diff options
Diffstat (limited to 'libquadmath/math/hypotq.c')
-rw-r--r-- | libquadmath/math/hypotq.c | 189 |
1 files changed, 95 insertions, 94 deletions
diff --git a/libquadmath/math/hypotq.c b/libquadmath/math/hypotq.c index 057901073dc..8dcb749819e 100644 --- a/libquadmath/math/hypotq.c +++ b/libquadmath/math/hypotq.c @@ -1,3 +1,7 @@ +/* e_hypotl.c -- long double version of e_hypot.c. + * Conversion to long double by Jakub Jelinek, jakub@redhat.com. + */ + /* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. @@ -9,19 +13,14 @@ * ==================================================== */ -/* From e_hypotl.c -- long double version of e_hypot.c. - * Conversion to long double by Jakub Jelinek, jakub@redhat.com. - * Conversion to __float128 by FX Coudert, fxcoudert@gcc.gnu.org. - */ - /* hypotq(x,y) * * Method : * If (assume round-to-nearest) z=x*x+y*y - * has error less than sqrtl(2)/2 ulp, than - * sqrtl(z) has error less than 1 ulp (exercise). + * has error less than sqrtq(2)/2 ulp, than + * sqrtq(z) has error less than 1 ulp (exercise). * - * So, compute sqrtl(x*x+y*y) with some care as + * So, compute sqrtq(x*x+y*y) with some care as * follows to get the error below 1 ulp: * * Assume x>y>0; @@ -38,100 +37,102 @@ * large or too tiny * * Special cases: - * hypotq(x,y) is INF if x or y is +INF or -INF; else - * hypotq(x,y) is NAN if x or y is NAN. + * hypotl(x,y) is INF if x or y is +INF or -INF; else + * hypotl(x,y) is NAN if x or y is NAN. * * Accuracy: - * hypotq(x,y) returns sqrtl(x^2+y^2) with error less - * than 1 ulps (units in the last place) + * hypotl(x,y) returns sqrtq(x^2+y^2) with error less + * than 1 ulps (units in the last place) */ #include "quadmath-imp.h" __float128 -hypotq (__float128 x, __float128 y) +hypotq(__float128 x, __float128 y) { - __float128 a, b, t1, t2, y1, y2, w; - int64_t j, k, ha, hb; + __float128 a,b,t1,t2,y1,y2,w; + int64_t j,k,ha,hb; - GET_FLT128_MSW64(ha,x); - ha &= 0x7fffffffffffffffLL; - GET_FLT128_MSW64(hb,y); - hb &= 0x7fffffffffffffffLL; - if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;} - SET_FLT128_MSW64(a,ha); /* a <- |a| */ - SET_FLT128_MSW64(b,hb); /* b <- |b| */ - if((ha-hb)>0x78000000000000LL) {return a+b;} /* x/y > 2**120 */ - k=0; - if(ha > 0x5f3f000000000000LL) { /* a>2**8000 */ - if(ha >= 0x7fff000000000000LL) { /* Inf or NaN */ - uint64_t low; - w = a+b; /* for sNaN */ - GET_FLT128_LSW64(low,a); - if(((ha&0xffffffffffffLL)|low)==0) w = a; - GET_FLT128_LSW64(low,b); - if(((hb^0x7fff000000000000LL)|low)==0) w = b; - return w; - } - /* scale a and b by 2**-9600 */ - ha -= 0x2580000000000000LL; - hb -= 0x2580000000000000LL; k += 9600; - SET_FLT128_MSW64(a,ha); - SET_FLT128_MSW64(b,hb); - } - if(hb < 0x20bf000000000000LL) { /* b < 2**-8000 */ - if(hb <= 0x0000ffffffffffffLL) { /* subnormal b or 0 */ - uint64_t low; - GET_FLT128_LSW64(low,b); - if((hb|low)==0) return a; - t1=0; - SET_FLT128_MSW64(t1,0x7ffd000000000000LL); /* t1=2^16382 */ - b *= t1; - a *= t1; - k -= 16382; - GET_FLT128_MSW64 (ha, a); - GET_FLT128_MSW64 (hb, b); - if (hb > ha) - { - t1 = a; - a = b; - b = t1; - j = ha; - ha = hb; - hb = j; - } - } else { /* scale a and b by 2^9600 */ - ha += 0x2580000000000000LL; /* a *= 2^9600 */ - hb += 0x2580000000000000LL; /* b *= 2^9600 */ - k -= 9600; - SET_FLT128_MSW64(a,ha); - SET_FLT128_MSW64(b,hb); - } - } + GET_FLT128_MSW64(ha,x); + ha &= 0x7fffffffffffffffLL; + GET_FLT128_MSW64(hb,y); + hb &= 0x7fffffffffffffffLL; + if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;} + SET_FLT128_MSW64(a,ha); /* a <- |a| */ + SET_FLT128_MSW64(b,hb); /* b <- |b| */ + if((ha-hb)>0x78000000000000LL) {return a+b;} /* x/y > 2**120 */ + k=0; + if(ha > 0x5f3f000000000000LL) { /* a>2**8000 */ + if(ha >= 0x7fff000000000000LL) { /* Inf or NaN */ + uint64_t low; + w = a+b; /* for sNaN */ + if (issignalingq (a) || issignalingq (b)) + return w; + GET_FLT128_LSW64(low,a); + if(((ha&0xffffffffffffLL)|low)==0) w = a; + GET_FLT128_LSW64(low,b); + if(((hb^0x7fff000000000000LL)|low)==0) w = b; + return w; + } + /* scale a and b by 2**-9600 */ + ha -= 0x2580000000000000LL; + hb -= 0x2580000000000000LL; k += 9600; + SET_FLT128_MSW64(a,ha); + SET_FLT128_MSW64(b,hb); + } + if(hb < 0x20bf000000000000LL) { /* b < 2**-8000 */ + if(hb <= 0x0000ffffffffffffLL) { /* subnormal b or 0 */ + uint64_t low; + GET_FLT128_LSW64(low,b); + if((hb|low)==0) return a; + t1=0; + SET_FLT128_MSW64(t1,0x7ffd000000000000LL); /* t1=2^16382 */ + b *= t1; + a *= t1; + k -= 16382; + GET_FLT128_MSW64 (ha, a); + GET_FLT128_MSW64 (hb, b); + if (hb > ha) + { + t1 = a; + a = b; + b = t1; + j = ha; + ha = hb; + hb = j; + } + } else { /* scale a and b by 2^9600 */ + ha += 0x2580000000000000LL; /* a *= 2^9600 */ + hb += 0x2580000000000000LL; /* b *= 2^9600 */ + k -= 9600; + SET_FLT128_MSW64(a,ha); + SET_FLT128_MSW64(b,hb); + } + } /* medium size a and b */ - w = a-b; - if (w>b) { - t1 = 0; - SET_FLT128_MSW64(t1,ha); - t2 = a-t1; - w = sqrtq(t1*t1-(b*(-b)-t2*(a+t1))); - } else { - a = a+a; - y1 = 0; - SET_FLT128_MSW64(y1,hb); - y2 = b - y1; - t1 = 0; - SET_FLT128_MSW64(t1,ha+0x0001000000000000LL); - t2 = a - t1; - w = sqrtq(t1*y1-(w*(-w)-(t1*y2+t2*b))); - } - if(k!=0) { - uint64_t high; - t1 = 1.0Q; - GET_FLT128_MSW64(high,t1); - SET_FLT128_MSW64(t1,high+(k<<48)); - w *= t1; - math_check_force_underflow_nonneg (w); - return w; - } else return w; + w = a-b; + if (w>b) { + t1 = 0; + SET_FLT128_MSW64(t1,ha); + t2 = a-t1; + w = sqrtq(t1*t1-(b*(-b)-t2*(a+t1))); + } else { + a = a+a; + y1 = 0; + SET_FLT128_MSW64(y1,hb); + y2 = b - y1; + t1 = 0; + SET_FLT128_MSW64(t1,ha+0x0001000000000000LL); + t2 = a - t1; + w = sqrtq(t1*y1-(w*(-w)-(t1*y2+t2*b))); + } + if(k!=0) { + uint64_t high; + t1 = 1; + GET_FLT128_MSW64(high,t1); + SET_FLT128_MSW64(t1,high+(k<<48)); + w *= t1; + math_check_force_underflow_nonneg (w); + return w; + } else return w; } |