summaryrefslogtreecommitdiff
path: root/gcc/fold-const-call.c
diff options
context:
space:
mode:
authorRichard Sandiford <richard.sandiford@arm.com>2015-11-02 16:34:16 +0000
committerRichard Sandiford <rsandifo@gcc.gnu.org>2015-11-02 16:34:16 +0000
commit5c1a2e639a26f1582318ac6f547a8819ea7c6034 (patch)
tree4ad1a84f126d5e19c09ab7325f6a810a7daf2032 /gcc/fold-const-call.c
parent6aadd15a4128d8afdca93be311449876cc2dc4d5 (diff)
Move constant folds for maths functions to new file
The new routines operate on the built-in enum rather than on tree decls. The idea is to extend this to handle internal functions too, with a combined enum for both. The patch also moves fold_fma too, with the same prototype. The long-term plan is to replace FMA_EXPR with an internal function, for consistency with the way that things like SQRT will be handled. Tested on x86_64-linux-gnu, arm-linux-gnueabi and aarch64-linux-gnu. gcc/ * builtins.h (fold_fma): Move to fold-const-call.h. * builtins.c: Include fold-const-call.h. (mathfn_built_in_2): New function, split out from... (mathfn_built_in_1): ...here. (do_real_to_int_conversion, fold_const_builtin_pow) (fold_const_builtin_logb, fold_const_builtin_significand) (fold_const_builtin_load_exponent, do_mpfr_arg1, do_mpfr_arg2) (do_mpfr_arg3, do_mpfr_sincos, do_mpfr_bessel_n, do_mpc_arg1): Delete. (fold_builtin_sincos): Use fold_const_call to handle constants. (fold_builtin_1, fold_builtin_2, fold_builtin_3): Add explicit checks for ERROR_MARK. Use fold_const_call to handle constant folds for math functions. (fold_fma): Move to fold-const-call.c. * fold-const.c: Include fold-const-call.h. * Makefile.in (OBJS): Add fold-const-call.o. (PLUGIN_HEADERS): Add fold-const-call.h. * realmpfr.h (real_from_mpfr): Allow the format to be specified directly. * realmpfr.c (real_from_mpfr): Likewise. * fold-const-call.h, fold-const-call.c: New files. From-SVN: r229669
Diffstat (limited to 'gcc/fold-const-call.c')
-rw-r--r--gcc/fold-const-call.c1259
1 files changed, 1259 insertions, 0 deletions
diff --git a/gcc/fold-const-call.c b/gcc/fold-const-call.c
new file mode 100644
index 00000000000..5af2c635313
--- /dev/null
+++ b/gcc/fold-const-call.c
@@ -0,0 +1,1259 @@
+/* Constant folding for calls to built-in and internal functions.
+ Copyright (C) 1988-2015 Free Software Foundation, Inc.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "realmpfr.h"
+#include "tree.h"
+#include "stor-layout.h"
+#include "options.h"
+#include "fold-const-call.h"
+
+/* Functions that test for certain constant types, abstracting away the
+ decision about whether to check for overflow. */
+
+static inline bool
+integer_cst_p (tree t)
+{
+ return TREE_CODE (t) == INTEGER_CST && !TREE_OVERFLOW (t);
+}
+
+static inline bool
+real_cst_p (tree t)
+{
+ return TREE_CODE (t) == REAL_CST && !TREE_OVERFLOW (t);
+}
+
+static inline bool
+complex_cst_p (tree t)
+{
+ return TREE_CODE (t) == COMPLEX_CST;
+}
+
+/* M is the result of trying to constant-fold an expression (starting
+ with clear MPFR flags) and INEXACT says whether the result in M is
+ exact or inexact. Return true if M can be used as a constant-folded
+ result in format FORMAT, storing the value in *RESULT if so. */
+
+static bool
+do_mpfr_ckconv (real_value *result, mpfr_srcptr m, bool inexact,
+ const real_format *format)
+{
+ /* Proceed iff we get a normal number, i.e. not NaN or Inf and no
+ overflow/underflow occurred. If -frounding-math, proceed iff the
+ result of calling FUNC was exact. */
+ if (!mpfr_number_p (m)
+ || mpfr_overflow_p ()
+ || mpfr_underflow_p ()
+ || (flag_rounding_math && inexact))
+ return false;
+
+ REAL_VALUE_TYPE tmp;
+ real_from_mpfr (&tmp, m, format, GMP_RNDN);
+
+ /* Proceed iff GCC's REAL_VALUE_TYPE can hold the MPFR values.
+ If the REAL_VALUE_TYPE is zero but the mpft_t is not, then we
+ underflowed in the conversion. */
+ if (!real_isfinite (&tmp)
+ || ((tmp.cl == rvc_zero) != (mpfr_zero_p (m) != 0)))
+ return false;
+
+ real_convert (result, format, &tmp);
+ return real_identical (result, &tmp);
+}
+
+/* Try to evaluate:
+
+ *RESULT = f (*ARG)
+
+ in format FORMAT, given that FUNC is the MPFR implementation of f.
+ Return true on success. */
+
+static bool
+do_mpfr_arg1 (real_value *result,
+ int (*func) (mpfr_ptr, mpfr_srcptr, mpfr_rnd_t),
+ const real_value *arg, const real_format *format)
+{
+ /* To proceed, MPFR must exactly represent the target floating point
+ format, which only happens when the target base equals two. */
+ if (format->b != 2 || !real_isfinite (arg))
+ return false;
+
+ int prec = format->p;
+ mp_rnd_t rnd = format->round_towards_zero ? GMP_RNDZ : GMP_RNDN;
+ mpfr_t m;
+
+ mpfr_init2 (m, prec);
+ mpfr_from_real (m, arg, GMP_RNDN);
+ mpfr_clear_flags ();
+ bool inexact = func (m, m, rnd);
+ bool ok = do_mpfr_ckconv (result, m, inexact, format);
+ mpfr_clear (m);
+
+ return ok;
+}
+
+/* Try to evaluate:
+
+ *RESULT_SIN = sin (*ARG);
+ *RESULT_COS = cos (*ARG);
+
+ for format FORMAT. Return true on success. */
+
+static bool
+do_mpfr_sincos (real_value *result_sin, real_value *result_cos,
+ const real_value *arg, const real_format *format)
+{
+ /* To proceed, MPFR must exactly represent the target floating point
+ format, which only happens when the target base equals two. */
+ if (format->b != 2 || !real_isfinite (arg))
+ return false;
+
+ int prec = format->p;
+ mp_rnd_t rnd = format->round_towards_zero ? GMP_RNDZ : GMP_RNDN;
+ mpfr_t m, ms, mc;
+
+ mpfr_inits2 (prec, m, ms, mc, NULL);
+ mpfr_from_real (m, arg, GMP_RNDN);
+ mpfr_clear_flags ();
+ bool inexact = mpfr_sin_cos (ms, mc, m, rnd);
+ bool ok = (do_mpfr_ckconv (result_sin, ms, inexact, format)
+ && do_mpfr_ckconv (result_cos, mc, inexact, format));
+ mpfr_clears (m, ms, mc, NULL);
+
+ return ok;
+}
+
+/* Try to evaluate:
+
+ *RESULT = f (*ARG0, *ARG1)
+
+ in format FORMAT, given that FUNC is the MPFR implementation of f.
+ Return true on success. */
+
+static bool
+do_mpfr_arg2 (real_value *result,
+ int (*func) (mpfr_ptr, mpfr_srcptr, mpfr_srcptr, mpfr_rnd_t),
+ const real_value *arg0, const real_value *arg1,
+ const real_format *format)
+{
+ /* To proceed, MPFR must exactly represent the target floating point
+ format, which only happens when the target base equals two. */
+ if (format->b != 2 || !real_isfinite (arg0) || !real_isfinite (arg1))
+ return false;
+
+ int prec = format->p;
+ mp_rnd_t rnd = format->round_towards_zero ? GMP_RNDZ : GMP_RNDN;
+ mpfr_t m0, m1;
+
+ mpfr_inits2 (prec, m0, m1, NULL);
+ mpfr_from_real (m0, arg0, GMP_RNDN);
+ mpfr_from_real (m1, arg1, GMP_RNDN);
+ mpfr_clear_flags ();
+ bool inexact = func (m0, m0, m1, rnd);
+ bool ok = do_mpfr_ckconv (result, m0, inexact, format);
+ mpfr_clears (m0, m1, NULL);
+
+ return ok;
+}
+
+/* Try to evaluate:
+
+ *RESULT = f (ARG0, *ARG1)
+
+ in format FORMAT, given that FUNC is the MPFR implementation of f.
+ Return true on success. */
+
+static bool
+do_mpfr_arg2 (real_value *result,
+ int (*func) (mpfr_ptr, long, mpfr_srcptr, mp_rnd_t),
+ const wide_int_ref &arg0, const real_value *arg1,
+ const real_format *format)
+{
+ if (format->b != 2 || !real_isfinite (arg1))
+ return false;
+
+ int prec = format->p;
+ mp_rnd_t rnd = format->round_towards_zero ? GMP_RNDZ : GMP_RNDN;
+ mpfr_t m;
+
+ mpfr_init2 (m, prec);
+ mpfr_from_real (m, arg1, GMP_RNDN);
+ mpfr_clear_flags ();
+ bool inexact = func (m, arg0.to_shwi (), m, rnd);
+ bool ok = do_mpfr_ckconv (result, m, inexact, format);
+ mpfr_clear (m);
+
+ return ok;
+}
+
+/* Try to evaluate:
+
+ *RESULT = f (*ARG0, *ARG1, *ARG2)
+
+ in format FORMAT, given that FUNC is the MPFR implementation of f.
+ Return true on success. */
+
+static bool
+do_mpfr_arg3 (real_value *result,
+ int (*func) (mpfr_ptr, mpfr_srcptr, mpfr_srcptr,
+ mpfr_srcptr, mpfr_rnd_t),
+ const real_value *arg0, const real_value *arg1,
+ const real_value *arg2, const real_format *format)
+{
+ /* To proceed, MPFR must exactly represent the target floating point
+ format, which only happens when the target base equals two. */
+ if (format->b != 2
+ || !real_isfinite (arg0)
+ || !real_isfinite (arg1)
+ || !real_isfinite (arg2))
+ return false;
+
+ int prec = format->p;
+ mp_rnd_t rnd = format->round_towards_zero ? GMP_RNDZ : GMP_RNDN;
+ mpfr_t m0, m1, m2;
+
+ mpfr_inits2 (prec, m0, m1, m2, NULL);
+ mpfr_from_real (m0, arg0, GMP_RNDN);
+ mpfr_from_real (m1, arg1, GMP_RNDN);
+ mpfr_from_real (m2, arg2, GMP_RNDN);
+ mpfr_clear_flags ();
+ bool inexact = func (m0, m0, m1, m2, rnd);
+ bool ok = do_mpfr_ckconv (result, m0, inexact, format);
+ mpfr_clears (m0, m1, m2, NULL);
+
+ return ok;
+}
+
+/* M is the result of trying to constant-fold an expression (starting
+ with clear MPFR flags) and INEXACT says whether the result in M is
+ exact or inexact. Return true if M can be used as a constant-folded
+ result in which the real and imaginary parts have format FORMAT.
+ Store those parts in *RESULT_REAL and *RESULT_IMAG if so. */
+
+static bool
+do_mpc_ckconv (real_value *result_real, real_value *result_imag,
+ mpc_srcptr m, bool inexact, const real_format *format)
+{
+ /* Proceed iff we get a normal number, i.e. not NaN or Inf and no
+ overflow/underflow occurred. If -frounding-math, proceed iff the
+ result of calling FUNC was exact. */
+ if (!mpfr_number_p (mpc_realref (m))
+ || !mpfr_number_p (mpc_imagref (m))
+ || mpfr_overflow_p ()
+ || mpfr_underflow_p ()
+ || (flag_rounding_math && inexact))
+ return false;
+
+ REAL_VALUE_TYPE tmp_real, tmp_imag;
+ real_from_mpfr (&tmp_real, mpc_realref (m), format, GMP_RNDN);
+ real_from_mpfr (&tmp_imag, mpc_imagref (m), format, GMP_RNDN);
+
+ /* Proceed iff GCC's REAL_VALUE_TYPE can hold the MPFR values.
+ If the REAL_VALUE_TYPE is zero but the mpft_t is not, then we
+ underflowed in the conversion. */
+ if (!real_isfinite (&tmp_real)
+ || !real_isfinite (&tmp_imag)
+ || (tmp_real.cl == rvc_zero) != (mpfr_zero_p (mpc_realref (m)) != 0)
+ || (tmp_imag.cl == rvc_zero) != (mpfr_zero_p (mpc_imagref (m)) != 0))
+ return false;
+
+ real_convert (result_real, format, &tmp_real);
+ real_convert (result_imag, format, &tmp_imag);
+
+ return (real_identical (result_real, &tmp_real)
+ && real_identical (result_imag, &tmp_imag));
+}
+
+/* Try to evaluate:
+
+ RESULT = f (ARG)
+
+ in format FORMAT, given that FUNC is the mpc implementation of f.
+ Return true on success. Both RESULT and ARG are represented as
+ real and imaginary pairs. */
+
+static bool
+do_mpc_arg1 (real_value *result_real, real_value *result_imag,
+ int (*func) (mpc_ptr, mpc_srcptr, mpc_rnd_t),
+ const real_value *arg_real, const real_value *arg_imag,
+ const real_format *format)
+{
+ /* To proceed, MPFR must exactly represent the target floating point
+ format, which only happens when the target base equals two. */
+ if (format->b != 2
+ || !real_isfinite (arg_real)
+ || !real_isfinite (arg_imag))
+ return false;
+
+ int prec = format->p;
+ mpc_rnd_t crnd = format->round_towards_zero ? MPC_RNDZZ : MPC_RNDNN;
+ mpc_t m;
+
+ mpc_init2 (m, prec);
+ mpfr_from_real (mpc_realref (m), arg_real, GMP_RNDN);
+ mpfr_from_real (mpc_imagref (m), arg_imag, GMP_RNDN);
+ mpfr_clear_flags ();
+ bool inexact = func (m, m, crnd);
+ bool ok = do_mpc_ckconv (result_real, result_imag, m, inexact, format);
+ mpc_clear (m);
+
+ return ok;
+}
+
+/* Try to evaluate:
+
+ RESULT = f (ARG0, ARG1)
+
+ in format FORMAT, given that FUNC is the mpc implementation of f.
+ Return true on success. RESULT, ARG0 and ARG1 are represented as
+ real and imaginary pairs. */
+
+static bool
+do_mpc_arg2 (real_value *result_real, real_value *result_imag,
+ int (*func)(mpc_ptr, mpc_srcptr, mpc_srcptr, mpc_rnd_t),
+ const real_value *arg0_real, const real_value *arg0_imag,
+ const real_value *arg1_real, const real_value *arg1_imag,
+ const real_format *format)
+{
+ if (!real_isfinite (arg0_real)
+ || !real_isfinite (arg0_imag)
+ || !real_isfinite (arg1_real)
+ || !real_isfinite (arg1_imag))
+ return false;
+
+ int prec = format->p;
+ mpc_rnd_t crnd = format->round_towards_zero ? MPC_RNDZZ : MPC_RNDNN;
+ mpc_t m0, m1;
+
+ mpc_init2 (m0, prec);
+ mpc_init2 (m1, prec);
+ mpfr_from_real (mpc_realref (m0), arg0_real, GMP_RNDN);
+ mpfr_from_real (mpc_imagref (m0), arg0_imag, GMP_RNDN);
+ mpfr_from_real (mpc_realref (m1), arg1_real, GMP_RNDN);
+ mpfr_from_real (mpc_imagref (m1), arg1_imag, GMP_RNDN);
+ mpfr_clear_flags ();
+ bool inexact = func (m0, m0, m1, crnd);
+ bool ok = do_mpc_ckconv (result_real, result_imag, m0, inexact, format);
+ mpc_clear (m0);
+ mpc_clear (m1);
+
+ return ok;
+}
+
+/* Try to evaluate:
+
+ *RESULT = logb (*ARG)
+
+ in format FORMAT. Return true on success. */
+
+static bool
+fold_const_logb (real_value *result, const real_value *arg,
+ const real_format *format)
+{
+ switch (arg->cl)
+ {
+ case rvc_nan:
+ /* If arg is +-NaN, then return it. */
+ *result = *arg;
+ return true;
+
+ case rvc_inf:
+ /* If arg is +-Inf, then return +Inf. */
+ *result = *arg;
+ result->sign = 0;
+ return true;
+
+ case rvc_zero:
+ /* Zero may set errno and/or raise an exception. */
+ return false;
+
+ case rvc_normal:
+ /* For normal numbers, proceed iff radix == 2. In GCC,
+ normalized significands are in the range [0.5, 1.0). We
+ want the exponent as if they were [1.0, 2.0) so get the
+ exponent and subtract 1. */
+ if (format->b == 2)
+ {
+ real_from_integer (result, format, REAL_EXP (arg) - 1, SIGNED);
+ return true;
+ }
+ return false;
+ }
+ gcc_unreachable ();
+}
+
+/* Try to evaluate:
+
+ *RESULT = significand (*ARG)
+
+ in format FORMAT. Return true on success. */
+
+static bool
+fold_const_significand (real_value *result, const real_value *arg,
+ const real_format *format)
+{
+ switch (arg->cl)
+ {
+ case rvc_zero:
+ case rvc_nan:
+ case rvc_inf:
+ /* If arg is +-0, +-Inf or +-NaN, then return it. */
+ *result = *arg;
+ return true;
+
+ case rvc_normal:
+ /* For normal numbers, proceed iff radix == 2. */
+ if (format->b == 2)
+ {
+ *result = *arg;
+ /* In GCC, normalized significands are in the range [0.5, 1.0).
+ We want them to be [1.0, 2.0) so set the exponent to 1. */
+ SET_REAL_EXP (result, 1);
+ return true;
+ }
+ return false;
+ }
+ gcc_unreachable ();
+}
+
+/* Try to evaluate:
+
+ *RESULT = f (*ARG)
+
+ where FORMAT is the format of *ARG and PRECISION is the number of
+ significant bits in the result. Return true on success. */
+
+static bool
+fold_const_conversion (wide_int *result,
+ void (*fn) (real_value *, format_helper,
+ const real_value *),
+ const real_value *arg, unsigned int precision,
+ const real_format *format)
+{
+ if (!real_isfinite (arg))
+ return false;
+
+ real_value rounded;
+ fn (&rounded, format, arg);
+
+ bool fail = false;
+ *result = real_to_integer (&rounded, &fail, precision);
+ return !fail;
+}
+
+/* Try to evaluate:
+
+ *RESULT = pow (*ARG0, *ARG1)
+
+ in format FORMAT. Return true on success. */
+
+static bool
+fold_const_pow (real_value *result, const real_value *arg0,
+ const real_value *arg1, const real_format *format)
+{
+ if (do_mpfr_arg2 (result, mpfr_pow, arg0, arg1, format))
+ return true;
+
+ /* Check for an integer exponent. */
+ REAL_VALUE_TYPE cint1;
+ HOST_WIDE_INT n1 = real_to_integer (arg1);
+ real_from_integer (&cint1, VOIDmode, n1, SIGNED);
+ /* Attempt to evaluate pow at compile-time, unless this should
+ raise an exception. */
+ if (real_identical (arg1, &cint1)
+ && (n1 > 0
+ || (!flag_trapping_math && !flag_errno_math)
+ || !real_equal (arg0, &dconst0)))
+ {
+ bool inexact = real_powi (result, format, arg0, n1);
+ if (flag_unsafe_math_optimizations || !inexact)
+ return true;
+ }
+
+ return false;
+}
+
+/* Try to evaluate:
+
+ *RESULT = ldexp (*ARG0, ARG1)
+
+ in format FORMAT. Return true on success. */
+
+static bool
+fold_const_builtin_load_exponent (real_value *result, const real_value *arg0,
+ const wide_int_ref &arg1,
+ const real_format *format)
+{
+ /* Bound the maximum adjustment to twice the range of the
+ mode's valid exponents. Use abs to ensure the range is
+ positive as a sanity check. */
+ int max_exp_adj = 2 * labs (format->emax - format->emin);
+
+ /* The requested adjustment must be inside this range. This
+ is a preliminary cap to avoid things like overflow, we
+ may still fail to compute the result for other reasons. */
+ if (wi::les_p (arg1, -max_exp_adj) || wi::ges_p (arg1, max_exp_adj))
+ return false;
+
+ REAL_VALUE_TYPE initial_result;
+ real_ldexp (&initial_result, arg0, arg1.to_shwi ());
+
+ /* Ensure we didn't overflow. */
+ if (real_isinf (&initial_result))
+ return false;
+
+ /* Only proceed if the target mode can hold the
+ resulting value. */
+ *result = real_value_truncate (format, initial_result);
+ return real_equal (&initial_result, result);
+}
+
+/* Try to evaluate:
+
+ *RESULT = FN (*ARG)
+
+ in format FORMAT. Return true on success. */
+
+static bool
+fold_const_call_ss (real_value *result, built_in_function fn,
+ const real_value *arg, const real_format *format)
+{
+ switch (fn)
+ {
+ CASE_FLT_FN (BUILT_IN_SQRT):
+ return (real_compare (GE_EXPR, arg, &dconst0)
+ && do_mpfr_arg1 (result, mpfr_sqrt, arg, format));
+
+ CASE_FLT_FN (BUILT_IN_CBRT):
+ return do_mpfr_arg1 (result, mpfr_cbrt, arg, format);
+
+ CASE_FLT_FN (BUILT_IN_ASIN):
+ return (real_compare (GE_EXPR, arg, &dconstm1)
+ && real_compare (LE_EXPR, arg, &dconst1)
+ && do_mpfr_arg1 (result, mpfr_asin, arg, format));
+
+ CASE_FLT_FN (BUILT_IN_ACOS):
+ return (real_compare (GE_EXPR, arg, &dconstm1)
+ && real_compare (LE_EXPR, arg, &dconst1)
+ && do_mpfr_arg1 (result, mpfr_acos, arg, format));
+
+ CASE_FLT_FN (BUILT_IN_ATAN):
+ return do_mpfr_arg1 (result, mpfr_atan, arg, format);
+
+ CASE_FLT_FN (BUILT_IN_ASINH):
+ return do_mpfr_arg1 (result, mpfr_asinh, arg, format);
+
+ CASE_FLT_FN (BUILT_IN_ACOSH):
+ return (real_compare (GE_EXPR, arg, &dconst1)
+ && do_mpfr_arg1 (result, mpfr_acosh, arg, format));
+
+ CASE_FLT_FN (BUILT_IN_ATANH):
+ return (real_compare (GE_EXPR, arg, &dconstm1)
+ && real_compare (LE_EXPR, arg, &dconst1)
+ && do_mpfr_arg1 (result, mpfr_atanh, arg, format));
+
+ CASE_FLT_FN (BUILT_IN_SIN):
+ return do_mpfr_arg1 (result, mpfr_sin, arg, format);
+
+ CASE_FLT_FN (BUILT_IN_COS):
+ return do_mpfr_arg1 (result, mpfr_cos, arg, format);
+
+ CASE_FLT_FN (BUILT_IN_TAN):
+ return do_mpfr_arg1 (result, mpfr_tan, arg, format);
+
+ CASE_FLT_FN (BUILT_IN_SINH):
+ return do_mpfr_arg1 (result, mpfr_sinh, arg, format);
+
+ CASE_FLT_FN (BUILT_IN_COSH):
+ return do_mpfr_arg1 (result, mpfr_cosh, arg, format);
+
+ CASE_FLT_FN (BUILT_IN_TANH):
+ return do_mpfr_arg1 (result, mpfr_tanh, arg, format);
+
+ CASE_FLT_FN (BUILT_IN_ERF):
+ return do_mpfr_arg1 (result, mpfr_erf, arg, format);
+
+ CASE_FLT_FN (BUILT_IN_ERFC):
+ return do_mpfr_arg1 (result, mpfr_erfc, arg, format);
+
+ CASE_FLT_FN (BUILT_IN_TGAMMA):
+ return do_mpfr_arg1 (result, mpfr_gamma, arg, format);
+
+ CASE_FLT_FN (BUILT_IN_EXP):
+ return do_mpfr_arg1 (result, mpfr_exp, arg, format);
+
+ CASE_FLT_FN (BUILT_IN_EXP2):
+ return do_mpfr_arg1 (result, mpfr_exp2, arg, format);
+
+ CASE_FLT_FN (BUILT_IN_EXP10):
+ CASE_FLT_FN (BUILT_IN_POW10):
+ return do_mpfr_arg1 (result, mpfr_exp10, arg, format);
+
+ CASE_FLT_FN (BUILT_IN_EXPM1):
+ return do_mpfr_arg1 (result, mpfr_expm1, arg, format);
+
+ CASE_FLT_FN (BUILT_IN_LOG):
+ return (real_compare (GT_EXPR, arg, &dconst0)
+ && do_mpfr_arg1 (result, mpfr_log, arg, format));
+
+ CASE_FLT_FN (BUILT_IN_LOG2):
+ return (real_compare (GT_EXPR, arg, &dconst0)
+ && do_mpfr_arg1 (result, mpfr_log2, arg, format));
+
+ CASE_FLT_FN (BUILT_IN_LOG10):
+ return (real_compare (GT_EXPR, arg, &dconst0)
+ && do_mpfr_arg1 (result, mpfr_log10, arg, format));
+
+ CASE_FLT_FN (BUILT_IN_LOG1P):
+ return (real_compare (GT_EXPR, arg, &dconstm1)
+ && do_mpfr_arg1 (result, mpfr_log1p, arg, format));
+
+ CASE_FLT_FN (BUILT_IN_J0):
+ return do_mpfr_arg1 (result, mpfr_j0, arg, format);
+
+ CASE_FLT_FN (BUILT_IN_J1):
+ return do_mpfr_arg1 (result, mpfr_j1, arg, format);
+
+ CASE_FLT_FN (BUILT_IN_Y0):
+ return (real_compare (GT_EXPR, arg, &dconst0)
+ && do_mpfr_arg1 (result, mpfr_y0, arg, format));
+
+ CASE_FLT_FN (BUILT_IN_Y1):
+ return (real_compare (GT_EXPR, arg, &dconst0)
+ && do_mpfr_arg1 (result, mpfr_y1, arg, format));
+
+ CASE_FLT_FN (BUILT_IN_FLOOR):
+ if (!REAL_VALUE_ISNAN (*arg) || !flag_errno_math)
+ {
+ real_floor (result, format, arg);
+ return true;
+ }
+ return false;
+
+ CASE_FLT_FN (BUILT_IN_CEIL):
+ if (!REAL_VALUE_ISNAN (*arg) || !flag_errno_math)
+ {
+ real_ceil (result, format, arg);
+ return true;
+ }
+ return false;
+
+ CASE_FLT_FN (BUILT_IN_TRUNC):
+ real_trunc (result, format, arg);
+ return true;
+
+ CASE_FLT_FN (BUILT_IN_ROUND):
+ if (!REAL_VALUE_ISNAN (*arg) || !flag_errno_math)
+ {
+ real_round (result, format, arg);
+ return true;
+ }
+ return false;
+
+ CASE_FLT_FN (BUILT_IN_LOGB):
+ return fold_const_logb (result, arg, format);
+
+ CASE_FLT_FN (BUILT_IN_SIGNIFICAND):
+ return fold_const_significand (result, arg, format);
+
+ default:
+ return false;
+ }
+}
+
+/* Try to evaluate:
+
+ *RESULT = FN (*ARG)
+
+ where FORMAT is the format of ARG and PRECISION is the number of
+ significant bits in the result. Return true on success. */
+
+static bool
+fold_const_call_ss (wide_int *result, built_in_function fn,
+ const real_value *arg, unsigned int precision,
+ const real_format *format)
+{
+ switch (fn)
+ {
+ CASE_FLT_FN (BUILT_IN_SIGNBIT):
+ if (real_isneg (arg))
+ *result = wi::one (precision);
+ else
+ *result = wi::zero (precision);
+ return true;
+
+ CASE_FLT_FN (BUILT_IN_ILOGB):
+ /* For ilogb we don't know FP_ILOGB0, so only handle normal values.
+ Proceed iff radix == 2. In GCC, normalized significands are in
+ the range [0.5, 1.0). We want the exponent as if they were
+ [1.0, 2.0) so get the exponent and subtract 1. */
+ if (arg->cl == rvc_normal && format->b == 2)
+ {
+ *result = wi::shwi (REAL_EXP (arg) - 1, precision);
+ return true;
+ }
+ return false;
+
+ CASE_FLT_FN (BUILT_IN_ICEIL):
+ CASE_FLT_FN (BUILT_IN_LCEIL):
+ CASE_FLT_FN (BUILT_IN_LLCEIL):
+ return fold_const_conversion (result, real_ceil, arg,
+ precision, format);
+
+ CASE_FLT_FN (BUILT_IN_LFLOOR):
+ CASE_FLT_FN (BUILT_IN_IFLOOR):
+ CASE_FLT_FN (BUILT_IN_LLFLOOR):
+ return fold_const_conversion (result, real_floor, arg,
+ precision, format);
+
+ CASE_FLT_FN (BUILT_IN_IROUND):
+ CASE_FLT_FN (BUILT_IN_LROUND):
+ CASE_FLT_FN (BUILT_IN_LLROUND):
+ return fold_const_conversion (result, real_round, arg,
+ precision, format);
+
+ CASE_FLT_FN (BUILT_IN_IRINT):
+ CASE_FLT_FN (BUILT_IN_LRINT):
+ CASE_FLT_FN (BUILT_IN_LLRINT):
+ /* Not yet folded to a constant. */
+ return false;
+
+ default:
+ return false;
+ }
+}
+
+/* Try to evaluate:
+
+ RESULT = FN (*ARG)
+
+ where FORMAT is the format of ARG and of the real and imaginary parts
+ of RESULT, passed as RESULT_REAL and RESULT_IMAG respectively. Return
+ true on success. */
+
+static bool
+fold_const_call_cs (real_value *result_real, real_value *result_imag,
+ built_in_function fn, const real_value *arg,
+ const real_format *format)
+{
+ switch (fn)
+ {
+ CASE_FLT_FN (BUILT_IN_CEXPI):
+ /* cexpi(x+yi) = cos(x)+sin(y)*i. */
+ return do_mpfr_sincos (result_imag, result_real, arg, format);
+
+ default:
+ return false;
+ }
+}
+
+/* Try to evaluate:
+
+ *RESULT = fn (ARG)
+
+ where FORMAT is the format of RESULT and of the real and imaginary parts
+ of ARG, passed as ARG_REAL and ARG_IMAG respectively. Return true on
+ success. */
+
+static bool
+fold_const_call_sc (real_value *result, built_in_function fn,
+ const real_value *arg_real, const real_value *arg_imag,
+ const real_format *format)
+{
+ switch (fn)
+ {
+ CASE_FLT_FN (BUILT_IN_CABS):
+ return do_mpfr_arg2 (result, mpfr_hypot, arg_real, arg_imag, format);
+
+ default:
+ return false;
+ }
+}
+
+/* Try to evaluate:
+
+ RESULT = fn (ARG)
+
+ where FORMAT is the format of the real and imaginary parts of RESULT
+ (RESULT_REAL and RESULT_IMAG) and of ARG (ARG_REAL and ARG_IMAG).
+ Return true on success. */
+
+static bool
+fold_const_call_cc (real_value *result_real, real_value *result_imag,
+ built_in_function fn, const real_value *arg_real,
+ const real_value *arg_imag, const real_format *format)
+{
+ switch (fn)
+ {
+ CASE_FLT_FN (BUILT_IN_CCOS):
+ return do_mpc_arg1 (result_real, result_imag, mpc_cos,
+ arg_real, arg_imag, format);
+
+ CASE_FLT_FN (BUILT_IN_CCOSH):
+ return do_mpc_arg1 (result_real, result_imag, mpc_cosh,
+ arg_real, arg_imag, format);
+
+ CASE_FLT_FN (BUILT_IN_CPROJ):
+ if (real_isinf (arg_real) || real_isinf (arg_imag))
+ {
+ real_inf (result_real);
+ *result_imag = dconst0;
+ result_imag->sign = arg_imag->sign;
+ }
+ else
+ {
+ *result_real = *arg_real;
+ *result_imag = *arg_imag;
+ }
+ return true;
+
+ CASE_FLT_FN (BUILT_IN_CSIN):
+ return do_mpc_arg1 (result_real, result_imag, mpc_sin,
+ arg_real, arg_imag, format);
+
+ CASE_FLT_FN (BUILT_IN_CSINH):
+ return do_mpc_arg1 (result_real, result_imag, mpc_sinh,
+ arg_real, arg_imag, format);
+
+ CASE_FLT_FN (BUILT_IN_CTAN):
+ return do_mpc_arg1 (result_real, result_imag, mpc_tan,
+ arg_real, arg_imag, format);
+
+ CASE_FLT_FN (BUILT_IN_CTANH):
+ return do_mpc_arg1 (result_real, result_imag, mpc_tanh,
+ arg_real, arg_imag, format);
+
+ CASE_FLT_FN (BUILT_IN_CLOG):
+ return do_mpc_arg1 (result_real, result_imag, mpc_log,
+ arg_real, arg_imag, format);
+
+ CASE_FLT_FN (BUILT_IN_CSQRT):
+ return do_mpc_arg1 (result_real, result_imag, mpc_sqrt,
+ arg_real, arg_imag, format);
+
+ CASE_FLT_FN (BUILT_IN_CASIN):
+ return do_mpc_arg1 (result_real, result_imag, mpc_asin,
+ arg_real, arg_imag, format);
+
+ CASE_FLT_FN (BUILT_IN_CACOS):
+ return do_mpc_arg1 (result_real, result_imag, mpc_acos,
+ arg_real, arg_imag, format);
+
+ CASE_FLT_FN (BUILT_IN_CATAN):
+ return do_mpc_arg1 (result_real, result_imag, mpc_atan,
+ arg_real, arg_imag, format);
+
+ CASE_FLT_FN (BUILT_IN_CASINH):
+ return do_mpc_arg1 (result_real, result_imag, mpc_asinh,
+ arg_real, arg_imag, format);
+
+ CASE_FLT_FN (BUILT_IN_CACOSH):
+ return do_mpc_arg1 (result_real, result_imag, mpc_acosh,
+ arg_real, arg_imag, format);
+
+ CASE_FLT_FN (BUILT_IN_CATANH):
+ return do_mpc_arg1 (result_real, result_imag, mpc_atanh,
+ arg_real, arg_imag, format);
+
+ CASE_FLT_FN (BUILT_IN_CEXP):
+ return do_mpc_arg1 (result_real, result_imag, mpc_exp,
+ arg_real, arg_imag, format);
+
+ default:
+ return false;
+ }
+}
+
+/* Try to fold FN (ARG) to a constant. Return the constant on success,
+ otherwise return null. TYPE is the type of the return value. */
+
+tree
+fold_const_call (built_in_function fn, tree type, tree arg)
+{
+ machine_mode mode = TYPE_MODE (type);
+ machine_mode arg_mode = TYPE_MODE (TREE_TYPE (arg));
+
+ if (real_cst_p (arg))
+ {
+ gcc_checking_assert (SCALAR_FLOAT_MODE_P (arg_mode));
+ if (mode == arg_mode)
+ {
+ /* real -> real. */
+ REAL_VALUE_TYPE result;
+ if (fold_const_call_ss (&result, fn, TREE_REAL_CST_PTR (arg),
+ REAL_MODE_FORMAT (mode)))
+ return build_real (type, result);
+ }
+ else if (COMPLEX_MODE_P (mode)
+ && GET_MODE_INNER (mode) == arg_mode)
+ {
+ /* real -> complex real. */
+ REAL_VALUE_TYPE result_real, result_imag;
+ if (fold_const_call_cs (&result_real, &result_imag, fn,
+ TREE_REAL_CST_PTR (arg),
+ REAL_MODE_FORMAT (arg_mode)))
+ return build_complex (type,
+ build_real (TREE_TYPE (type), result_real),
+ build_real (TREE_TYPE (type), result_imag));
+ }
+ else if (INTEGRAL_TYPE_P (type))
+ {
+ /* real -> int. */
+ wide_int result;
+ if (fold_const_call_ss (&result, fn,
+ TREE_REAL_CST_PTR (arg),
+ TYPE_PRECISION (type),
+ REAL_MODE_FORMAT (arg_mode)))
+ return wide_int_to_tree (type, result);
+ }
+ return NULL_TREE;
+ }
+
+ if (complex_cst_p (arg))
+ {
+ gcc_checking_assert (COMPLEX_MODE_P (arg_mode));
+ machine_mode inner_mode = GET_MODE_INNER (arg_mode);
+ tree argr = TREE_REALPART (arg);
+ tree argi = TREE_IMAGPART (arg);
+ if (mode == arg_mode
+ && real_cst_p (argr)
+ && real_cst_p (argi))
+ {
+ /* complex real -> complex real. */
+ REAL_VALUE_TYPE result_real, result_imag;
+ if (fold_const_call_cc (&result_real, &result_imag, fn,
+ TREE_REAL_CST_PTR (argr),
+ TREE_REAL_CST_PTR (argi),
+ REAL_MODE_FORMAT (inner_mode)))
+ return build_complex (type,
+ build_real (TREE_TYPE (type), result_real),
+ build_real (TREE_TYPE (type), result_imag));
+ }
+ if (mode == inner_mode
+ && real_cst_p (argr)
+ && real_cst_p (argi))
+ {
+ /* complex real -> real. */
+ REAL_VALUE_TYPE result;
+ if (fold_const_call_sc (&result, fn,
+ TREE_REAL_CST_PTR (argr),
+ TREE_REAL_CST_PTR (argi),
+ REAL_MODE_FORMAT (inner_mode)))
+ return build_real (type, result);
+ }
+ return NULL_TREE;
+ }
+
+ return NULL_TREE;
+}
+
+/* Try to evaluate:
+
+ *RESULT = FN (*ARG0, *ARG1)
+
+ in format FORMAT. Return true on success. */
+
+static bool
+fold_const_call_sss (real_value *result, built_in_function fn,
+ const real_value *arg0, const real_value *arg1,
+ const real_format *format)
+{
+ switch (fn)
+ {
+ CASE_FLT_FN (BUILT_IN_DREM):
+ CASE_FLT_FN (BUILT_IN_REMAINDER):
+ return do_mpfr_arg2 (result, mpfr_remainder, arg0, arg1, format);
+
+ CASE_FLT_FN (BUILT_IN_ATAN2):
+ return do_mpfr_arg2 (result, mpfr_atan2, arg0, arg1, format);
+
+ CASE_FLT_FN (BUILT_IN_FDIM):
+ return do_mpfr_arg2 (result, mpfr_dim, arg0, arg1, format);
+
+ CASE_FLT_FN (BUILT_IN_HYPOT):
+ return do_mpfr_arg2 (result, mpfr_hypot, arg0, arg1, format);
+
+ CASE_FLT_FN (BUILT_IN_COPYSIGN):
+ *result = *arg0;
+ real_copysign (result, arg1);
+ return true;
+
+ CASE_FLT_FN (BUILT_IN_FMIN):
+ return do_mpfr_arg2 (result, mpfr_min, arg0, arg1, format);
+
+ CASE_FLT_FN (BUILT_IN_FMAX):
+ return do_mpfr_arg2 (result, mpfr_max, arg0, arg1, format);
+
+ CASE_FLT_FN (BUILT_IN_POW):
+ return fold_const_pow (result, arg0, arg1, format);
+
+ default:
+ return false;
+ }
+}
+
+/* Try to evaluate:
+
+ *RESULT = FN (*ARG0, ARG1)
+
+ where FORMAT is the format of *RESULT and *ARG0. Return true on
+ success. */
+
+static bool
+fold_const_call_sss (real_value *result, built_in_function fn,
+ const real_value *arg0, const wide_int_ref &arg1,
+ const real_format *format)
+{
+ switch (fn)
+ {
+ CASE_FLT_FN (BUILT_IN_LDEXP):
+ return fold_const_builtin_load_exponent (result, arg0, arg1, format);
+
+ CASE_FLT_FN (BUILT_IN_SCALBN):
+ CASE_FLT_FN (BUILT_IN_SCALBLN):
+ return (format->b == 2
+ && fold_const_builtin_load_exponent (result, arg0, arg1,
+ format));
+
+ CASE_FLT_FN (BUILT_IN_POWI):
+ real_powi (result, format, arg0, arg1.to_shwi ());
+ return true;
+
+ default:
+ return false;
+ }
+}
+
+/* Try to evaluate:
+
+ *RESULT = FN (ARG0, *ARG1)
+
+ where FORMAT is the format of *RESULT and *ARG1. Return true on
+ success. */
+
+static bool
+fold_const_call_sss (real_value *result, built_in_function fn,
+ const wide_int_ref &arg0, const real_value *arg1,
+ const real_format *format)
+{
+ switch (fn)
+ {
+ CASE_FLT_FN (BUILT_IN_JN):
+ return do_mpfr_arg2 (result, mpfr_jn, arg0, arg1, format);
+
+ CASE_FLT_FN (BUILT_IN_YN):
+ return (real_compare (GT_EXPR, arg1, &dconst0)
+ && do_mpfr_arg2 (result, mpfr_yn, arg0, arg1, format));
+
+ default:
+ return false;
+ }
+}
+
+/* Try to evaluate:
+
+ RESULT = fn (ARG0, ARG1)
+
+ where FORMAT is the format of the real and imaginary parts of RESULT
+ (RESULT_REAL and RESULT_IMAG), of ARG0 (ARG0_REAL and ARG0_IMAG)
+ and of ARG1 (ARG1_REAL and ARG1_IMAG). Return true on success. */
+
+static bool
+fold_const_call_ccc (real_value *result_real, real_value *result_imag,
+ built_in_function fn, const real_value *arg0_real,
+ const real_value *arg0_imag, const real_value *arg1_real,
+ const real_value *arg1_imag, const real_format *format)
+{
+ switch (fn)
+ {
+ CASE_FLT_FN (BUILT_IN_CPOW):
+ return do_mpc_arg2 (result_real, result_imag, mpc_pow,
+ arg0_real, arg0_imag, arg1_real, arg1_imag, format);
+
+ default:
+ return false;
+ }
+}
+
+/* Try to fold FN (ARG0, ARG1) to a constant. Return the constant on success,
+ otherwise return null. TYPE is the type of the return value. */
+
+tree
+fold_const_call (built_in_function fn, tree type, tree arg0, tree arg1)
+{
+ machine_mode mode = TYPE_MODE (type);
+ machine_mode arg0_mode = TYPE_MODE (TREE_TYPE (arg0));
+ machine_mode arg1_mode = TYPE_MODE (TREE_TYPE (arg1));
+
+ if (arg0_mode == arg1_mode
+ && real_cst_p (arg0)
+ && real_cst_p (arg1))
+ {
+ gcc_checking_assert (SCALAR_FLOAT_MODE_P (arg0_mode));
+ if (mode == arg0_mode)
+ {
+ /* real, real -> real. */
+ REAL_VALUE_TYPE result;
+ if (fold_const_call_sss (&result, fn, TREE_REAL_CST_PTR (arg0),
+ TREE_REAL_CST_PTR (arg1),
+ REAL_MODE_FORMAT (mode)))
+ return build_real (type, result);
+ }
+ return NULL_TREE;
+ }
+
+ if (real_cst_p (arg0)
+ && integer_cst_p (arg1))
+ {
+ gcc_checking_assert (SCALAR_FLOAT_MODE_P (arg0_mode));
+ if (mode == arg0_mode)
+ {
+ /* real, int -> real. */
+ REAL_VALUE_TYPE result;
+ if (fold_const_call_sss (&result, fn, TREE_REAL_CST_PTR (arg0),
+ arg1, REAL_MODE_FORMAT (mode)))
+ return build_real (type, result);
+ }
+ return NULL_TREE;
+ }
+
+ if (integer_cst_p (arg0)
+ && real_cst_p (arg1))
+ {
+ gcc_checking_assert (SCALAR_FLOAT_MODE_P (arg1_mode));
+ if (mode == arg1_mode)
+ {
+ /* int, real -> real. */
+ REAL_VALUE_TYPE result;
+ if (fold_const_call_sss (&result, fn, arg0,
+ TREE_REAL_CST_PTR (arg1),
+ REAL_MODE_FORMAT (mode)))
+ return build_real (type, result);
+ }
+ return NULL_TREE;
+ }
+
+ if (arg0_mode == arg1_mode
+ && complex_cst_p (arg0)
+ && complex_cst_p (arg1))
+ {
+ gcc_checking_assert (COMPLEX_MODE_P (arg0_mode));
+ machine_mode inner_mode = GET_MODE_INNER (arg0_mode);
+ tree arg0r = TREE_REALPART (arg0);
+ tree arg0i = TREE_IMAGPART (arg0);
+ tree arg1r = TREE_REALPART (arg1);
+ tree arg1i = TREE_IMAGPART (arg1);
+ if (mode == arg0_mode
+ && real_cst_p (arg0r)
+ && real_cst_p (arg0i)
+ && real_cst_p (arg1r)
+ && real_cst_p (arg1i))
+ {
+ /* complex real, complex real -> complex real. */
+ REAL_VALUE_TYPE result_real, result_imag;
+ if (fold_const_call_ccc (&result_real, &result_imag, fn,
+ TREE_REAL_CST_PTR (arg0r),
+ TREE_REAL_CST_PTR (arg0i),
+ TREE_REAL_CST_PTR (arg1r),
+ TREE_REAL_CST_PTR (arg1i),
+ REAL_MODE_FORMAT (inner_mode)))
+ return build_complex (type,
+ build_real (TREE_TYPE (type), result_real),
+ build_real (TREE_TYPE (type), result_imag));
+ }
+ return NULL_TREE;
+ }
+
+ return NULL_TREE;
+}
+
+/* Try to evaluate:
+
+ *RESULT = FN (*ARG0, *ARG1, *ARG2)
+
+ in format FORMAT. Return true on success. */
+
+static bool
+fold_const_call_ssss (real_value *result, built_in_function fn,
+ const real_value *arg0, const real_value *arg1,
+ const real_value *arg2, const real_format *format)
+{
+ switch (fn)
+ {
+ CASE_FLT_FN (BUILT_IN_FMA):
+ return do_mpfr_arg3 (result, mpfr_fma, arg0, arg1, arg2, format);
+
+ default:
+ return false;
+ }
+}
+
+/* Try to fold FN (ARG0, ARG1, ARG2) to a constant. Return the constant on
+ success, otherwise return null. TYPE is the type of the return value. */
+
+tree
+fold_const_call (built_in_function fn, tree type, tree arg0, tree arg1,
+ tree arg2)
+{
+ machine_mode mode = TYPE_MODE (type);
+ machine_mode arg0_mode = TYPE_MODE (TREE_TYPE (arg0));
+ machine_mode arg1_mode = TYPE_MODE (TREE_TYPE (arg1));
+ machine_mode arg2_mode = TYPE_MODE (TREE_TYPE (arg2));
+
+ if (arg0_mode == arg1_mode
+ && arg0_mode == arg2_mode
+ && real_cst_p (arg0)
+ && real_cst_p (arg1)
+ && real_cst_p (arg2))
+ {
+ gcc_checking_assert (SCALAR_FLOAT_MODE_P (arg0_mode));
+ if (mode == arg0_mode)
+ {
+ /* real, real, real -> real. */
+ REAL_VALUE_TYPE result;
+ if (fold_const_call_ssss (&result, fn, TREE_REAL_CST_PTR (arg0),
+ TREE_REAL_CST_PTR (arg1),
+ TREE_REAL_CST_PTR (arg2),
+ REAL_MODE_FORMAT (mode)))
+ return build_real (type, result);
+ }
+ return NULL_TREE;
+ }
+
+ return NULL_TREE;
+}
+
+/* Fold a fma operation with arguments ARG[012]. */
+
+tree
+fold_fma (location_t, tree type, tree arg0, tree arg1, tree arg2)
+{
+ REAL_VALUE_TYPE result;
+ if (real_cst_p (arg0)
+ && real_cst_p (arg1)
+ && real_cst_p (arg2)
+ && do_mpfr_arg3 (&result, mpfr_fma, TREE_REAL_CST_PTR (arg0),
+ TREE_REAL_CST_PTR (arg1), TREE_REAL_CST_PTR (arg2),
+ REAL_MODE_FORMAT (TYPE_MODE (type))))
+ return build_real (type, result);
+
+ return NULL_TREE;
+}