summaryrefslogtreecommitdiff
path: root/gcc/hsa-regalloc.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc/hsa-regalloc.c')
-rw-r--r--gcc/hsa-regalloc.c719
1 files changed, 719 insertions, 0 deletions
diff --git a/gcc/hsa-regalloc.c b/gcc/hsa-regalloc.c
new file mode 100644
index 00000000000..f8e83ecfffe
--- /dev/null
+++ b/gcc/hsa-regalloc.c
@@ -0,0 +1,719 @@
+/* HSAIL IL Register allocation and out-of-SSA.
+ Copyright (C) 2013-2016 Free Software Foundation, Inc.
+ Contributed by Michael Matz <matz@suse.de>
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 3, or (at your option)
+any later version.
+
+GCC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "is-a.h"
+#include "vec.h"
+#include "tree.h"
+#include "dominance.h"
+#include "cfg.h"
+#include "cfganal.h"
+#include "function.h"
+#include "bitmap.h"
+#include "dumpfile.h"
+#include "cgraph.h"
+#include "print-tree.h"
+#include "cfghooks.h"
+#include "symbol-summary.h"
+#include "hsa.h"
+
+
+/* Process a PHI node PHI of basic block BB as a part of naive out-f-ssa. */
+
+static void
+naive_process_phi (hsa_insn_phi *phi)
+{
+ unsigned count = phi->operand_count ();
+ for (unsigned i = 0; i < count; i++)
+ {
+ gcc_checking_assert (phi->get_op (i));
+ hsa_op_base *op = phi->get_op (i);
+ hsa_bb *hbb;
+ edge e;
+
+ if (!op)
+ break;
+
+ e = EDGE_PRED (phi->m_bb, i);
+ if (single_succ_p (e->src))
+ hbb = hsa_bb_for_bb (e->src);
+ else
+ {
+ basic_block old_dest = e->dest;
+ hbb = hsa_init_new_bb (split_edge (e));
+
+ /* If switch insn used this edge, fix jump table. */
+ hsa_bb *source = hsa_bb_for_bb (e->src);
+ hsa_insn_sbr *sbr;
+ if (source->m_last_insn
+ && (sbr = dyn_cast <hsa_insn_sbr *> (source->m_last_insn)))
+ sbr->replace_all_labels (old_dest, hbb->m_bb);
+ }
+
+ hsa_build_append_simple_mov (phi->m_dest, op, hbb);
+ }
+}
+
+/* Naive out-of SSA. */
+
+static void
+naive_outof_ssa (void)
+{
+ basic_block bb;
+
+ hsa_cfun->m_in_ssa = false;
+
+ FOR_ALL_BB_FN (bb, cfun)
+ {
+ hsa_bb *hbb = hsa_bb_for_bb (bb);
+ hsa_insn_phi *phi;
+
+ for (phi = hbb->m_first_phi;
+ phi;
+ phi = phi->m_next ? as_a <hsa_insn_phi *> (phi->m_next) : NULL)
+ naive_process_phi (phi);
+
+ /* Zap PHI nodes, they will be deallocated when everything else will. */
+ hbb->m_first_phi = NULL;
+ hbb->m_last_phi = NULL;
+ }
+}
+
+/* Return register class number for the given HSA TYPE. 0 means the 'c' one
+ bit register class, 1 means 's' 32 bit class, 2 stands for 'd' 64 bit class
+ and 3 for 'q' 128 bit class. */
+
+static int
+m_reg_class_for_type (BrigType16_t type)
+{
+ switch (type)
+ {
+ case BRIG_TYPE_B1:
+ return 0;
+
+ case BRIG_TYPE_U8:
+ case BRIG_TYPE_U16:
+ case BRIG_TYPE_U32:
+ case BRIG_TYPE_S8:
+ case BRIG_TYPE_S16:
+ case BRIG_TYPE_S32:
+ case BRIG_TYPE_F16:
+ case BRIG_TYPE_F32:
+ case BRIG_TYPE_B8:
+ case BRIG_TYPE_B16:
+ case BRIG_TYPE_B32:
+ case BRIG_TYPE_U8X4:
+ case BRIG_TYPE_S8X4:
+ case BRIG_TYPE_U16X2:
+ case BRIG_TYPE_S16X2:
+ case BRIG_TYPE_F16X2:
+ return 1;
+
+ case BRIG_TYPE_U64:
+ case BRIG_TYPE_S64:
+ case BRIG_TYPE_F64:
+ case BRIG_TYPE_B64:
+ case BRIG_TYPE_U8X8:
+ case BRIG_TYPE_S8X8:
+ case BRIG_TYPE_U16X4:
+ case BRIG_TYPE_S16X4:
+ case BRIG_TYPE_F16X4:
+ case BRIG_TYPE_U32X2:
+ case BRIG_TYPE_S32X2:
+ case BRIG_TYPE_F32X2:
+ return 2;
+
+ case BRIG_TYPE_B128:
+ case BRIG_TYPE_U8X16:
+ case BRIG_TYPE_S8X16:
+ case BRIG_TYPE_U16X8:
+ case BRIG_TYPE_S16X8:
+ case BRIG_TYPE_F16X8:
+ case BRIG_TYPE_U32X4:
+ case BRIG_TYPE_U64X2:
+ case BRIG_TYPE_S32X4:
+ case BRIG_TYPE_S64X2:
+ case BRIG_TYPE_F32X4:
+ case BRIG_TYPE_F64X2:
+ return 3;
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* If the Ith operands of INSN is or contains a register (in an address),
+ return the address of that register operand. If not return NULL. */
+
+static hsa_op_reg **
+insn_reg_addr (hsa_insn_basic *insn, int i)
+{
+ hsa_op_base *op = insn->get_op (i);
+ if (!op)
+ return NULL;
+ hsa_op_reg *reg = dyn_cast <hsa_op_reg *> (op);
+ if (reg)
+ return (hsa_op_reg **) insn->get_op_addr (i);
+ hsa_op_address *addr = dyn_cast <hsa_op_address *> (op);
+ if (addr && addr->m_reg)
+ return &addr->m_reg;
+ return NULL;
+}
+
+struct m_reg_class_desc
+{
+ unsigned next_avail, max_num;
+ unsigned used_num, max_used;
+ uint64_t used[2];
+ char cl_char;
+};
+
+/* Rewrite the instructions in BB to observe spilled live ranges.
+ CLASSES is the global register class state. */
+
+static void
+rewrite_code_bb (basic_block bb, struct m_reg_class_desc *classes)
+{
+ hsa_bb *hbb = hsa_bb_for_bb (bb);
+ hsa_insn_basic *insn, *next_insn;
+
+ for (insn = hbb->m_first_insn; insn; insn = next_insn)
+ {
+ next_insn = insn->m_next;
+ unsigned count = insn->operand_count ();
+ for (unsigned i = 0; i < count; i++)
+ {
+ gcc_checking_assert (insn->get_op (i));
+ hsa_op_reg **regaddr = insn_reg_addr (insn, i);
+
+ if (regaddr)
+ {
+ hsa_op_reg *reg = *regaddr;
+ if (reg->m_reg_class)
+ continue;
+ gcc_assert (reg->m_spill_sym);
+
+ int cl = m_reg_class_for_type (reg->m_type);
+ hsa_op_reg *tmp, *tmp2;
+ if (insn->op_output_p (i))
+ tmp = hsa_spill_out (insn, reg, &tmp2);
+ else
+ tmp = hsa_spill_in (insn, reg, &tmp2);
+
+ *regaddr = tmp;
+
+ tmp->m_reg_class = classes[cl].cl_char;
+ tmp->m_hard_num = (char) (classes[cl].max_num + i);
+ if (tmp2)
+ {
+ gcc_assert (cl == 0);
+ tmp2->m_reg_class = classes[1].cl_char;
+ tmp2->m_hard_num = (char) (classes[1].max_num + i);
+ }
+ }
+ }
+ }
+}
+
+/* Dump current function to dump file F, with info specific
+ to register allocation. */
+
+void
+dump_hsa_cfun_regalloc (FILE *f)
+{
+ basic_block bb;
+
+ fprintf (f, "\nHSAIL IL for %s\n", hsa_cfun->m_name);
+
+ FOR_ALL_BB_FN (bb, cfun)
+ {
+ hsa_bb *hbb = (struct hsa_bb *) bb->aux;
+ bitmap_print (dump_file, hbb->m_livein, "m_livein ", "\n");
+ dump_hsa_bb (f, hbb);
+ bitmap_print (dump_file, hbb->m_liveout, "m_liveout ", "\n");
+ }
+}
+
+/* Given the global register allocation state CLASSES and a
+ register REG, try to give it a hardware register. If successful,
+ store that hardreg in REG and return it, otherwise return -1.
+ Also changes CLASSES to accommodate for the allocated register. */
+
+static int
+try_alloc_reg (struct m_reg_class_desc *classes, hsa_op_reg *reg)
+{
+ int cl = m_reg_class_for_type (reg->m_type);
+ int ret = -1;
+ if (classes[1].used_num + classes[2].used_num * 2 + classes[3].used_num * 4
+ >= 128 - 5)
+ return -1;
+ if (classes[cl].used_num < classes[cl].max_num)
+ {
+ unsigned int i;
+ classes[cl].used_num++;
+ if (classes[cl].used_num > classes[cl].max_used)
+ classes[cl].max_used = classes[cl].used_num;
+ for (i = 0; i < classes[cl].used_num; i++)
+ if (! (classes[cl].used[i / 64] & (((uint64_t)1) << (i & 63))))
+ break;
+ ret = i;
+ classes[cl].used[i / 64] |= (((uint64_t)1) << (i & 63));
+ reg->m_reg_class = classes[cl].cl_char;
+ reg->m_hard_num = i;
+ }
+ return ret;
+}
+
+/* Free up hardregs used by REG, into allocation state CLASSES. */
+
+static void
+free_reg (struct m_reg_class_desc *classes, hsa_op_reg *reg)
+{
+ int cl = m_reg_class_for_type (reg->m_type);
+ int ret = reg->m_hard_num;
+ gcc_assert (reg->m_reg_class == classes[cl].cl_char);
+ classes[cl].used_num--;
+ classes[cl].used[ret / 64] &= ~(((uint64_t)1) << (ret & 63));
+}
+
+/* Note that the live range for REG ends at least at END. */
+
+static void
+note_lr_end (hsa_op_reg *reg, int end)
+{
+ if (reg->m_lr_end < end)
+ reg->m_lr_end = end;
+}
+
+/* Note that the live range for REG starts at least at BEGIN. */
+
+static void
+note_lr_begin (hsa_op_reg *reg, int begin)
+{
+ if (reg->m_lr_begin > begin)
+ reg->m_lr_begin = begin;
+}
+
+/* Given two registers A and B, return -1, 0 or 1 if A's live range
+ starts before, at or after B's live range. */
+
+static int
+cmp_begin (const void *a, const void *b)
+{
+ const hsa_op_reg * const *rega = (const hsa_op_reg * const *)a;
+ const hsa_op_reg * const *regb = (const hsa_op_reg * const *)b;
+ int ret;
+ if (rega == regb)
+ return 0;
+ ret = (*rega)->m_lr_begin - (*regb)->m_lr_begin;
+ if (ret)
+ return ret;
+ return ((*rega)->m_order - (*regb)->m_order);
+}
+
+/* Given two registers REGA and REGB, return true if REGA's
+ live range ends after REGB's. This results in a sorting order
+ with earlier end points at the end. */
+
+static bool
+cmp_end (hsa_op_reg * const &rega, hsa_op_reg * const &regb)
+{
+ int ret;
+ if (rega == regb)
+ return false;
+ ret = (regb)->m_lr_end - (rega)->m_lr_end;
+ if (ret)
+ return ret < 0;
+ return (((regb)->m_order - (rega)->m_order)) < 0;
+}
+
+/* Expire all old intervals in ACTIVE (a per-regclass vector),
+ that is, those that end before the interval REG starts. Give
+ back resources freed so into the state CLASSES. */
+
+static void
+expire_old_intervals (hsa_op_reg *reg, vec<hsa_op_reg*> *active,
+ struct m_reg_class_desc *classes)
+{
+ for (int i = 0; i < 4; i++)
+ while (!active[i].is_empty ())
+ {
+ hsa_op_reg *a = active[i].pop ();
+ if (a->m_lr_end > reg->m_lr_begin)
+ {
+ active[i].quick_push (a);
+ break;
+ }
+ free_reg (classes, a);
+ }
+}
+
+/* The interval REG didn't get a hardreg. Spill it or one of those
+ from ACTIVE (if the latter, then REG will become allocated to the
+ hardreg that formerly was used by it). */
+
+static void
+spill_at_interval (hsa_op_reg *reg, vec<hsa_op_reg*> *active)
+{
+ int cl = m_reg_class_for_type (reg->m_type);
+ gcc_assert (!active[cl].is_empty ());
+ hsa_op_reg *cand = active[cl][0];
+ if (cand->m_lr_end > reg->m_lr_end)
+ {
+ reg->m_reg_class = cand->m_reg_class;
+ reg->m_hard_num = cand->m_hard_num;
+ active[cl].ordered_remove (0);
+ unsigned place = active[cl].lower_bound (reg, cmp_end);
+ active[cl].quick_insert (place, reg);
+ }
+ else
+ cand = reg;
+
+ gcc_assert (!cand->m_spill_sym);
+ BrigType16_t type = cand->m_type;
+ if (type == BRIG_TYPE_B1)
+ type = BRIG_TYPE_U8;
+ cand->m_reg_class = 0;
+ cand->m_spill_sym = hsa_get_spill_symbol (type);
+ cand->m_spill_sym->m_name_number = cand->m_order;
+}
+
+/* Given the global register state CLASSES allocate all HSA virtual
+ registers either to hardregs or to a spill symbol. */
+
+static void
+linear_scan_regalloc (struct m_reg_class_desc *classes)
+{
+ /* Compute liveness. */
+ bool changed;
+ int i, n;
+ int insn_order;
+ int *bbs = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
+ bitmap work = BITMAP_ALLOC (NULL);
+ vec<hsa_op_reg*> ind2reg = vNULL;
+ vec<hsa_op_reg*> active[4] = {vNULL, vNULL, vNULL, vNULL};
+ hsa_insn_basic *m_last_insn;
+
+ /* We will need the reverse post order for linearization,
+ and the post order for liveness analysis, which is the same
+ backward. */
+ n = pre_and_rev_post_order_compute (NULL, bbs, true);
+ ind2reg.safe_grow_cleared (hsa_cfun->m_reg_count);
+
+ /* Give all instructions a linearized number, at the same time
+ build a mapping from register index to register. */
+ insn_order = 1;
+ for (i = 0; i < n; i++)
+ {
+ basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bbs[i]);
+ hsa_bb *hbb = hsa_bb_for_bb (bb);
+ hsa_insn_basic *insn;
+ for (insn = hbb->m_first_insn; insn; insn = insn->m_next)
+ {
+ unsigned opi;
+ insn->m_number = insn_order++;
+ for (opi = 0; opi < insn->operand_count (); opi++)
+ {
+ gcc_checking_assert (insn->get_op (opi));
+ hsa_op_reg **regaddr = insn_reg_addr (insn, opi);
+ if (regaddr)
+ ind2reg[(*regaddr)->m_order] = *regaddr;
+ }
+ }
+ }
+
+ /* Initialize all live ranges to [after-end, 0). */
+ for (i = 0; i < hsa_cfun->m_reg_count; i++)
+ if (ind2reg[i])
+ ind2reg[i]->m_lr_begin = insn_order, ind2reg[i]->m_lr_end = 0;
+
+ /* Classic liveness analysis, as long as something changes:
+ m_liveout is union (m_livein of successors)
+ m_livein is m_liveout minus defs plus uses. */
+ do
+ {
+ changed = false;
+ for (i = n - 1; i >= 0; i--)
+ {
+ edge e;
+ edge_iterator ei;
+ basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bbs[i]);
+ hsa_bb *hbb = hsa_bb_for_bb (bb);
+
+ /* Union of successors m_livein (or empty if none). */
+ bool first = true;
+ FOR_EACH_EDGE (e, ei, bb->succs)
+ if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
+ {
+ hsa_bb *succ = hsa_bb_for_bb (e->dest);
+ if (first)
+ {
+ bitmap_copy (work, succ->m_livein);
+ first = false;
+ }
+ else
+ bitmap_ior_into (work, succ->m_livein);
+ }
+ if (first)
+ bitmap_clear (work);
+
+ bitmap_copy (hbb->m_liveout, work);
+
+ /* Remove defs, include uses in a backward insn walk. */
+ hsa_insn_basic *insn;
+ for (insn = hbb->m_last_insn; insn; insn = insn->m_prev)
+ {
+ unsigned opi;
+ unsigned ndefs = insn->input_count ();
+ for (opi = 0; opi < ndefs && insn->get_op (opi); opi++)
+ {
+ gcc_checking_assert (insn->get_op (opi));
+ hsa_op_reg **regaddr = insn_reg_addr (insn, opi);
+ if (regaddr)
+ bitmap_clear_bit (work, (*regaddr)->m_order);
+ }
+ for (; opi < insn->operand_count (); opi++)
+ {
+ gcc_checking_assert (insn->get_op (opi));
+ hsa_op_reg **regaddr = insn_reg_addr (insn, opi);
+ if (regaddr)
+ bitmap_set_bit (work, (*regaddr)->m_order);
+ }
+ }
+
+ /* Note if that changed something. */
+ if (bitmap_ior_into (hbb->m_livein, work))
+ changed = true;
+ }
+ }
+ while (changed);
+
+ /* Make one pass through all instructions in linear order,
+ noting and merging possible live range start and end points. */
+ m_last_insn = NULL;
+ for (i = n - 1; i >= 0; i--)
+ {
+ basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bbs[i]);
+ hsa_bb *hbb = hsa_bb_for_bb (bb);
+ hsa_insn_basic *insn;
+ int after_end_number;
+ unsigned bit;
+ bitmap_iterator bi;
+
+ if (m_last_insn)
+ after_end_number = m_last_insn->m_number;
+ else
+ after_end_number = insn_order;
+ /* Everything live-out in this BB has at least an end point
+ after us. */
+ EXECUTE_IF_SET_IN_BITMAP (hbb->m_liveout, 0, bit, bi)
+ note_lr_end (ind2reg[bit], after_end_number);
+
+ for (insn = hbb->m_last_insn; insn; insn = insn->m_prev)
+ {
+ unsigned opi;
+ unsigned ndefs = insn->input_count ();
+ for (opi = 0; opi < insn->operand_count (); opi++)
+ {
+ gcc_checking_assert (insn->get_op (opi));
+ hsa_op_reg **regaddr = insn_reg_addr (insn, opi);
+ if (regaddr)
+ {
+ hsa_op_reg *reg = *regaddr;
+ if (opi < ndefs)
+ note_lr_begin (reg, insn->m_number);
+ else
+ note_lr_end (reg, insn->m_number);
+ }
+ }
+ }
+
+ /* Everything live-in in this BB has a start point before
+ our first insn. */
+ int before_start_number;
+ if (hbb->m_first_insn)
+ before_start_number = hbb->m_first_insn->m_number;
+ else
+ before_start_number = after_end_number;
+ before_start_number--;
+ EXECUTE_IF_SET_IN_BITMAP (hbb->m_livein, 0, bit, bi)
+ note_lr_begin (ind2reg[bit], before_start_number);
+
+ if (hbb->m_first_insn)
+ m_last_insn = hbb->m_first_insn;
+ }
+
+ for (i = 0; i < hsa_cfun->m_reg_count; i++)
+ if (ind2reg[i])
+ {
+ /* All regs that have still their start at after all code actually
+ are defined at the start of the routine (prologue). */
+ if (ind2reg[i]->m_lr_begin == insn_order)
+ ind2reg[i]->m_lr_begin = 0;
+ /* All regs that have no use but a def will have lr_end == 0,
+ they are actually live from def until after the insn they are
+ defined in. */
+ if (ind2reg[i]->m_lr_end == 0)
+ ind2reg[i]->m_lr_end = ind2reg[i]->m_lr_begin + 1;
+ }
+
+ /* Sort all intervals by increasing start point. */
+ gcc_assert (ind2reg.length () == (size_t) hsa_cfun->m_reg_count);
+
+#ifdef ENABLE_CHECKING
+ for (unsigned i = 0; i < ind2reg.length (); i++)
+ gcc_assert (ind2reg[i]);
+#endif
+
+ ind2reg.qsort (cmp_begin);
+ for (i = 0; i < 4; i++)
+ active[i].reserve_exact (hsa_cfun->m_reg_count);
+
+ /* Now comes the linear scan allocation. */
+ for (i = 0; i < hsa_cfun->m_reg_count; i++)
+ {
+ hsa_op_reg *reg = ind2reg[i];
+ if (!reg)
+ continue;
+ expire_old_intervals (reg, active, classes);
+ int cl = m_reg_class_for_type (reg->m_type);
+ if (try_alloc_reg (classes, reg) >= 0)
+ {
+ unsigned place = active[cl].lower_bound (reg, cmp_end);
+ active[cl].quick_insert (place, reg);
+ }
+ else
+ spill_at_interval (reg, active);
+
+ /* Some interesting dumping as we go. */
+ if (dump_file)
+ {
+ fprintf (dump_file, " reg%d: [%5d, %5d)->",
+ reg->m_order, reg->m_lr_begin, reg->m_lr_end);
+ if (reg->m_reg_class)
+ fprintf (dump_file, "$%c%i", reg->m_reg_class, reg->m_hard_num);
+ else
+ fprintf (dump_file, "[%%__%s_%i]",
+ hsa_seg_name (reg->m_spill_sym->m_segment),
+ reg->m_spill_sym->m_name_number);
+ for (int cl = 0; cl < 4; cl++)
+ {
+ bool first = true;
+ hsa_op_reg *r;
+ fprintf (dump_file, " {");
+ for (int j = 0; active[cl].iterate (j, &r); j++)
+ if (first)
+ {
+ fprintf (dump_file, "%d", r->m_order);
+ first = false;
+ }
+ else
+ fprintf (dump_file, ", %d", r->m_order);
+ fprintf (dump_file, "}");
+ }
+ fprintf (dump_file, "\n");
+ }
+ }
+
+ BITMAP_FREE (work);
+ free (bbs);
+
+ if (dump_file)
+ {
+ fprintf (dump_file, "------- After liveness: -------\n");
+ dump_hsa_cfun_regalloc (dump_file);
+ fprintf (dump_file, " ----- Intervals:\n");
+ for (i = 0; i < hsa_cfun->m_reg_count; i++)
+ {
+ hsa_op_reg *reg = ind2reg[i];
+ if (!reg)
+ continue;
+ fprintf (dump_file, " reg%d: [%5d, %5d)->", reg->m_order,
+ reg->m_lr_begin, reg->m_lr_end);
+ if (reg->m_reg_class)
+ fprintf (dump_file, "$%c%i\n", reg->m_reg_class, reg->m_hard_num);
+ else
+ fprintf (dump_file, "[%%__%s_%i]\n",
+ hsa_seg_name (reg->m_spill_sym->m_segment),
+ reg->m_spill_sym->m_name_number);
+ }
+ }
+
+ for (i = 0; i < 4; i++)
+ active[i].release ();
+ ind2reg.release ();
+}
+
+/* Entry point for register allocation. */
+
+static void
+regalloc (void)
+{
+ basic_block bb;
+ m_reg_class_desc classes[4];
+
+ /* If there are no registers used in the function, exit right away. */
+ if (hsa_cfun->m_reg_count == 0)
+ return;
+
+ memset (classes, 0, sizeof (classes));
+ classes[0].next_avail = 0;
+ classes[0].max_num = 7;
+ classes[0].cl_char = 'c';
+ classes[1].cl_char = 's';
+ classes[2].cl_char = 'd';
+ classes[3].cl_char = 'q';
+
+ for (int i = 1; i < 4; i++)
+ {
+ classes[i].next_avail = 0;
+ classes[i].max_num = 20;
+ }
+
+ linear_scan_regalloc (classes);
+
+ FOR_ALL_BB_FN (bb, cfun)
+ rewrite_code_bb (bb, classes);
+}
+
+/* Out of SSA and register allocation on HSAIL IL. */
+
+void
+hsa_regalloc (void)
+{
+ naive_outof_ssa ();
+
+ if (dump_file)
+ {
+ fprintf (dump_file, "------- After out-of-SSA: -------\n");
+ dump_hsa_cfun (dump_file);
+ }
+
+ regalloc ();
+
+ if (dump_file)
+ {
+ fprintf (dump_file, "------- After register allocation: -------\n");
+ dump_hsa_cfun (dump_file);
+ }
+}