_TYPE (arg0_type)) == DFmode))
	{
	  switch (TYPE_MODE (TREE_TYPE (arg0_type)))
	    {
	      /* vec_cmpneq (va, vb) == vec_nor (vec_cmpeq (va, vb),
		 vec_cmpeq (va, vb)).  */
	      /* Note:  vec_nand also works but opt changes vec_nand's
		 to vec_nor's anyway.  */
	    case E_QImode:
	    case E_HImode:
	    case E_SImode:
	    case E_DImode:
	    case E_TImode:
	    case E_SFmode:
	    case E_DFmode:
	      {
		/* call = vec_cmpeq (va, vb)
		   result = vec_nor (call, call).  */
		vec<tree, va_gc> *params = make_tree_vector ();
		vec_safe_push (params, arg0);
		vec_safe_push (params, arg1);
		tree call = altivec_resolve_overloaded_builtin
		  (loc, rs6000_builtin_decls[ALTIVEC_BUILTIN_VEC_CMPEQ],
		   params);
		/* Use save_expr to ensure that operands used more than once
		   that may have side effects (like calls) are only evaluated
		   once.  */
		call = save_expr (call);
		params = make_tree_vector ();
		vec_safe_push (params, call);
		vec_safe_push (params, call);
		return altivec_resolve_overloaded_builtin
		  (loc, rs6000_builtin_decls[ALTIVEC_BUILTIN_VEC_NOR], params);
	      }
	      /* Other types are errors.  */
	    default:
	      goto bad;
	    }
	}
      /* else, fall through and process the Power9 alternative below */
    }

  if (fcode == ALTIVEC_BUILTIN_VEC_ADDE
      || fcode == ALTIVEC_BUILTIN_VEC_SUBE)
    {
      /* vec_adde needs to be special cased because there is no instruction
	  for the {un}signed int version.  */
      if (nargs != 3)
	{
	  const char *name = fcode == ALTIVEC_BUILTIN_VEC_ADDE ?
	    "vec_adde": "vec_sube";
	  error ("builtin %qs only accepts 3 arguments", name);
	  return error_mark_node;
	}

      tree arg0 = (*arglist)[0];
      tree arg0_type = TREE_TYPE (arg0);
      tree arg1 = (*arglist)[1];
      tree arg1_type = TREE_TYPE (arg1);
      tree arg2 = (*arglist)[2];
      tree arg2_type = TREE_TYPE (arg2);

      /* All 3 arguments must be vectors of (signed or unsigned) (int or
	 __int128) and the types must be compatible.  */
      if (TREE_CODE (arg0_type) != VECTOR_TYPE)
	goto bad;
      if (!lang_hooks.types_compatible_p (arg0_type, arg1_type)
	  || !lang_hooks.types_compatible_p (arg1_type, arg2_type))
	goto bad;

      switch (TYPE_MODE (TREE_TYPE (arg0_type)))
	{
	  /* For {un}signed ints,
	     vec_adde (va, vb, carryv) == vec_add (vec_add (va, vb),
						   vec_and (carryv, 1)).
	     vec_sube (va, vb, carryv) == vec_sub (vec_sub (va, vb),
						   vec_and (carryv, 1)).  */
	  case E_SImode:
	    {
	      tree add_sub_builtin;

	      vec<tree, va_gc> *params = make_tree_vector ();
	      vec_safe_push (params, arg0);
	      vec_safe_push (params, arg1);

	      if (fcode == ALTIVEC_BUILTIN_VEC_ADDE)
		add_sub_builtin = rs6000_builtin_decls[ALTIVEC_BUILTIN_VEC_ADD];
	      else
		add_sub_builtin = rs6000_builtin_decls[ALTIVEC_BUILTIN_VEC_SUB];

	      tree call = altivec_resolve_overloaded_builtin (loc,
							      add_sub_builtin,
							      params);
	      tree const1 = build_int_cstu (TREE_TYPE (arg0_type), 1);
	      tree ones_vector = build_vector_from_val (arg0_type, const1);
	      tree and_expr = fold_build2_loc (loc, BIT_AND_EXPR, arg0_type,
					       arg2, ones_vector);
	      params = make_tree_vector ();
	      vec_safe_push (params, call);
	      vec_safe_push (params, and_expr);
	      return altivec_resolve_overloaded_builtin (loc, add_sub_builtin,
							 params);
	    }
	  /* For {un}signed __int128s use the vaddeuqm instruction
		directly.  */
	  case E_TImode:
	    {
	       tree bii;

	       if (fcode == ALTIVEC_BUILTIN_VEC_ADDE)
		 bii = rs6000_builtin_decls[P8V_BUILTIN_VEC_VADDEUQM];

	       else
		 bii = rs6000_builtin_decls[P8V_BUILTIN_VEC_VSUBEUQM];

	       return altivec_resolve_overloaded_builtin (loc, bii, arglist);
	    }

	  /* Types other than {un}signed int and {un}signed __int128
		are errors.  */
	  default:
	    goto bad;
	}
    }

  if (fcode == ALTIVEC_BUILTIN_VEC_ADDEC
      || fcode == ALTIVEC_BUILTIN_VEC_SUBEC)
    {
      /* vec_addec and vec_subec needs to be special cased because there is
	 no instruction for the {un}signed int version.  */
      if (nargs != 3)
	{
	  const char *name = fcode == ALTIVEC_BUILTIN_VEC_ADDEC ?
	    "vec_addec": "vec_subec";
	  error ("builtin %qs only accepts 3 arguments", name);
	  return error_mark_node;
	}

      tree arg0 = (*arglist)[0];
      tree arg0_type = TREE_TYPE (arg0);
      tree arg1 = (*arglist)[1];
      tree arg1_type = TREE_TYPE (arg1);
      tree arg2 = (*arglist)[2];
      tree arg2_type = TREE_TYPE (arg2);

      /* All 3 arguments must be vectors of (signed or unsigned) (int or
	 __int128) and the types must be compatible.  */
      if (TREE_CODE (arg0_type) != VECTOR_TYPE)
	goto bad;
      if (!lang_hooks.types_compatible_p (arg0_type, arg1_type)
	  || !lang_hooks.types_compatible_p (arg1_type, arg2_type))
	goto bad;

      switch (TYPE_MODE (TREE_TYPE (arg0_type)))
	{
	  /* For {un}signed ints,
	      vec_addec (va, vb, carryv) ==
				vec_or (vec_addc (va, vb),
					vec_addc (vec_add (va, vb),
						  vec_and (carryv, 0x1))).  */
	  case E_SImode:
	    {
	    /* Use save_expr to ensure that operands used more than once
		that may have side effects (like calls) are only evaluated
		once.  */
	    tree as_builtin;
	    tree as_c_builtin;

	    arg0 = save_expr (arg0);
	    arg1 = save_expr (arg1);
	    vec<tree, va_gc> *params = make_tree_vector ();
	    vec_safe_push (params, arg0);
	    vec_safe_push (params, arg1);

	    if (fcode == ALTIVEC_BUILTIN_VEC_ADDEC)
	      as_c_builtin = rs6000_builtin_decls[ALTIVEC_BUILTIN_VEC_ADDC];
	    else
	      as_c_builtin = rs6000_builtin_decls[ALTIVEC_BUILTIN_VEC_SUBC];

	    tree call1 = altivec_resolve_overloaded_builtin (loc, as_c_builtin,
							     params);
	    params = make_tree_vector ();
	    vec_safe_push (params, arg0);
	    vec_safe_push (params, arg1);


	    if (fcode == ALTIVEC_BUILTIN_VEC_ADDEC)
	      as_builtin = rs6000_builtin_decls[ALTIVEC_BUILTIN_VEC_ADD];
	    else
	      as_builtin = rs6000_builtin_decls[ALTIVEC_BUILTIN_VEC_SUB];

	    tree call2 = altivec_resolve_overloaded_builtin (loc, as_builtin,
							     params);
	    tree const1 = build_int_cstu (TREE_TYPE (arg0_type), 1);
	    tree ones_vector = build_vector_from_val (arg0_type, const1);
	    tree and_expr = fold_build2_loc (loc, BIT_AND_EXPR, arg0_type,
					     arg2, ones_vector);
	    params = make_tree_vector ();
	    vec_safe_push (params, call2);
	    vec_safe_push (params, and_expr);
	    call2 = altivec_resolve_overloaded_builtin (loc, as_c_builtin,
							params);
	    params = make_tree_vector ();
	    vec_safe_push (params, call1);
	    vec_safe_push (params, call2);
	    tree or_builtin = rs6000_builtin_decls[ALTIVEC_BUILTIN_VEC_OR];
	    return altivec_resolve_overloaded_builtin (loc, or_builtin,
						       params);
	    }
	  /* For {un}signed __int128s use the vaddecuq/vsubbecuq
	     instructions.  */
	  case E_TImode:
	    {
	       tree bii;

	       if (fcode == ALTIVEC_BUILTIN_VEC_ADDEC)
		 bii = rs6000_builtin_decls[P8V_BUILTIN_VEC_VADDECUQ];

	       else
		 bii = rs6000_builtin_decls[P8V_BUILTIN_VEC_VSUBECUQ];

	       return altivec_resolve_overloaded_builtin (loc, bii, arglist);
	    }
	  /* Types other than {un}signed int and {un}signed __int128
		are errors.  */
	  default:
	    goto bad;
	}
    }

  /* For now treat vec_splats and vec_promote as the same.  */
  if (fcode == ALTIVEC_BUILTIN_VEC_SPLATS
      || fcode == ALTIVEC_BUILTIN_VEC_PROMOTE)
    {
      tree type, arg;
      int size;
      int i;
      bool unsigned_p;
      vec<constructor_elt, va_gc> *vec;
      const char *name = fcode == ALTIVEC_BUILTIN_VEC_SPLATS ? "vec_splats": "vec_promote";

      if (fcode == ALTIVEC_BUILTIN_VEC_SPLATS && nargs != 1)
	{
	  error ("builtin %qs only accepts 1 argument", name);
	  return error_mark_node;
	}
      if (fcode == ALTIVEC_BUILTIN_VEC_PROMOTE && nargs != 2)
	{
	  error ("builtin %qs only accepts 2 arguments", name);
	  return error_mark_node;
	}
      /* Ignore promote's element argument.  */
      if (fcode == ALTIVEC_BUILTIN_VEC_PROMOTE
	  && !INTEGRAL_TYPE_P (TREE_TYPE ((*arglist)[1])))
	goto bad;

      arg = (*arglist)[0];
      type = TREE_TYPE (arg);
      if (!SCALAR_FLOAT_TYPE_P (type)
	  && !INTEGRAL_TYPE_P (type))
	goto bad;
      unsigned_p = TYPE_UNSIGNED (type);
      switch (TYPE_MODE (type))
	{
	  case E_TImode:
	    type = (unsigned_p ? unsigned_V1TI_type_node : V1TI_type_node);
	    size = 1;
	    break;
	  case E_DImode:
	    type = (unsigned_p ? unsigned_V2DI_type_node : V2DI_type_node);
	    size = 2;
	    break;
	  case E_SImode:
	    type = (unsigned_p ? unsigned_V4SI_type_node : V4SI_type_node);
	    size = 4;
	    break;
	  case E_HImode:
	    type = (unsigned_p ? unsigned_V8HI_type_node : V8HI_type_node);
	    size = 8;
	    break;
	  case E_QImode:
	    type = (unsigned_p ? unsigned_V16QI_type_node : V16QI_type_node);
	    size = 16;
	    break;
	  case E_SFmode: type = V4SF_type_node; size = 4; break;
	  case E_DFmode: type = V2DF_type_node; size = 2; break;
	  default:
	    goto bad;
	}
      arg = save_expr (fold_convert (TREE_TYPE (type), arg));
      vec_alloc (vec, size);
      for(i = 0; i < size; i++)
	{
	  constructor_elt elt = {NULL_TREE, arg};
	  vec->quick_push (elt);
	}
	return build_constructor (type, vec);
    }

  /* For now use pointer tricks to do the extraction, unless we are on VSX
     extracting a double from a constant offset.  */
  if (fcode == ALTIVEC_BUILTIN_VEC_EXTRACT)
    {
      tree arg1;
      tree arg1_type;
      tree arg2;
      tree arg1_inner_type;
      tree decl, stmt;
      tree innerptrtype;
      machine_mode mode;

      /* No second argument. */
      if (nargs != 2)
	{
	  error ("builtin %qs only accepts 2 arguments", "vec_extract");
	  return error_mark_node;
	}

      arg2 = (*arglist)[1];
      arg1 = (*arglist)[0];
      arg1_type = TREE_TYPE (arg1);

      if (TREE_CODE (arg1_type) != VECTOR_TYPE)
	goto bad;
      if (!INTEGRAL_TYPE_P (TREE_TYPE (arg2)))
	goto bad;

      /* See if we can optimize vec_extracts with the current VSX instruction
	 set.  */
      mode = TYPE_MODE (arg1_type);
      if (VECTOR_MEM_VSX_P (mode))

	{
	  tree call = NULL_TREE;
	  int nunits = GET_MODE_NUNITS (mode);

	  arg2 = fold_for_warn (arg2);

	  /* If the second argument is an integer constant, generate
	     the built-in code if we can.  We need 64-bit and direct
	     move to extract the small integer vectors.  */
	  if (TREE_CODE (arg2) == INTEGER_CST)
	    {
	      wide_int selector = wi::to_wide (arg2);
	      selector = wi::umod_trunc (selector, nunits);
	      arg2 = wide_int_to_tree (TREE_TYPE (arg2), selector);
	      switch (mode)
		{
		default:
		  break;

		case E_V1TImode:
		  call = rs6000_builtin_decls[VSX_BUILTIN_VEC_EXT_V1TI];
		  break;

		case E_V2DFmode:
		  call = rs6000_builtin_decls[VSX_BUILTIN_VEC_EXT_V2DF];
		  break;

		case E_V2DImode:
		  call = rs6000_builtin_decls[VSX_BUILTIN_VEC_EXT_V2DI];
		  break;

		case E_V4SFmode:
		  call = rs6000_builtin_decls[ALTIVEC_BUILTIN_VEC_EXT_V4SF];
		  break;

		case E_V4SImode:
		  if (TARGET_DIRECT_MOVE_64BIT)
		    call = rs6000_builtin_decls[ALTIVEC_BUILTIN_VEC_EXT_V4SI];
		  break;

		case E_V8HImode:
		  if (TARGET_DIRECT_MOVE_64BIT)
		    call = rs6000_builtin_decls[ALTIVEC_BUILTIN_VEC_EXT_V8HI];
		  break;

		case E_V16QImode:
		  if (TARGET_DIRECT_MOVE_64BIT)
		    call = rs6000_builtin_decls[ALTIVEC_BUILTIN_VEC_EXT_V16QI];
		  break;
		}
	    }

	  /* If the second argument is variable, we can optimize it if we are
	     generating 64-bit code on a machine with direct move.  */
	  else if (TREE_CODE (arg2) != INTEGER_CST && TARGET_DIRECT_MOVE_64BIT)
	    {
	      switch (mode)
		{
		default:
		  break;

		case E_V2DFmode:
		  call = rs6000_builtin_decls[VSX_BUILTIN_VEC_EXT_V2DF];
		  break;

		case E_V2DImode:
		  call = rs6000_builtin_decls[VSX_BUILTIN_VEC_EXT_V2DI];
		  break;

		case E_V4SFmode:
		  call = rs6000_builtin_decls[ALTIVEC_BUILTIN_VEC_EXT_V4SF];
		  break;

		case E_V4SImode:
		  call = rs6000_builtin_decls[ALTIVEC_BUILTIN_VEC_EXT_V4SI];
		  break;

		case E_V8HImode:
		  call = rs6000_builtin_decls[ALTIVEC_BUILTIN_VEC_EXT_V8HI];
		  break;

		case E_V16QImode:
		  call = rs6000_builtin_decls[ALTIVEC_BUILTIN_VEC_EXT_V16QI];
		  break;
		}
	    }

	  if (call)
	    {
	      tree result = build_call_expr (call, 2, arg1, arg2);
	      /* Coerce the result to vector element type.  May be no-op.  */
	      arg1_inner_type = TREE_TYPE (arg1_type);
	      result = fold_convert (arg1_inner_type, result);
	      return result;
	    }
	}

      /* Build *(((arg1_inner_type*)&(vector type){arg1})+arg2). */
      arg1_inner_type = TREE_TYPE (arg1_type);
      arg2 = build_binary_op (loc, BIT_AND_EXPR, arg2,
			      build_int_cst (TREE_TYPE (arg2),
					     TYPE_VECTOR_SUBPARTS (arg1_type)
					     - 1), 0);
      decl = build_decl (loc, VAR_DECL, NULL_TREE, arg1_type);
      DECL_EXTERNAL (decl) = 0;
      TREE_PUBLIC (decl) = 0;
      DECL_CONTEXT (decl) = current_function_decl;
      TREE_USED (decl) = 1;
      TREE_TYPE (decl) = arg1_type;
      TREE_READONLY (decl) = TYPE_READONLY (arg1_type);
      if (c_dialect_cxx ())
	{
	  stmt = build4 (TARGET_EXPR, arg1_type, decl, arg1,
			 NULL_TREE, NULL_TREE);
	  SET_EXPR_LOCATION (stmt, loc);
	}
      else
	{
	  DECL_INITIAL (decl) = arg1;
	  stmt = build1 (DECL_EXPR, arg1_type, decl);
	  TREE_ADDRESSABLE (decl) = 1;
	  SET_EXPR_LOCATION (stmt, loc);
	  stmt = build1 (COMPOUND_LITERAL_EXPR, arg1_type, stmt);
	}

      innerptrtype = build_pointer_type (arg1_inner_type);

      stmt = build_unary_op (loc, ADDR_EXPR, stmt, 0);
      stmt = convert (innerptrtype, stmt);
      stmt = build_binary_op (loc, PLUS_EXPR, stmt, arg2, 1);
      stmt = build_indirect_ref (loc, stmt, RO_NULL);

      /* PR83660: We mark this as having side effects so that
	 downstream in fold_build_cleanup_point_expr () it will get a
	 CLEANUP_POINT_EXPR.  If it does not we can run into an ICE
	 later in gimplify_cleanup_point_expr ().  Potentially this
	 causes missed optimization because the actually is no side
	 effect.  */
      if (c_dialect_cxx ())
	TREE_SIDE_EFFECTS (stmt) = 1;

      return stmt;
    }

  /* For now use pointer tricks to do the insertion, unless we are on VSX
     inserting a double to a constant offset..  */
  if (fcode == ALTIVEC_BUILTIN_VEC_INSERT)
    {
      tree arg0;
      tree arg1;
      tree arg2;
      tree arg1_type;
      tree arg1_inner_type;
      tree decl, stmt;
      tree innerptrtype;
      machine_mode mode;

      /* No second or third arguments. */
      if (nargs != 3)
	{
	  error ("builtin %qs only accepts 3 arguments", "vec_insert");
	  return error_mark_node;
	}

      arg0 = (*arglist)[0];
      arg1 = (*arglist)[1];
      arg1_type = TREE_TYPE (arg1);
      arg2 = fold_for_warn ((*arglist)[2]);

      if (TREE_CODE (arg1_type) != VECTOR_TYPE)
	goto bad;
      if (!INTEGRAL_TYPE_P (TREE_TYPE (arg2)))
	goto bad;

      /* If we can use the VSX xxpermdi instruction, use that for insert.  */
      mode = TYPE_MODE (arg1_type);
      if ((mode == V2DFmode || mode == V2DImode) && VECTOR_UNIT_VSX_P (mode)
	  && TREE_CODE (arg2) == INTEGER_CST)
	{
	  wide_int selector = wi::to_wide (arg2);
	  selector = wi::umod_trunc (selector, 2);
	  tree call = NULL_TREE;

	  arg2 = wide_int_to_tree (TREE_TYPE (arg2), selector);
	  if (mode == V2DFmode)
	    call = rs6000_builtin_decls[VSX_BUILTIN_VEC_SET_V2DF];
	  else if (mode == V2DImode)
	    call = rs6000_builtin_decls[VSX_BUILTIN_VEC_SET_V2DI];

	  /* Note, __builtin_vec_insert_<xxx> has vector and scalar types
	     reversed.  */
	  if (call)
	    return build_call_expr (call, 3, arg1, arg0, arg2);
	}
      else if (mode == V1TImode && VECTOR_UNIT_VSX_P (mode)
	       && TREE_CODE (arg2) == INTEGER_CST)
	{
	  tree call = rs6000_builtin_decls[VSX_BUILTIN_VEC_SET_V1TI];
	  wide_int selector = wi::zero(32);

	  arg2 = wide_int_to_tree (TREE_TYPE (arg2), selector);
	  /* Note, __builtin_vec_insert_<xxx> has vector and scalar types
	     reversed.  */
	  return build_call_expr (call, 3, arg1, arg0, arg2);
	}

      /* Build *(((arg1_inner_type*)&(vector type){arg1})+arg2) = arg0. */
      arg1_inner_type = TREE_TYPE (arg1_type);
      if (TYPE_VECTOR_SUBPARTS (arg1_type) == 1)
	arg2 = build_int_cst (TREE_TYPE (arg2), 0);
      else
	arg2 = build_binary_op (loc, BIT_AND_EXPR, arg2,
				build_int_cst (TREE_TYPE (arg2),
					       TYPE_VECTOR_SUBPARTS (arg1_type)
					       - 1), 0);
      decl = build_decl (loc, VAR_DECL, NULL_TREE, arg1_type);
      DECL_EXTERNAL (decl) = 0;
      TREE_PUBLIC (decl) = 0;
      DECL_CONTEXT (decl) = current_function_decl;
      TREE_USED (decl) = 1;
      TREE_TYPE (decl) = arg1_type;
      TREE_READONLY (decl) = TYPE_READONLY (arg1_type);
      if (c_dialect_cxx ())
	{
	  stmt = build4 (TARGET_EXPR, arg1_type, decl, arg1,
			 NULL_TREE, NULL_TREE);
	  SET_EXPR_LOCATION (stmt, loc);
	}
      else
	{
	  DECL_INITIAL (decl) = arg1;
	  stmt = build1 (DECL_EXPR, arg1_type, decl);
	  TREE_ADDRESSABLE (decl) = 1;
	  SET_EXPR_LOCATION (stmt, loc);
	  stmt = build1 (COMPOUND_LITERAL_EXPR, arg1_type, stmt);
	}

      innerptrtype = build_pointer_type (arg1_inner_type);

      stmt = build_unary_op (loc, ADDR_EXPR, stmt, 0);
      stmt = convert (innerptrtype, stmt);
      stmt = build_binary_op (loc, PLUS_EXPR, stmt, arg2, 1);
      stmt = build_indirect_ref (loc, stmt, RO_NULL);
      stmt = build2 (MODIFY_EXPR, TREE_TYPE (stmt), stmt,
		     convert (TREE_TYPE (stmt), arg0));
      stmt = build2 (COMPOUND_EXPR, arg1_type, stmt, decl);
      return stmt;
    }

  for (n = 0;
       !VOID_TYPE_P (TREE_VALUE (fnargs)) && n < nargs;
       fnargs = TREE_CHAIN (fnargs), n++)
    {
      tree decl_type = TREE_VALUE (fnargs);
      tree arg = (*arglist)[n];
      tree type;

      if (arg == error_mark_node)
	return error_mark_node;

      if (n >= 3)
        abort ();

      arg = default_conversion (arg);

      /* The C++ front-end converts float * to const void * using
	 NOP_EXPR<const void *> (NOP_EXPR<void *> (x)).  */
      type = TREE_TYPE (arg);
      if (POINTER_TYPE_P (type)
	  && TREE_CODE (arg) == NOP_EXPR
	  && lang_hooks.types_compatible_p (TREE_TYPE (arg),
					    const_ptr_type_node)
	  && lang_hooks.types_compatible_p (TREE_TYPE (TREE_OPERAND (arg, 0)),
					    ptr_type_node))
	{
	  arg = TREE_OPERAND (arg, 0);
          type = TREE_TYPE (arg);
	}

      /* Remove the const from the pointers to simplify the overload
	 matching further down.  */
      if (POINTER_TYPE_P (decl_type)
	  && POINTER_TYPE_P (type)
	  && TYPE_QUALS (TREE_TYPE (type)) != 0)
	{
          if (TYPE_READONLY (TREE_TYPE (type))
	      && !TYPE_READONLY (TREE_TYPE (decl_type)))
	    warning (0, "passing argument %d of %qE discards qualifiers from "
		        "pointer target type", n + 1, fndecl);
	  type = build_pointer_type (build_qualified_type (TREE_TYPE (type),
							   0));
	  arg = fold_convert (type, arg);
	}

      /* For P9V_BUILTIN_VEC_LXVL, convert any const * to its non constant
	 equivalent to simplify the overload matching below.  */
      if (fcode == P9V_BUILTIN_VEC_LXVL)
	{
	  if (POINTER_TYPE_P (type)
	      && TYPE_READONLY (TREE_TYPE (type)))
	    {
	      type = build_pointer_type (build_qualified_type (
						TREE_TYPE (type),0));
	      arg = fold_convert (type, arg);
	    }
	}

      args[n] = arg;
      types[n] = type;
    }

  /* If the number of arguments did not match the prototype, return NULL
     and the generic code will issue the appropriate error message.  */
  if (!VOID_TYPE_P (TREE_VALUE (fnargs)) || n < nargs)
    return NULL;

  if (n == 0)
    abort ();

  if (fcode == ALTIVEC_BUILTIN_VEC_STEP)
    {
      if (TREE_CODE (types[0]) != VECTOR_TYPE)
	goto bad;

      return build_int_cst (NULL_TREE, TYPE_VECTOR_SUBPARTS (types[0]));
    }

  {
    bool unsupported_builtin = false;
    enum rs6000_builtins overloaded_code;
    tree result = NULL;
    for (desc = altivec_overloaded_builtins;
	 desc->code && desc->code != fcode; desc++)
      continue;

    /* Need to special case __builtin_cmp because the overloaded forms
       of this function take (unsigned int, unsigned int) or (unsigned
       long long int, unsigned long long int).  Since C conventions
       allow the respective argument types to be implicitly coerced into
       each other, the default handling does not provide adequate
       discrimination between the desired forms of the function.  */
    if (fcode == P6_OV_BUILTIN_CMPB)
      {
	machine_mode arg1_mode = TYPE_MODE (types[0]);
	machine_mode arg2_mode = TYPE_MODE (types[1]);

	if (nargs != 2)
	  {
	    error ("builtin %qs only accepts 2 arguments", "__builtin_cmpb");
	    return error_mark_node;
	  }

	/* If any supplied arguments are wider than 32 bits, resolve to
	   64-bit variant of built-in function.  */
	if ((GET_MODE_PRECISION (arg1_mode) > 32)
	    || (GET_MODE_PRECISION (arg2_mode) > 32))
	  {
	    /* Assure all argument and result types are compatible with
	       the built-in function represented by P6_BUILTIN_CMPB.  */
	    overloaded_code = P6_BUILTIN_CMPB;
	  }
	else
	  {
	    /* Assure all argument and result types are compatible with
	       the built-in function represented by P6_BUILTIN_CMPB_32.  */
	    overloaded_code = P6_BUILTIN_CMPB_32;
	  }

	while (desc->code && desc->code == fcode
	       && desc->overloaded_code != overloaded_code)
	  desc++;

	if (desc->code && (desc->code == fcode)
	    && rs6000_builtin_type_compatible (types[0], desc->op1)
	    && rs6000_builtin_type_compatible (types[1], desc->op2))
	  {
	    if (rs6000_builtin_decls[desc->overloaded_code] != NULL_TREE)
	      {
		result = altivec_build_resolved_builtin (args, n, desc);
		/* overloaded_code is set above */
		if (!rs6000_builtin_is_supported_p (overloaded_code))
		  unsupported_builtin = true;
		else
		  return result;
	      }
	    else
	      unsupported_builtin = true;
	  }
      }
    else if (fcode == P9V_BUILTIN_VEC_VSIEDP)
      {
	machine_mode arg1_mode = TYPE_MODE (types[0]);

	if (nargs != 2)
	  {
	    error ("builtin %qs only accepts 2 arguments",
		   "scalar_insert_exp");
	    return error_mark_node;
	  }

	/* If supplied first argument is wider than 64 bits, resolve to
	   128-bit variant of built-in function.  */
	if (GET_MODE_PRECISION (arg1_mode) > 64)
	  {
	    /* If first argument is of float variety, choose variant
	       that expects __ieee128 argument.  Otherwise, expect
	       __int128 argument.  */
	    if (GET_MODE_CLASS (arg1_mode) == MODE_FLOAT)
	      overloaded_code = P9V_BUILTIN_VSIEQPF;
	    else
	      overloaded_code = P9V_BUILTIN_VSIEQP;
	  }
	else
	  {
	    /* If first argument is of float variety, choose variant
	       that expects double argument.  Otherwise, expect
	       long long int argument.  */
	    if (GET_MODE_CLASS (arg1_mode) == MODE_FLOAT)
	      overloaded_code = P9V_BUILTIN_VSIEDPF;
	    else
	      overloaded_code = P9V_BUILTIN_VSIEDP;
	  }
	while (desc->code && desc->code == fcode
	       && desc->overloaded_code != overloaded_code)
	  desc++;

	if (desc->code && (desc->code == fcode)
	    && rs6000_builtin_type_compatible (types[0], desc->op1)
	    && rs6000_builtin_type_compatible (types[1], desc->op2))
	  {
	    if (rs6000_builtin_decls[desc->overloaded_code] != NULL_TREE)
	      {
		result = altivec_build_resolved_builtin (args, n, desc);
		/* overloaded_code is set above.  */
		if (!rs6000_builtin_is_supported_p (overloaded_code))
		  unsupported_builtin = true;
		else
		  return result;
	      }
	    else
	      unsupported_builtin = true;
	  }
      }
    else
      {
	/* For arguments after the last, we have RS6000_BTI_NOT_OPAQUE in
	   the opX fields.  */
	for (; desc->code == fcode; desc++)
	  {
	    if ((desc->op1 == RS6000_BTI_NOT_OPAQUE
		 || rs6000_builtin_type_compatible (types[0], desc->op1))
		&& (desc->op2 == RS6000_BTI_NOT_OPAQUE
		    || rs6000_builtin_type_compatible (types[1], desc->op2))
		&& (desc->op3 == RS6000_BTI_NOT_OPAQUE
		    || rs6000_builtin_type_compatible (types[2], desc->op3)))
	      {
		if (rs6000_builtin_decls[desc->overloaded_code] != NULL_TREE)
		  {
		    result = altivec_build_resolved_builtin (args, n, desc);
		    if (!rs6000_builtin_is_supported_p (desc->overloaded_code))
		      {
			/* Allow loop to continue in case a different
			   definition is supported.  */
			overloaded_code = desc->overloaded_code;
			unsupported_builtin = true;
		      }
		    else
		      return result;
		  }
		else
		  unsupported_builtin = true;
	      }
	  }
      }

    if (unsupported_builtin)
      {
	const char *name = rs6000_overloaded_builtin_name (fcode);
	if (result != NULL)
	  {
	    const char *internal_name
	      = rs6000_overloaded_builtin_name (overloaded_code);
	    /* An error message making reference to the name of the
	       non-overloaded function has already been issued.  Add
	       clarification of the previous message.  */
	    rich_location richloc (line_table, input_location);
	    inform (&richloc, "builtin %qs requires builtin %qs",
		    name, internal_name);
	  }
	else
	  error ("%qs is not supported in this compiler configuration", name);
	/* If an error-representing  result tree was returned from
	   altivec_build_resolved_builtin above, use it.  */
	return (result != NULL) ? result : error_mark_node;
      }
  }
 bad:
  {
    const char *name = rs6000_overloaded_builtin_name (fcode);
    error ("invalid parameter combination for AltiVec intrinsic %qs", name);
    return error_mark_node;
  }
}