summaryrefslogtreecommitdiff
path: root/board/gdsys/p1022/controlcenterd-id.c
diff options
context:
space:
mode:
Diffstat (limited to 'board/gdsys/p1022/controlcenterd-id.c')
-rw-r--r--board/gdsys/p1022/controlcenterd-id.c1224
1 files changed, 1224 insertions, 0 deletions
diff --git a/board/gdsys/p1022/controlcenterd-id.c b/board/gdsys/p1022/controlcenterd-id.c
new file mode 100644
index 0000000000..3fca3c53b2
--- /dev/null
+++ b/board/gdsys/p1022/controlcenterd-id.c
@@ -0,0 +1,1224 @@
+/*
+ * (C) Copyright 2013
+ * Reinhard Pfau, Guntermann & Drunck GmbH, reinhard.pfau@gdsys.cc
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License as published by the Free
+ * Software Foundation; either version 2 of the License, or (at your option)
+ * any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
+ * MA 02110-1301, USA.
+ */
+
+/* TODO: some more #ifdef's to avoid unneeded code for stage 1 / stage 2 */
+
+#ifdef CCDM_ID_DEBUG
+#define DEBUG
+#endif
+
+#include <common.h>
+#include <malloc.h>
+#include <fs.h>
+#include <i2c.h>
+#include <mmc.h>
+#include <tpm.h>
+#include <sha1.h>
+#include <asm/byteorder.h>
+#include <asm/unaligned.h>
+#include <pca9698.h>
+
+#undef CCDM_FIRST_STAGE
+#undef CCDM_SECOND_STAGE
+#undef CCDM_AUTO_FIRST_STAGE
+
+#ifdef CONFIG_DEVELOP
+#define CCDM_DEVELOP
+#endif
+
+#ifdef CONFIG_TRAILBLAZER
+#define CCDM_FIRST_STAGE
+#undef CCDM_SECOND_STAGE
+#else
+#undef CCDM_FIRST_STAGE
+#define CCDM_SECOND_STAGE
+#endif
+
+#if defined(CCDM_DEVELOP) && defined(CCDM_SECOND_STAGE) && \
+ !defined(CCCM_FIRST_STAGE)
+#define CCDM_AUTO_FIRST_STAGE
+#endif
+
+/* enums from TCG specs */
+enum {
+ /* capability areas */
+ TPM_CAP_NV_INDEX = 0x00000011,
+ TPM_CAP_HANDLE = 0x00000014,
+ /* resource types */
+ TPM_RT_KEY = 0x00000001,
+};
+
+/* CCDM specific contants */
+enum {
+ /* NV indices */
+ NV_COMMON_DATA_INDEX = 0x40000001,
+ /* magics for key blob chains */
+ MAGIC_KEY_PROGRAM = 0x68726500,
+ MAGIC_HMAC = 0x68616300,
+ MAGIC_END_OF_CHAIN = 0x00000000,
+ /* sizes */
+ NV_COMMON_DATA_MIN_SIZE = 3 * sizeof(uint64_t) + 2 * sizeof(uint16_t),
+};
+
+/* other constants */
+enum {
+ ESDHC_BOOT_IMAGE_SIG_OFS = 0x40,
+ ESDHC_BOOT_IMAGE_SIZE_OFS = 0x48,
+ ESDHC_BOOT_IMAGE_ADDR_OFS = 0x50,
+ ESDHC_BOOT_IMAGE_TARGET_OFS = 0x58,
+ ESDHC_BOOT_IMAGE_ENTRY_OFS = 0x60,
+};
+
+struct key_program {
+ uint32_t magic;
+ uint32_t code_crc;
+ uint32_t code_size;
+ uint8_t code[];
+};
+
+struct h_reg {
+ bool valid;
+ uint8_t digest[20];
+};
+
+
+enum access_mode {
+ HREG_NONE = 0,
+ HREG_RD = 1,
+ HREG_WR = 2,
+ HREG_RDWR = 3,
+};
+
+/* register constants */
+enum {
+ FIX_HREG_DEVICE_ID_HASH = 0,
+ FIX_HREG_SELF_HASH = 1,
+ FIX_HREG_STAGE2_HASH = 2,
+ FIX_HREG_VENDOR = 3,
+ COUNT_FIX_HREGS
+};
+
+
+/* hre opcodes */
+enum {
+ /* opcodes w/o data */
+ HRE_NOP = 0x00,
+ HRE_SYNC = HRE_NOP,
+ HRE_CHECK0 = 0x01,
+ /* opcodes w/o data, w/ sync dst */
+ /* opcodes w/ data */
+ HRE_LOAD = 0x81,
+ /* opcodes w/data, w/sync dst */
+ HRE_XOR = 0xC1,
+ HRE_AND = 0xC2,
+ HRE_OR = 0xC3,
+ HRE_EXTEND = 0xC4,
+ HRE_LOADKEY = 0xC5,
+};
+
+/* hre errors */
+enum {
+ HRE_E_OK = 0,
+ HRE_E_TPM_FAILURE,
+ HRE_E_INVALID_HREG,
+};
+
+static uint64_t device_id;
+static uint64_t device_cl;
+static uint64_t device_type;
+
+static uint32_t platform_key_handle;
+
+static void(*bl2_entry)(void);
+
+static struct h_reg pcr_hregs[24];
+static struct h_reg fix_hregs[COUNT_FIX_HREGS];
+static struct h_reg var_hregs[8];
+static uint32_t hre_tpm_err;
+static int hre_err = HRE_E_OK;
+
+#define IS_PCR_HREG(spec) ((spec) & 0x20)
+#define IS_FIX_HREG(spec) (((spec) & 0x38) == 0x08)
+#define IS_VAR_HREG(spec) (((spec) & 0x38) == 0x10)
+#define HREG_IDX(spec) ((spec) & (IS_PCR_HREG(spec) ? 0x1f : 0x7))
+
+
+static const uint8_t prg_stage1_prepare[] = {
+ 0x00, 0x20, 0x00, 0x00, /* opcode: SYNC f0 */
+ 0x00, 0x24, 0x00, 0x00, /* opcode: SYNC f1 */
+ 0x01, 0x80, 0x00, 0x00, /* opcode: CHECK0 PCR0 */
+ 0x81, 0x22, 0x00, 0x00, /* opcode: LOAD PCR0, f0 */
+ 0x01, 0x84, 0x00, 0x00, /* opcode: CHECK0 PCR1 */
+ 0x81, 0x26, 0x10, 0x00, /* opcode: LOAD PCR1, f1 */
+ 0x01, 0x88, 0x00, 0x00, /* opcode: CHECK0 PCR2 */
+ 0x81, 0x2a, 0x20, 0x00, /* opcode: LOAD PCR2, f2 */
+ 0x01, 0x8c, 0x00, 0x00, /* opcode: CHECK0 PCR3 */
+ 0x81, 0x2e, 0x30, 0x00, /* opcode: LOAD PCR3, f3 */
+};
+
+static const uint8_t prg_stage2_prepare[] = {
+ 0x00, 0x80, 0x00, 0x00, /* opcode: SYNC PCR0 */
+ 0x00, 0x84, 0x00, 0x00, /* opcode: SYNC PCR1 */
+ 0x00, 0x88, 0x00, 0x00, /* opcode: SYNC PCR2 */
+ 0x00, 0x8c, 0x00, 0x00, /* opcode: SYNC PCR3 */
+ 0x00, 0x90, 0x00, 0x00, /* opcode: SYNC PCR4 */
+};
+
+static const uint8_t prg_stage2_success[] = {
+ 0x81, 0x02, 0x40, 0x14, /* opcode: LOAD PCR4, #<20B data> */
+ 0x48, 0xfd, 0x95, 0x17, 0xe7, 0x54, 0x6b, 0x68, /* data */
+ 0x92, 0x31, 0x18, 0x05, 0xf8, 0x58, 0x58, 0x3c, /* data */
+ 0xe4, 0xd2, 0x81, 0xe0, /* data */
+};
+
+static const uint8_t prg_stage_fail[] = {
+ 0x81, 0x01, 0x00, 0x14, /* opcode: LOAD v0, #<20B data> */
+ 0xc0, 0x32, 0xad, 0xc1, 0xff, 0x62, 0x9c, 0x9b, /* data */
+ 0x66, 0xf2, 0x27, 0x49, 0xad, 0x66, 0x7e, 0x6b, /* data */
+ 0xea, 0xdf, 0x14, 0x4b, /* data */
+ 0x81, 0x42, 0x30, 0x00, /* opcode: LOAD PCR3, v0 */
+ 0x81, 0x42, 0x40, 0x00, /* opcode: LOAD PCR4, v0 */
+};
+
+static const uint8_t vendor[] = "Guntermann & Drunck";
+
+
+/**
+ * @brief read a bunch of data from MMC into memory.
+ *
+ * @param mmc pointer to the mmc structure to use.
+ * @param src offset where the data starts on MMC/SD device (in bytes).
+ * @param dst pointer to the location where the read data should be stored.
+ * @param size number of bytes to read from the MMC/SD device.
+ * @return number of bytes read or -1 on error.
+ */
+static int ccdm_mmc_read(struct mmc *mmc, u64 src, u8 *dst, int size)
+{
+ int result = 0;
+ u32 blk_len, ofs;
+ ulong block_no, n, cnt;
+ u8 *tmp_buf = NULL;
+
+ if (size <= 0)
+ goto end;
+
+ blk_len = mmc->read_bl_len;
+ tmp_buf = malloc(blk_len);
+ if (!tmp_buf)
+ goto failure;
+ block_no = src / blk_len;
+ ofs = src % blk_len;
+
+ if (ofs) {
+ n = mmc->block_dev.block_read(mmc->block_dev.dev, block_no++, 1,
+ tmp_buf);
+ if (!n)
+ goto failure;
+ result = min(size, blk_len - ofs);
+ memcpy(dst, tmp_buf + ofs, result);
+ dst += result;
+ size -= result;
+ }
+ cnt = size / blk_len;
+ if (cnt) {
+ n = mmc->block_dev.block_read(mmc->block_dev.dev, block_no, cnt,
+ dst);
+ if (n != cnt)
+ goto failure;
+ size -= cnt * blk_len;
+ result += cnt * blk_len;
+ dst += cnt * blk_len;
+ block_no += cnt;
+ }
+ if (size) {
+ n = mmc->block_dev.block_read(mmc->block_dev.dev, block_no++, 1,
+ tmp_buf);
+ if (!n)
+ goto failure;
+ memcpy(dst, tmp_buf, size);
+ result += size;
+ }
+ goto end;
+failure:
+ result = -1;
+end:
+ if (tmp_buf)
+ free(tmp_buf);
+ return result;
+}
+
+/**
+ * @brief returns a location where the 2nd stage bootloader can be(/ is) placed.
+ *
+ * @return pointer to the location for/of the 2nd stage bootloader
+ */
+static u8 *get_2nd_stage_bl_location(ulong target_addr)
+{
+ ulong addr;
+#ifdef CCDM_SECOND_STAGE
+ addr = getenv_ulong("loadaddr", 16, CONFIG_LOADADDR);
+#else
+ addr = target_addr;
+#endif
+ return (u8 *)(addr);
+}
+
+
+#ifdef CCDM_SECOND_STAGE
+/**
+ * @brief returns a location where the image can be(/ is) placed.
+ *
+ * @return pointer to the location for/of the image
+ */
+static u8 *get_image_location(void)
+{
+ ulong addr;
+ /* TODO use other area? */
+ addr = getenv_ulong("loadaddr", 16, CONFIG_LOADADDR);
+ return (u8 *)(addr);
+}
+#endif
+
+/**
+ * @brief get the size of a given (TPM) NV area
+ * @param index NV index of the area to get size for
+ * @param size pointer to the size
+ * @return 0 on success, != 0 on error
+ */
+static int get_tpm_nv_size(uint32_t index, uint32_t *size)
+{
+ uint32_t err;
+ uint8_t info[72];
+ uint8_t *ptr;
+ uint16_t v16;
+
+ err = tpm_get_capability(TPM_CAP_NV_INDEX, index,
+ info, sizeof(info));
+ if (err) {
+ printf("tpm_get_capability(CAP_NV_INDEX, %08x) failed: %u\n",
+ index, err);
+ return 1;
+ }
+
+ /* skip tag and nvIndex */
+ ptr = info + 6;
+ /* skip 2 pcr info fields */
+ v16 = get_unaligned_be16(ptr);
+ ptr += 2 + v16 + 1 + 20;
+ v16 = get_unaligned_be16(ptr);
+ ptr += 2 + v16 + 1 + 20;
+ /* skip permission and flags */
+ ptr += 6 + 3;
+
+ *size = get_unaligned_be32(ptr);
+ return 0;
+}
+
+/**
+ * @brief search for a key by usage auth and pub key hash.
+ * @param auth usage auth of the key to search for
+ * @param pubkey_digest (SHA1) hash of the pub key structure of the key
+ * @param[out] handle the handle of the key iff found
+ * @return 0 if key was found in TPM; != 0 if not.
+ */
+static int find_key(const uint8_t auth[20], const uint8_t pubkey_digest[20],
+ uint32_t *handle)
+{
+ uint16_t key_count;
+ uint32_t key_handles[10];
+ uint8_t buf[288];
+ uint8_t *ptr;
+ uint32_t err;
+ uint8_t digest[20];
+ size_t buf_len;
+ unsigned int i;
+
+ /* fetch list of already loaded keys in the TPM */
+ err = tpm_get_capability(TPM_CAP_HANDLE, TPM_RT_KEY, buf, sizeof(buf));
+ if (err)
+ return -1;
+ key_count = get_unaligned_be16(buf);
+ ptr = buf + 2;
+ for (i = 0; i < key_count; ++i, ptr += 4)
+ key_handles[i] = get_unaligned_be32(ptr);
+
+ /* now search a(/ the) key which we can access with the given auth */
+ for (i = 0; i < key_count; ++i) {
+ buf_len = sizeof(buf);
+ err = tpm_get_pub_key_oiap(key_handles[i], auth, buf, &buf_len);
+ if (err && err != TPM_AUTHFAIL)
+ return -1;
+ if (err)
+ continue;
+ sha1_csum(buf, buf_len, digest);
+ if (!memcmp(digest, pubkey_digest, 20)) {
+ *handle = key_handles[i];
+ return 0;
+ }
+ }
+ return 1;
+}
+
+/**
+ * @brief read CCDM common data from TPM NV
+ * @return 0 if CCDM common data was found and read, !=0 if something failed.
+ */
+static int read_common_data(void)
+{
+ uint32_t size;
+ uint32_t err;
+ uint8_t buf[256];
+ sha1_context ctx;
+
+ if (get_tpm_nv_size(NV_COMMON_DATA_INDEX, &size) ||
+ size < NV_COMMON_DATA_MIN_SIZE)
+ return 1;
+ err = tpm_nv_read_value(NV_COMMON_DATA_INDEX,
+ buf, min(sizeof(buf), size));
+ if (err) {
+ printf("tpm_nv_read_value() failed: %u\n", err);
+ return 1;
+ }
+
+ device_id = get_unaligned_be64(buf);
+ device_cl = get_unaligned_be64(buf + 8);
+ device_type = get_unaligned_be64(buf + 16);
+
+ sha1_starts(&ctx);
+ sha1_update(&ctx, buf, 24);
+ sha1_finish(&ctx, fix_hregs[FIX_HREG_DEVICE_ID_HASH].digest);
+ fix_hregs[FIX_HREG_DEVICE_ID_HASH].valid = true;
+
+ platform_key_handle = get_unaligned_be32(buf + 24);
+
+ return 0;
+}
+
+/**
+ * @brief compute hash of bootloader itself.
+ * @param[out] dst hash register where the hash should be stored
+ * @return 0 on success, != 0 on failure.
+ *
+ * @note MUST be called at a time where the boot loader is accessible at the
+ * configured location (; so take care when code is reallocated).
+ */
+static int compute_self_hash(struct h_reg *dst)
+{
+ sha1_csum((const uint8_t *)CONFIG_SYS_MONITOR_BASE,
+ CONFIG_SYS_MONITOR_LEN, dst->digest);
+ dst->valid = true;
+ return 0;
+}
+
+int ccdm_compute_self_hash(void)
+{
+ if (!fix_hregs[FIX_HREG_SELF_HASH].valid)
+ compute_self_hash(&fix_hregs[FIX_HREG_SELF_HASH]);
+ return 0;
+}
+
+/**
+ * @brief compute the hash of the 2nd stage boot loader (on SD card)
+ * @param[out] dst hash register to store the computed hash
+ * @return 0 on success, != 0 on failure
+ *
+ * Determines the size and location of the 2nd stage boot loader on SD card,
+ * loads the 2nd stage boot loader and computes the (SHA1) hash value.
+ * Within the 1st stage boot loader, the 2nd stage boot loader is loaded at
+ * the desired memory location and the variable @a bl2_entry is set.
+ *
+ * @note This sets the variable @a bl2_entry to the entry point when the
+ * 2nd stage boot loader is loaded at its configured memory location.
+ */
+static int compute_second_stage_hash(struct h_reg *dst)
+{
+ int result = 0;
+ u32 code_len, code_offset, target_addr, exec_entry;
+ struct mmc *mmc;
+ u8 *load_addr = NULL;
+ u8 buf[128];
+
+ mmc = find_mmc_device(0);
+ if (!mmc)
+ goto failure;
+ mmc_init(mmc);
+
+ if (ccdm_mmc_read(mmc, 0, buf, sizeof(buf)) < 0)
+ goto failure;
+
+ code_offset = *(u32 *)(buf + ESDHC_BOOT_IMAGE_ADDR_OFS);
+ code_len = *(u32 *)(buf + ESDHC_BOOT_IMAGE_SIZE_OFS);
+ target_addr = *(u32 *)(buf + ESDHC_BOOT_IMAGE_TARGET_OFS);
+ exec_entry = *(u32 *)(buf + ESDHC_BOOT_IMAGE_ENTRY_OFS);
+
+ load_addr = get_2nd_stage_bl_location(target_addr);
+ if (load_addr == (u8 *)target_addr)
+ bl2_entry = (void(*)(void))exec_entry;
+
+ if (ccdm_mmc_read(mmc, code_offset, load_addr, code_len) < 0)
+ goto failure;
+
+ sha1_csum(load_addr, code_len, dst->digest);
+ dst->valid = true;
+
+ goto end;
+failure:
+ result = 1;
+ bl2_entry = NULL;
+end:
+ return result;
+}
+
+/**
+ * @brief get pointer to hash register by specification
+ * @param spec specification of a hash register
+ * @return pointer to hash register or NULL if @a spec does not qualify a
+ * valid hash register; NULL else.
+ */
+static struct h_reg *get_hreg(uint8_t spec)
+{
+ uint8_t idx;
+
+ idx = HREG_IDX(spec);
+ if (IS_FIX_HREG(spec)) {
+ if (idx < ARRAY_SIZE(fix_hregs))
+ return fix_hregs + idx;
+ hre_err = HRE_E_INVALID_HREG;
+ } else if (IS_PCR_HREG(spec)) {
+ if (idx < ARRAY_SIZE(pcr_hregs))
+ return pcr_hregs + idx;
+ hre_err = HRE_E_INVALID_HREG;
+ } else if (IS_VAR_HREG(spec)) {
+ if (idx < ARRAY_SIZE(var_hregs))
+ return var_hregs + idx;
+ hre_err = HRE_E_INVALID_HREG;
+ }
+ return NULL;
+}
+
+/**
+ * @brief get pointer of a hash register by specification and usage.
+ * @param spec specification of a hash register
+ * @param mode access mode (read or write or read/write)
+ * @return pointer to hash register if found and valid; NULL else.
+ *
+ * This func uses @a get_reg() to determine the hash register for a given spec.
+ * If a register is found it is validated according to the desired access mode.
+ * The value of automatic registers (PCR register and fixed registers) is
+ * loaded or computed on read access.
+ */
+static struct h_reg *access_hreg(uint8_t spec, enum access_mode mode)
+{
+ struct h_reg *result;
+
+ result = get_hreg(spec);
+ if (!result)
+ return NULL;
+
+ if (mode & HREG_WR) {
+ if (IS_FIX_HREG(spec)) {
+ hre_err = HRE_E_INVALID_HREG;
+ return NULL;
+ }
+ }
+ if (mode & HREG_RD) {
+ if (!result->valid) {
+ if (IS_PCR_HREG(spec)) {
+ hre_tpm_err = tpm_pcr_read(HREG_IDX(spec),
+ result->digest, 20);
+ result->valid = (hre_tpm_err == TPM_SUCCESS);
+ } else if (IS_FIX_HREG(spec)) {
+ switch (HREG_IDX(spec)) {
+ case FIX_HREG_DEVICE_ID_HASH:
+ read_common_data();
+ break;
+ case FIX_HREG_SELF_HASH:
+ ccdm_compute_self_hash();
+ break;
+ case FIX_HREG_STAGE2_HASH:
+ compute_second_stage_hash(result);
+ break;
+ case FIX_HREG_VENDOR:
+ memcpy(result->digest, vendor, 20);
+ result->valid = true;
+ break;
+ }
+ } else {
+ result->valid = true;
+ }
+ }
+ if (!result->valid) {
+ hre_err = HRE_E_INVALID_HREG;
+ return NULL;
+ }
+ }
+
+ return result;
+}
+
+static void *compute_and(void *_dst, const void *_src, size_t n)
+{
+ uint8_t *dst = _dst;
+ const uint8_t *src = _src;
+ size_t i;
+
+ for (i = n; i-- > 0; )
+ *dst++ &= *src++;
+
+ return _dst;
+}
+
+static void *compute_or(void *_dst, const void *_src, size_t n)
+{
+ uint8_t *dst = _dst;
+ const uint8_t *src = _src;
+ size_t i;
+
+ for (i = n; i-- > 0; )
+ *dst++ |= *src++;
+
+ return _dst;
+}
+
+static void *compute_xor(void *_dst, const void *_src, size_t n)
+{
+ uint8_t *dst = _dst;
+ const uint8_t *src = _src;
+ size_t i;
+
+ for (i = n; i-- > 0; )
+ *dst++ ^= *src++;
+
+ return _dst;
+}
+
+static void *compute_extend(void *_dst, const void *_src, size_t n)
+{
+ uint8_t digest[20];
+ sha1_context ctx;
+
+ sha1_starts(&ctx);
+ sha1_update(&ctx, _dst, n);
+ sha1_update(&ctx, _src, n);
+ sha1_finish(&ctx, digest);
+ memcpy(_dst, digest, min(n, sizeof(digest)));
+
+ return _dst;
+}
+
+static int hre_op_loadkey(struct h_reg *src_reg, struct h_reg *dst_reg,
+ const void *key, size_t key_size)
+{
+ uint32_t parent_handle;
+ uint32_t key_handle;
+
+ if (!src_reg || !dst_reg || !src_reg->valid || !dst_reg->valid)
+ return -1;
+ if (find_key(src_reg->digest, dst_reg->digest, &parent_handle))
+ return -1;
+ hre_tpm_err = tpm_load_key2_oiap(parent_handle, key, key_size,
+ src_reg->digest, &key_handle);
+ if (hre_tpm_err) {
+ hre_err = HRE_E_TPM_FAILURE;
+ return -1;
+ }
+ /* TODO remember key handle somehow? */
+
+ return 0;
+}
+
+/**
+ * @brief executes the next opcode on the hash register engine.
+ * @param[in,out] ip pointer to the opcode (instruction pointer)
+ * @param[in,out] code_size (remaining) size of the code
+ * @return new instruction pointer on success, NULL on error.
+ */
+static const uint8_t *hre_execute_op(const uint8_t **ip, size_t *code_size)
+{
+ bool dst_modified = false;
+ uint32_t ins;
+ uint8_t opcode;
+ uint8_t src_spec;
+ uint8_t dst_spec;
+ uint16_t data_size;
+ struct h_reg *src_reg, *dst_reg;
+ uint8_t buf[20];
+ const uint8_t *src_buf, *data;
+ uint8_t *ptr;
+ int i;
+ void * (*bin_func)(void *, const void *, size_t);
+
+ if (*code_size < 4)
+ return NULL;
+
+ ins = get_unaligned_be32(*ip);
+ opcode = **ip;
+ data = *ip + 4;
+ src_spec = (ins >> 18) & 0x3f;
+ dst_spec = (ins >> 12) & 0x3f;
+ data_size = (ins & 0x7ff);
+
+ debug("HRE: ins=%08x (op=%02x, s=%02x, d=%02x, L=%d)\n", ins,
+ opcode, src_spec, dst_spec, data_size);
+
+ if ((opcode & 0x80) && (data_size + 4) > *code_size)
+ return NULL;
+
+ src_reg = access_hreg(src_spec, HREG_RD);
+ if (hre_err || hre_tpm_err)
+ return NULL;
+ dst_reg = access_hreg(dst_spec, (opcode & 0x40) ? HREG_RDWR : HREG_WR);
+ if (hre_err || hre_tpm_err)
+ return NULL;
+
+ switch (opcode) {
+ case HRE_NOP:
+ goto end;
+ case HRE_CHECK0:
+ if (src_reg) {
+ for (i = 0; i < 20; ++i) {
+ if (src_reg->digest[i])
+ return NULL;
+ }
+ }
+ break;
+ case HRE_LOAD:
+ bin_func = memcpy;
+ goto do_bin_func;
+ case HRE_XOR:
+ bin_func = compute_xor;
+ goto do_bin_func;
+ case HRE_AND:
+ bin_func = compute_and;
+ goto do_bin_func;
+ case HRE_OR:
+ bin_func = compute_or;
+ goto do_bin_func;
+ case HRE_EXTEND:
+ bin_func = compute_extend;
+do_bin_func:
+ if (!dst_reg)
+ return NULL;
+ if (src_reg) {
+ src_buf = src_reg->digest;
+ } else {
+ if (!data_size) {
+ memset(buf, 0, 20);
+ src_buf = buf;
+ } else if (data_size == 1) {
+ memset(buf, *data, 20);
+ src_buf = buf;
+ } else if (data_size >= 20) {
+ src_buf = data;
+ } else {
+ src_buf = buf;
+ for (ptr = (uint8_t *)src_buf, i = 20; i > 0;
+ i -= data_size, ptr += data_size)
+ memcpy(ptr, data, min(i, data_size));
+ }
+ }
+ bin_func(dst_reg->digest, src_buf, 20);
+ dst_reg->valid = true;
+ dst_modified = true;
+ break;
+ case HRE_LOADKEY:
+ if (hre_op_loadkey(src_reg, dst_reg, data, data_size))
+ return NULL;
+ break;
+ default:
+ return NULL;
+ }
+
+ if (dst_reg && dst_modified && IS_PCR_HREG(dst_spec)) {
+ hre_tpm_err = tpm_extend(HREG_IDX(dst_spec), dst_reg->digest,
+ dst_reg->digest);
+ if (hre_tpm_err) {
+ hre_err = HRE_E_TPM_FAILURE;
+ return NULL;
+ }
+ }
+end:
+ *ip += 4;
+ *code_size -= 4;
+ if (opcode & 0x80) {
+ *ip += data_size;
+ *code_size -= data_size;
+ }
+
+ return *ip;
+}
+
+/**
+ * @brief runs a program on the hash register engine.
+ * @param code pointer to the (HRE) code.
+ * @param code_size size of the code (in bytes).
+ * @return 0 on success, != 0 on failure.
+ */
+static int hre_run_program(const uint8_t *code, size_t code_size)
+{
+ size_t code_left;
+ const uint8_t *ip = code;
+
+ code_left = code_size;
+ hre_tpm_err = 0;
+ hre_err = HRE_E_OK;
+ while (code_left > 0)
+ if (!hre_execute_op(&ip, &code_left))
+ return -1;
+
+ return hre_err;
+}
+
+static int check_hmac(struct key_program *hmac,
+ const uint8_t *data, size_t data_size)
+{
+ uint8_t key[20], computed_hmac[20];
+ uint32_t type;
+
+ type = get_unaligned_be32(hmac->code);
+ if (type != 0)
+ return 1;
+ memset(key, 0, sizeof(key));
+ compute_extend(key, pcr_hregs[1].digest, 20);
+ compute_extend(key, pcr_hregs[2].digest, 20);
+ compute_extend(key, pcr_hregs[3].digest, 20);
+ compute_extend(key, pcr_hregs[4].digest, 20);
+
+ sha1_hmac(key, sizeof(key), data, data_size, computed_hmac);
+
+ return memcmp(computed_hmac, hmac->code + 4, 20);
+}
+
+static int verify_program(struct key_program *prg)
+{
+ uint32_t crc;
+ crc = crc32(0, prg->code, prg->code_size);
+
+ if (crc != prg->code_crc) {
+ printf("HRC crc mismatch: %08x != %08x\n",
+ crc, prg->code_crc);
+ return 1;
+ }
+ return 0;
+}
+
+#if defined(CCDM_FIRST_STAGE) || (defined CCDM_AUTO_FIRST_STAGE)
+static struct key_program *load_sd_key_program(void)
+{
+ u32 code_len, code_offset;
+ struct mmc *mmc;
+ u8 buf[128];
+ struct key_program *result = NULL, *hmac = NULL;
+ struct key_program header;
+
+ mmc = find_mmc_device(0);
+ if (!mmc)
+ return NULL;
+ mmc_init(mmc);
+
+ if (ccdm_mmc_read(mmc, 0, buf, sizeof(buf)) <= 0)
+ goto failure;
+
+ code_offset = *(u32 *)(buf + ESDHC_BOOT_IMAGE_ADDR_OFS);
+ code_len = *(u32 *)(buf + ESDHC_BOOT_IMAGE_SIZE_OFS);
+
+ code_offset += code_len;
+ /* TODO: the following needs to be the size of the 2nd stage env */
+ code_offset += CONFIG_ENV_SIZE;
+
+ if (ccdm_mmc_read(mmc, code_offset, buf, 4*3) < 0)
+ goto failure;
+
+ header.magic = get_unaligned_be32(buf);
+ header.code_crc = get_unaligned_be32(buf + 4);
+ header.code_size = get_unaligned_be32(buf + 8);
+
+ if (header.magic != MAGIC_KEY_PROGRAM)
+ goto failure;
+
+ result = malloc(sizeof(struct key_program) + header.code_size);
+ if (!result)
+ goto failure;
+ *result = header;
+
+ printf("load key program chunk from SD card (%u bytes) ",
+ header.code_size);
+ code_offset += 12;
+ if (ccdm_mmc_read(mmc, code_offset, result->code, header.code_size)
+ < 0)
+ goto failure;
+ code_offset += header.code_size;
+ puts("\n");
+
+ if (verify_program(result))
+ goto failure;
+
+ if (ccdm_mmc_read(mmc, code_offset, buf, 4*3) < 0)
+ goto failure;
+
+ header.magic = get_unaligned_be32(buf);
+ header.code_crc = get_unaligned_be32(buf + 4);
+ header.code_size = get_unaligned_be32(buf + 8);
+
+ if (header.magic == MAGIC_HMAC) {
+ puts("check integrity\n");
+ hmac = malloc(sizeof(struct key_program) + header.code_size);
+ if (!hmac)
+ goto failure;
+ *hmac = header;
+ code_offset += 12;
+ if (ccdm_mmc_read(mmc, code_offset, hmac->code,
+ hmac->code_size) < 0)
+ goto failure;
+ if (verify_program(hmac))
+ goto failure;
+ if (check_hmac(hmac, result->code, result->code_size)) {
+ puts("key program integrity could not be verified\n");
+ goto failure;
+ }
+ puts("key program verified\n");
+ }
+
+ goto end;
+failure:
+ if (result)
+ free(result);
+ result = NULL;
+end:
+ if (hmac)
+ free(hmac);
+
+ return result;
+}
+#endif
+
+#ifdef CCDM_SECOND_STAGE
+/**
+ * @brief load a key program from file system.
+ * @param ifname interface of the file system
+ * @param dev_part_str device part of the file system
+ * @param fs_type tyep of the file system
+ * @param path path of the file to load.
+ * @return the loaded structure or NULL on failure.
+ */
+static struct key_program *load_key_chunk(const char *ifname,
+ const char *dev_part_str, int fs_type,
+ const char *path)
+{
+ struct key_program *result = NULL;
+ struct key_program header;
+ uint32_t crc;
+ uint8_t buf[12];
+ int i;
+
+ if (fs_set_blk_dev(ifname, dev_part_str, fs_type))
+ goto failure;
+ i = fs_read(path, (ulong)buf, 0, 12);
+ if (i < 12)
+ goto failure;
+ header.magic = get_unaligned_be32(buf);
+ header.code_crc = get_unaligned_be32(buf + 4);
+ header.code_size = get_unaligned_be32(buf + 8);
+
+ if (header.magic != MAGIC_HMAC && header.magic != MAGIC_KEY_PROGRAM)
+ goto failure;
+
+ result = malloc(sizeof(struct key_program) + header.code_size);
+ if (!result)
+ goto failure;
+ if (fs_set_blk_dev(ifname, dev_part_str, fs_type))
+ goto failure;
+ i = fs_read(path, (ulong)result, 0,
+ sizeof(struct key_program) + header.code_size);
+ if (i <= 0)
+ goto failure;
+ *result = header;
+
+ crc = crc32(0, result->code, result->code_size);
+
+ if (crc != result->code_crc) {
+ printf("%s: HRC crc mismatch: %08x != %08x\n",
+ path, crc, result->code_crc);
+ goto failure;
+ }
+ goto end;
+failure:
+ if (result) {
+ free(result);
+ result = NULL;
+ }
+end:
+ return result;
+}
+#endif
+
+#if defined(CCDM_FIRST_STAGE) || (defined CCDM_AUTO_FIRST_STAGE)
+static int first_stage_actions(void)
+{
+ int result = 0;
+ struct key_program *sd_prg = NULL;
+
+ puts("CCDM S1: start actions\n");
+#ifndef CCDM_SECOND_STAGE
+ if (tpm_continue_self_test())
+ goto failure;
+#else
+ tpm_continue_self_test();
+#endif
+ mdelay(37);
+
+ if (hre_run_program(prg_stage1_prepare, sizeof(prg_stage1_prepare)))
+ goto failure;
+
+ sd_prg = load_sd_key_program();
+ if (sd_prg) {
+ if (hre_run_program(sd_prg->code, sd_prg->code_size))
+ goto failure;
+ puts("SD code run successfully\n");
+ } else {
+ puts("no key program found on SD\n");
+ goto failure;
+ }
+ goto end;
+failure:
+ result = 1;
+end:
+ if (sd_prg)
+ free(sd_prg);
+ printf("CCDM S1: actions done (%d)\n", result);
+ return result;
+}
+#endif
+
+#ifdef CCDM_FIRST_STAGE
+static int first_stage_init(void)
+{
+ int res = 0;
+ puts("CCDM S1\n");
+ if (tpm_init() || tpm_startup(TPM_ST_CLEAR))
+ return 1;
+ res = first_stage_actions();
+#ifndef CCDM_SECOND_STAGE
+ if (!res) {
+ if (bl2_entry)
+ (*bl2_entry)();
+ res = 1;
+ }
+#endif
+ return res;
+}
+#endif
+
+#ifdef CCDM_SECOND_STAGE
+static int second_stage_init(void)
+{
+ static const char mac_suffix[] = ".mac";
+ bool did_first_stage_run = true;
+ int result = 0;
+ char *cptr, *mmcdev = NULL;
+ struct key_program *hmac_blob = NULL;
+ const char *image_path = "/ccdm.itb";
+ char *mac_path = NULL;
+ ulong image_addr;
+ size_t image_size;
+ uint32_t err;
+
+ printf("CCDM S2\n");
+ if (tpm_init())
+ return 1;
+ err = tpm_startup(TPM_ST_CLEAR);
+ if (err != TPM_INVALID_POSTINIT)
+ did_first_stage_run = false;
+
+#ifdef CCDM_AUTO_FIRST_STAGE
+ if (!did_first_stage_run && first_stage_actions())
+ goto failure;
+#else
+ if (!did_first_stage_run)
+ goto failure;
+#endif
+
+ if (hre_run_program(prg_stage2_prepare, sizeof(prg_stage2_prepare)))
+ goto failure;
+
+ /* run "prepboot" from env to get "mmcdev" set */
+ cptr = getenv("prepboot");
+ if (cptr && !run_command(cptr, 0))
+ mmcdev = getenv("mmcdev");
+ if (!mmcdev)
+ goto failure;
+
+ cptr = getenv("ramdiskimage");
+ if (cptr)
+ image_path = cptr;
+
+ mac_path = malloc(strlen(image_path) + strlen(mac_suffix) + 1);
+ if (mac_path == NULL)
+ goto failure;
+ strcpy(mac_path, image_path);
+ strcat(mac_path, mac_suffix);
+
+ /* read image from mmcdev (ccdm.itb) */
+ image_addr = (ulong)get_image_location();
+ if (fs_set_blk_dev("mmc", mmcdev, FS_TYPE_EXT))
+ goto failure;
+ image_size = fs_read(image_path, image_addr, 0, 0);
+ if (image_size <= 0)
+ goto failure;
+ printf("CCDM image found on %s, %d bytes\n", mmcdev, image_size);
+
+ hmac_blob = load_key_chunk("mmc", mmcdev, FS_TYPE_EXT, mac_path);
+ if (!hmac_blob) {
+ puts("failed to load mac file\n");
+ goto failure;
+ }
+ if (verify_program(hmac_blob)) {
+ puts("corrupted mac file\n");
+ goto failure;
+ }
+ if (check_hmac(hmac_blob, (u8 *)image_addr, image_size)) {
+ puts("image integrity could not be verified\n");
+ goto failure;
+ }
+ puts("CCDM image OK\n");
+
+ hre_run_program(prg_stage2_success, sizeof(prg_stage2_success));
+
+ goto end;
+failure:
+ result = 1;
+ hre_run_program(prg_stage_fail, sizeof(prg_stage_fail));
+end:
+ if (hmac_blob)
+ free(hmac_blob);
+ if (mac_path)
+ free(mac_path);
+
+ return result;
+}
+#endif
+
+int show_self_hash(void)
+{
+ struct h_reg *hash_ptr;
+#ifdef CCDM_SECOND_STAGE
+ struct h_reg hash;
+
+ hash_ptr = &hash;
+ if (compute_self_hash(hash_ptr))
+ return 1;
+#else
+ hash_ptr = &fix_hregs[FIX_HREG_SELF_HASH];
+#endif
+ puts("self hash: ");
+ if (hash_ptr && hash_ptr->valid)
+ print_buffer(0, hash_ptr->digest, 1, 20, 20);
+ else
+ puts("INVALID\n");
+
+ return 0;
+}
+
+/**
+ * @brief let the system hang.
+ *
+ * Called on error.
+ * Will stop the boot process; display a message and signal the error condition
+ * by blinking the "status" and the "finder" LED of the controller board.
+ *
+ * @note the develop version runs the blink cycle 2 times and then returns.
+ * The release version never returns.
+ */
+static void ccdm_hang(void)
+{
+ static const u64 f0 = 0x0ba3bb8ba2e880; /* blink code "finder" LED */
+ static const u64 s0 = 0x00f0f0f0f0f0f0; /* blink code "status" LED */
+ u64 f, s;
+ int i;
+#ifdef CCDM_DEVELOP
+ int j;
+#endif
+
+ I2C_SET_BUS(0);
+ pca9698_direction_output(0x22, 0, 0); /* Finder */
+ pca9698_direction_output(0x22, 4, 0); /* Status */
+
+ puts("### ERROR ### Please RESET the board ###\n");
+ bootstage_error(BOOTSTAGE_ID_NEED_RESET);
+#ifdef CCDM_DEVELOP
+ puts("*** ERROR ******** THIS WOULD HANG ******** ERROR ***\n");
+ puts("** but we continue since this is a DEVELOP version **\n");
+ puts("*** ERROR ******** THIS WOULD HANG ******** ERROR ***\n");
+ for (j = 2; j-- > 0;) {
+ putc('#');
+#else
+ for (;;) {
+#endif
+ f = f0;
+ s = s0;
+ for (i = 54; i-- > 0;) {
+ pca9698_set_value(0x22, 0, !(f & 1));
+ pca9698_set_value(0x22, 4, (s & 1));
+ f >>= 1;
+ s >>= 1;
+ mdelay(120);
+ }
+ }
+ puts("\ncontinue...\n");
+}
+
+int startup_ccdm_id_module(void)
+{
+ int result = 0;
+ unsigned int orig_i2c_bus;
+
+ orig_i2c_bus = I2C_GET_BUS();
+ I2C_SET_BUS(1);
+
+ /* goto end; */
+
+#ifdef CCDM_DEVELOP
+ show_self_hash();
+#endif
+#ifdef CCDM_FIRST_STAGE
+ result = first_stage_init();
+ if (result) {
+ puts("1st stage init failed\n");
+ goto failure;
+ }
+#endif
+#ifdef CCDM_SECOND_STAGE
+ result = second_stage_init();
+ if (result) {
+ puts("2nd stage init failed\n");
+ goto failure;
+ }
+#endif
+
+ goto end;
+failure:
+ result = 1;
+end:
+ I2C_SET_BUS(orig_i2c_bus);
+ if (result)
+ ccdm_hang();
+
+ return result;
+}