summaryrefslogtreecommitdiff
path: root/docs/Coroutines.rst
blob: f3667585c6c26213f8e043161b81e20602ce3e80 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
=====================================
Coroutines in LLVM
=====================================

.. contents::
   :local:
   :depth: 3

.. warning::
  This is a work in progress. Compatibility across LLVM releases is not 
  guaranteed.

Introduction
============

.. _coroutine handle:

LLVM coroutines are functions that have one or more `suspend points`_. 
When a suspend point is reached, the execution of a coroutine is suspended and
control is returned back to its caller. A suspended coroutine can be resumed 
to continue execution from the last suspend point or it can be destroyed. 

In the following example, we call function `f` (which may or may not be a 
coroutine itself) that returns a handle to a suspended coroutine 
(**coroutine handle**) that is used by `main` to resume the coroutine twice and
then destroy it:

.. code-block:: llvm

  define i32 @main() {
  entry:
    %hdl = call i8* @f(i32 4)
    call void @llvm.coro.resume(i8* %hdl)
    call void @llvm.coro.resume(i8* %hdl)
    call void @llvm.coro.destroy(i8* %hdl)
    ret i32 0
  }

.. _coroutine frame:

In addition to the function stack frame which exists when a coroutine is 
executing, there is an additional region of storage that contains objects that 
keep the coroutine state when a coroutine is suspended. This region of storage
is called **coroutine frame**. It is created when a coroutine is called and 
destroyed when a coroutine runs to completion or destroyed by a call to 
the `coro.destroy`_ intrinsic. 

An LLVM coroutine is represented as an LLVM function that has calls to
`coroutine intrinsics`_ defining the structure of the coroutine.
After lowering, a coroutine is split into several
functions that represent three different ways of how control can enter the 
coroutine: 

1. a ramp function, which represents an initial invocation of the coroutine that
   creates the coroutine frame and executes the coroutine code until it 
   encounters a suspend point or reaches the end of the function;

2. a coroutine resume function that is invoked when the coroutine is resumed;

3. a coroutine destroy function that is invoked when the coroutine is destroyed.

.. note:: Splitting out resume and destroy functions are just one of the 
   possible ways of lowering the coroutine. We chose it for initial 
   implementation as it matches closely the mental model and results in 
   reasonably nice code.

Coroutines by Example
=====================

Coroutine Representation
------------------------

Let's look at an example of an LLVM coroutine with the behavior sketched
by the following pseudo-code.

.. code-block:: c++

  void *f(int n) {
     for(;;) {
       print(n++);
       <suspend> // returns a coroutine handle on first suspend
     }     
  } 

This coroutine calls some function `print` with value `n` as an argument and
suspends execution. Every time this coroutine resumes, it calls `print` again with an argument one bigger than the last time. This coroutine never completes by itself and must be destroyed explicitly. If we use this coroutine with 
a `main` shown in the previous section. It will call `print` with values 4, 5 
and 6 after which the coroutine will be destroyed.

The LLVM IR for this coroutine looks like this:

.. code-block:: llvm

  define i8* @f(i32 %n) {
  entry:
    %id = call token @llvm.coro.id(i32 0, i8* null, i8* null, i8* null)
    %size = call i32 @llvm.coro.size.i32()
    %alloc = call i8* @malloc(i32 %size)
    %hdl = call noalias i8* @llvm.coro.begin(token %id, i8* %alloc)
    br label %loop
  loop:
    %n.val = phi i32 [ %n, %entry ], [ %inc, %loop ]
    %inc = add nsw i32 %n.val, 1
    call void @print(i32 %n.val)
    %0 = call i8 @llvm.coro.suspend(token none, i1 false)
    switch i8 %0, label %suspend [i8 0, label %loop
                                  i8 1, label %cleanup]
  cleanup:
    %mem = call i8* @llvm.coro.free(token %id, i8* %hdl)
    call void @free(i8* %mem)
    br label %suspend
  suspend:
    %unused = call i1 @llvm.coro.end(i8* %hdl, i1 false)
    ret i8* %hdl
  }

The `entry` block establishes the coroutine frame. The `coro.size`_ intrinsic is
lowered to a constant representing the size required for the coroutine frame. 
The `coro.begin`_ intrinsic initializes the coroutine frame and returns the 
coroutine handle. The second parameter of `coro.begin` is given a block of memory 
to be used if the coroutine frame needs to be allocated dynamically.
The `coro.id`_ intrinsic serves as coroutine identity useful in cases when the
`coro.begin`_ intrinsic get duplicated by optimization passes such as 
jump-threading.

The `cleanup` block destroys the coroutine frame. The `coro.free`_ intrinsic, 
given the coroutine handle, returns a pointer of the memory block to be freed or
`null` if the coroutine frame was not allocated dynamically. The `cleanup` 
block is entered when coroutine runs to completion by itself or destroyed via
call to the `coro.destroy`_ intrinsic.

The `suspend` block contains code to be executed when coroutine runs to 
completion or suspended. The `coro.end`_ intrinsic marks the point where 
a coroutine needs to return control back to the caller if it is not an initial 
invocation of the coroutine. 

The `loop` blocks represents the body of the coroutine. The `coro.suspend`_ 
intrinsic in combination with the following switch indicates what happens to 
control flow when a coroutine is suspended (default case), resumed (case 0) or 
destroyed (case 1).

Coroutine Transformation
------------------------

One of the steps of coroutine lowering is building the coroutine frame. The
def-use chains are analyzed to determine which objects need be kept alive across
suspend points. In the coroutine shown in the previous section, use of virtual register 
`%n.val` is separated from the definition by a suspend point, therefore, it 
cannot reside on the stack frame since the latter goes away once the coroutine 
is suspended and control is returned back to the caller. An i32 slot is 
allocated in the coroutine frame and `%n.val` is spilled and reloaded from that
slot as needed.

We also store addresses of the resume and destroy functions so that the 
`coro.resume` and `coro.destroy` intrinsics can resume and destroy the coroutine
when its identity cannot be determined statically at compile time. For our 
example, the coroutine frame will be:

.. code-block:: llvm

  %f.frame = type { void (%f.frame*)*, void (%f.frame*)*, i32 }

After resume and destroy parts are outlined, function `f` will contain only the 
code responsible for creation and initialization of the coroutine frame and 
execution of the coroutine until a suspend point is reached:

.. code-block:: llvm

  define i8* @f(i32 %n) {
  entry:
    %id = call token @llvm.coro.id(i32 0, i8* null, i8* null, i8* null)
    %alloc = call noalias i8* @malloc(i32 24)
    %0 = call noalias i8* @llvm.coro.begin(token %id, i8* %alloc)
    %frame = bitcast i8* %0 to %f.frame*
    %1 = getelementptr %f.frame, %f.frame* %frame, i32 0, i32 0
    store void (%f.frame*)* @f.resume, void (%f.frame*)** %1
    %2 = getelementptr %f.frame, %f.frame* %frame, i32 0, i32 1
    store void (%f.frame*)* @f.destroy, void (%f.frame*)** %2
   
    %inc = add nsw i32 %n, 1
    %inc.spill.addr = getelementptr inbounds %f.Frame, %f.Frame* %FramePtr, i32 0, i32 2
    store i32 %inc, i32* %inc.spill.addr
    call void @print(i32 %n)
   
    ret i8* %frame
  }

Outlined resume part of the coroutine will reside in function `f.resume`:

.. code-block:: llvm

  define internal fastcc void @f.resume(%f.frame* %frame.ptr.resume) {
  entry:
    %inc.spill.addr = getelementptr %f.frame, %f.frame* %frame.ptr.resume, i64 0, i32 2
    %inc.spill = load i32, i32* %inc.spill.addr, align 4
    %inc = add i32 %n.val, 1
    store i32 %inc, i32* %inc.spill.addr, align 4
    tail call void @print(i32 %inc)
    ret void
  }

Whereas function `f.destroy` will contain the cleanup code for the coroutine:

.. code-block:: llvm

  define internal fastcc void @f.destroy(%f.frame* %frame.ptr.destroy) {
  entry:
    %0 = bitcast %f.frame* %frame.ptr.destroy to i8*
    tail call void @free(i8* %0)
    ret void
  }

Avoiding Heap Allocations
-------------------------
 
A particular coroutine usage pattern, which is illustrated by the `main` 
function in the overview section, where a coroutine is created, manipulated and 
destroyed by the same calling function, is common for coroutines implementing
RAII idiom and is suitable for allocation elision optimization which avoid 
dynamic allocation by storing the coroutine frame as a static `alloca` in its 
caller.

In the entry block, we will call `coro.alloc`_ intrinsic that will return `true`
when dynamic allocation is required, and `false` if dynamic allocation is 
elided.

.. code-block:: llvm

  entry:
    %id = call token @llvm.coro.id(i32 0, i8* null, i8* null, i8* null)
    %need.dyn.alloc = call i1 @llvm.coro.alloc(token %id)
    br i1 %need.dyn.alloc, label %dyn.alloc, label %coro.begin
  dyn.alloc:
    %size = call i32 @llvm.coro.size.i32()
    %alloc = call i8* @CustomAlloc(i32 %size)
    br label %coro.begin
  coro.begin:
    %phi = phi i8* [ null, %entry ], [ %alloc, %dyn.alloc ]
    %hdl = call noalias i8* @llvm.coro.begin(token %id, i8* %phi)

In the cleanup block, we will make freeing the coroutine frame conditional on
`coro.free`_ intrinsic. If allocation is elided, `coro.free`_ returns `null`
thus skipping the deallocation code:

.. code-block:: llvm

  cleanup:
    %mem = call i8* @llvm.coro.free(token %id, i8* %hdl)
    %need.dyn.free = icmp ne i8* %mem, null
    br i1 %need.dyn.free, label %dyn.free, label %if.end
  dyn.free:
    call void @CustomFree(i8* %mem)
    br label %if.end
  if.end:
    ...

With allocations and deallocations represented as described as above, after
coroutine heap allocation elision optimization, the resulting main will be:

.. code-block:: llvm

  define i32 @main() {
  entry:
    call void @print(i32 4)
    call void @print(i32 5)
    call void @print(i32 6)
    ret i32 0
  }

Multiple Suspend Points
-----------------------

Let's consider the coroutine that has more than one suspend point:

.. code-block:: c++

  void *f(int n) {
     for(;;) {
       print(n++);
       <suspend>
       print(-n);
       <suspend>
     }
  }

Matching LLVM code would look like (with the rest of the code remaining the same
as the code in the previous section):

.. code-block:: llvm

  loop:
    %n.addr = phi i32 [ %n, %entry ], [ %inc, %loop.resume ]
    call void @print(i32 %n.addr) #4
    %2 = call i8 @llvm.coro.suspend(token none, i1 false)
    switch i8 %2, label %suspend [i8 0, label %loop.resume
                                  i8 1, label %cleanup]
  loop.resume:
    %inc = add nsw i32 %n.addr, 1
    %sub = xor i32 %n.addr, -1
    call void @print(i32 %sub)
    %3 = call i8 @llvm.coro.suspend(token none, i1 false)
    switch i8 %3, label %suspend [i8 0, label %loop
                                  i8 1, label %cleanup]

In this case, the coroutine frame would include a suspend index that will 
indicate at which suspend point the coroutine needs to resume. The resume 
function will use an index to jump to an appropriate basic block and will look 
as follows:

.. code-block:: llvm

  define internal fastcc void @f.Resume(%f.Frame* %FramePtr) {
  entry.Resume:
    %index.addr = getelementptr inbounds %f.Frame, %f.Frame* %FramePtr, i64 0, i32 2
    %index = load i8, i8* %index.addr, align 1
    %switch = icmp eq i8 %index, 0
    %n.addr = getelementptr inbounds %f.Frame, %f.Frame* %FramePtr, i64 0, i32 3
    %n = load i32, i32* %n.addr, align 4
    br i1 %switch, label %loop.resume, label %loop

  loop.resume:
    %sub = xor i32 %n, -1
    call void @print(i32 %sub)
    br label %suspend
  loop:
    %inc = add nsw i32 %n, 1
    store i32 %inc, i32* %n.addr, align 4
    tail call void @print(i32 %inc)
    br label %suspend

  suspend:
    %storemerge = phi i8 [ 0, %loop ], [ 1, %loop.resume ]
    store i8 %storemerge, i8* %index.addr, align 1
    ret void
  }

If different cleanup code needs to get executed for different suspend points, 
a similar switch will be in the `f.destroy` function.

.. note ::

  Using suspend index in a coroutine state and having a switch in `f.resume` and
  `f.destroy` is one of the possible implementation strategies. We explored 
  another option where a distinct `f.resume1`, `f.resume2`, etc. are created for
  every suspend point, and instead of storing an index, the resume and destroy 
  function pointers are updated at every suspend. Early testing showed that the
  current approach is easier on the optimizer than the latter so it is a 
  lowering strategy implemented at the moment.

Distinct Save and Suspend
-------------------------

In the previous example, setting a resume index (or some other state change that 
needs to happen to prepare a coroutine for resumption) happens at the same time as
a suspension of a coroutine. However, in certain cases, it is necessary to control 
when coroutine is prepared for resumption and when it is suspended.

In the following example, a coroutine represents some activity that is driven
by completions of asynchronous operations `async_op1` and `async_op2` which get
a coroutine handle as a parameter and resume the coroutine once async
operation is finished.

.. code-block:: text

  void g() {
     for (;;)
       if (cond()) {
          async_op1(<coroutine-handle>); // will resume once async_op1 completes
          <suspend>
          do_one();
       }
       else {
          async_op2(<coroutine-handle>); // will resume once async_op2 completes
          <suspend>
          do_two();
       }
     }
  }

In this case, coroutine should be ready for resumption prior to a call to 
`async_op1` and `async_op2`. The `coro.save`_ intrinsic is used to indicate a
point when coroutine should be ready for resumption (namely, when a resume index
should be stored in the coroutine frame, so that it can be resumed at the 
correct resume point):

.. code-block:: llvm

  if.true:
    %save1 = call token @llvm.coro.save(i8* %hdl)
    call void @async_op1(i8* %hdl)
    %suspend1 = call i1 @llvm.coro.suspend(token %save1, i1 false)
    switch i8 %suspend1, label %suspend [i8 0, label %resume1
                                         i8 1, label %cleanup]
  if.false:
    %save2 = call token @llvm.coro.save(i8* %hdl)
    call void @async_op2(i8* %hdl)
    %suspend2 = call i1 @llvm.coro.suspend(token %save2, i1 false)
    switch i8 %suspend1, label %suspend [i8 0, label %resume2
                                         i8 1, label %cleanup]

.. _coroutine promise:

Coroutine Promise
-----------------

A coroutine author or a frontend may designate a distinguished `alloca` that can
be used to communicate with the coroutine. This distinguished alloca is called
**coroutine promise** and is provided as the second parameter to the 
`coro.id`_ intrinsic.

The following coroutine designates a 32 bit integer `promise` and uses it to
store the current value produced by a coroutine.

.. code-block:: llvm

  define i8* @f(i32 %n) {
  entry:
    %promise = alloca i32
    %pv = bitcast i32* %promise to i8*
    %id = call token @llvm.coro.id(i32 0, i8* %pv, i8* null, i8* null)
    %need.dyn.alloc = call i1 @llvm.coro.alloc(token %id)
    br i1 %need.dyn.alloc, label %dyn.alloc, label %coro.begin
  dyn.alloc:
    %size = call i32 @llvm.coro.size.i32()
    %alloc = call i8* @malloc(i32 %size)
    br label %coro.begin
  coro.begin:
    %phi = phi i8* [ null, %entry ], [ %alloc, %dyn.alloc ]
    %hdl = call noalias i8* @llvm.coro.begin(token %id, i8* %phi)
    br label %loop
  loop:
    %n.val = phi i32 [ %n, %coro.begin ], [ %inc, %loop ]
    %inc = add nsw i32 %n.val, 1
    store i32 %n.val, i32* %promise
    %0 = call i8 @llvm.coro.suspend(token none, i1 false)
    switch i8 %0, label %suspend [i8 0, label %loop
                                  i8 1, label %cleanup]
  cleanup:
    %mem = call i8* @llvm.coro.free(token %id, i8* %hdl)
    call void @free(i8* %mem)
    br label %suspend
  suspend:
    %unused = call i1 @llvm.coro.end(i8* %hdl, i1 false)
    ret i8* %hdl
  }

A coroutine consumer can rely on the `coro.promise`_ intrinsic to access the
coroutine promise.

.. code-block:: llvm

  define i32 @main() {
  entry:
    %hdl = call i8* @f(i32 4)
    %promise.addr.raw = call i8* @llvm.coro.promise(i8* %hdl, i32 4, i1 false)
    %promise.addr = bitcast i8* %promise.addr.raw to i32*
    %val0 = load i32, i32* %promise.addr
    call void @print(i32 %val0)
    call void @llvm.coro.resume(i8* %hdl)
    %val1 = load i32, i32* %promise.addr
    call void @print(i32 %val1)
    call void @llvm.coro.resume(i8* %hdl)
    %val2 = load i32, i32* %promise.addr
    call void @print(i32 %val2)
    call void @llvm.coro.destroy(i8* %hdl)
    ret i32 0
  }

After example in this section is compiled, result of the compilation will be:

.. code-block:: llvm

  define i32 @main() {
  entry:
    tail call void @print(i32 4)
    tail call void @print(i32 5)
    tail call void @print(i32 6)
    ret i32 0
  }

.. _final:
.. _final suspend:

Final Suspend
-------------

A coroutine author or a frontend may designate a particular suspend to be final,
by setting the second argument of the `coro.suspend`_ intrinsic to `true`.
Such a suspend point has two properties:

* it is possible to check whether a suspended coroutine is at the final suspend
  point via `coro.done`_ intrinsic;

* a resumption of a coroutine stopped at the final suspend point leads to 
  undefined behavior. The only possible action for a coroutine at a final
  suspend point is destroying it via `coro.destroy`_ intrinsic.

From the user perspective, the final suspend point represents an idea of a 
coroutine reaching the end. From the compiler perspective, it is an optimization
opportunity for reducing number of resume points (and therefore switch cases) in
the resume function.

The following is an example of a function that keeps resuming the coroutine
until the final suspend point is reached after which point the coroutine is 
destroyed:

.. code-block:: llvm

  define i32 @main() {
  entry:
    %hdl = call i8* @f(i32 4)
    br label %while
  while:
    call void @llvm.coro.resume(i8* %hdl)
    %done = call i1 @llvm.coro.done(i8* %hdl)
    br i1 %done, label %end, label %while
  end:
    call void @llvm.coro.destroy(i8* %hdl)
    ret i32 0
  }

Usually, final suspend point is a frontend injected suspend point that does not
correspond to any explicitly authored suspend point of the high level language.
For example, for a Python generator that has only one suspend point:

.. code-block:: python

  def coroutine(n):
    for i in range(n):
      yield i

Python frontend would inject two more suspend points, so that the actual code
looks like this:

.. code-block:: c

  void* coroutine(int n) {
    int current_value; 
    <designate current_value to be coroutine promise>
    <SUSPEND> // injected suspend point, so that the coroutine starts suspended
    for (int i = 0; i < n; ++i) {
      current_value = i; <SUSPEND>; // corresponds to "yield i"
    }
    <SUSPEND final=true> // injected final suspend point
  }

and python iterator `__next__` would look like:

.. code-block:: c++

  int __next__(void* hdl) {
    coro.resume(hdl);
    if (coro.done(hdl)) throw StopIteration();
    return *(int*)coro.promise(hdl, 4, false);
  }

Intrinsics
==========

Coroutine Manipulation Intrinsics
---------------------------------

Intrinsics described in this section are used to manipulate an existing
coroutine. They can be used in any function which happen to have a pointer
to a `coroutine frame`_ or a pointer to a `coroutine promise`_.

.. _coro.destroy:

'llvm.coro.destroy' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare void @llvm.coro.destroy(i8* <handle>)

Overview:
"""""""""

The '``llvm.coro.destroy``' intrinsic destroys a suspended
coroutine.

Arguments:
""""""""""

The argument is a coroutine handle to a suspended coroutine.

Semantics:
""""""""""

When possible, the `coro.destroy` intrinsic is replaced with a direct call to 
the coroutine destroy function. Otherwise it is replaced with an indirect call 
based on the function pointer for the destroy function stored in the coroutine
frame. Destroying a coroutine that is not suspended leads to undefined behavior.

.. _coro.resume:

'llvm.coro.resume' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

::

      declare void @llvm.coro.resume(i8* <handle>)

Overview:
"""""""""

The '``llvm.coro.resume``' intrinsic resumes a suspended coroutine.

Arguments:
""""""""""

The argument is a handle to a suspended coroutine.

Semantics:
""""""""""

When possible, the `coro.resume` intrinsic is replaced with a direct call to the
coroutine resume function. Otherwise it is replaced with an indirect call based 
on the function pointer for the resume function stored in the coroutine frame. 
Resuming a coroutine that is not suspended leads to undefined behavior.

.. _coro.done:

'llvm.coro.done' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

::

      declare i1 @llvm.coro.done(i8* <handle>)

Overview:
"""""""""

The '``llvm.coro.done``' intrinsic checks whether a suspended coroutine is at 
the final suspend point or not.

Arguments:
""""""""""

The argument is a handle to a suspended coroutine.

Semantics:
""""""""""

Using this intrinsic on a coroutine that does not have a `final suspend`_ point 
or on a coroutine that is not suspended leads to undefined behavior.

.. _coro.promise:

'llvm.coro.promise' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

::

      declare i8* @llvm.coro.promise(i8* <ptr>, i32 <alignment>, i1 <from>)

Overview:
"""""""""

The '``llvm.coro.promise``' intrinsic obtains a pointer to a 
`coroutine promise`_ given a coroutine handle and vice versa.

Arguments:
""""""""""

The first argument is a handle to a coroutine if `from` is false. Otherwise, 
it is a pointer to a coroutine promise.

The second argument is an alignment requirements of the promise. 
If a frontend designated `%promise = alloca i32` as a promise, the alignment 
argument to `coro.promise` should be the alignment of `i32` on the target 
platform. If a frontend designated `%promise = alloca i32, align 16` as a 
promise, the alignment argument should be 16.
This argument only accepts constants.

The third argument is a boolean indicating a direction of the transformation.
If `from` is true, the intrinsic returns a coroutine handle given a pointer 
to a promise. If `from` is false, the intrinsics return a pointer to a promise 
from a coroutine handle. This argument only accepts constants.

Semantics:
""""""""""

Using this intrinsic on a coroutine that does not have a coroutine promise
leads to undefined behavior. It is possible to read and modify coroutine
promise of the coroutine which is currently executing. The coroutine author and
a coroutine user are responsible to makes sure there is no data races.

Example:
""""""""

.. code-block:: llvm

  define i8* @f(i32 %n) {
  entry:
    %promise = alloca i32
    %pv = bitcast i32* %promise to i8*
    ; the second argument to coro.id points to the coroutine promise.
    %id = call token @llvm.coro.id(i32 0, i8* %pv, i8* null, i8* null)
    ...
    %hdl = call noalias i8* @llvm.coro.begin(token %id, i8* %alloc)
    ...
    store i32 42, i32* %promise ; store something into the promise
    ...
    ret i8* %hdl
  }

  define i32 @main() {
  entry:
    %hdl = call i8* @f(i32 4) ; starts the coroutine and returns its handle
    %promise.addr.raw = call i8* @llvm.coro.promise(i8* %hdl, i32 4, i1 false)
    %promise.addr = bitcast i8* %promise.addr.raw to i32*    
    %val = load i32, i32* %promise.addr ; load a value from the promise
    call void @print(i32 %val)
    call void @llvm.coro.destroy(i8* %hdl)
    ret i32 0
  }

.. _coroutine intrinsics:

Coroutine Structure Intrinsics
------------------------------
Intrinsics described in this section are used within a coroutine to describe
the coroutine structure. They should not be used outside of a coroutine.

.. _coro.size:

'llvm.coro.size' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
::

    declare i32 @llvm.coro.size.i32()
    declare i64 @llvm.coro.size.i64()

Overview:
"""""""""

The '``llvm.coro.size``' intrinsic returns the number of bytes
required to store a `coroutine frame`_.

Arguments:
""""""""""

None

Semantics:
""""""""""

The `coro.size` intrinsic is lowered to a constant representing the size of
the coroutine frame. 

.. _coro.begin:

'llvm.coro.begin' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
::

  declare i8* @llvm.coro.begin(token <id>, i8* <mem>)

Overview:
"""""""""

The '``llvm.coro.begin``' intrinsic returns an address of the coroutine frame.

Arguments:
""""""""""

The first argument is a token returned by a call to '``llvm.coro.id``' 
identifying the coroutine.

The second argument is a pointer to a block of memory where coroutine frame
will be stored if it is allocated dynamically.

Semantics:
""""""""""

Depending on the alignment requirements of the objects in the coroutine frame
and/or on the codegen compactness reasons the pointer returned from `coro.begin` 
may be at offset to the `%mem` argument. (This could be beneficial if 
instructions that express relative access to data can be more compactly encoded 
with small positive and negative offsets).

A frontend should emit exactly one `coro.begin` intrinsic per coroutine.

.. _coro.free:

'llvm.coro.free' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
::

  declare i8* @llvm.coro.free(token %id, i8* <frame>)

Overview:
"""""""""

The '``llvm.coro.free``' intrinsic returns a pointer to a block of memory where 
coroutine frame is stored or `null` if this instance of a coroutine did not use
dynamically allocated memory for its coroutine frame.

Arguments:
""""""""""

The first argument is a token returned by a call to '``llvm.coro.id``' 
identifying the coroutine.

The second argument is a pointer to the coroutine frame. This should be the same
pointer that was returned by prior `coro.begin` call.

Example (custom deallocation function):
"""""""""""""""""""""""""""""""""""""""

.. code-block:: llvm

  cleanup:
    %mem = call i8* @llvm.coro.free(token %id, i8* %frame)
    %mem_not_null = icmp ne i8* %mem, null
    br i1 %mem_not_null, label %if.then, label %if.end
  if.then:
    call void @CustomFree(i8* %mem)
    br label %if.end
  if.end:
    ret void

Example (standard deallocation functions):
""""""""""""""""""""""""""""""""""""""""""

.. code-block:: llvm

  cleanup:
    %mem = call i8* @llvm.coro.free(token %id, i8* %frame)
    call void @free(i8* %mem)
    ret void

.. _coro.alloc:

'llvm.coro.alloc' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
::

  declare i1 @llvm.coro.alloc(token <id>)

Overview:
"""""""""

The '``llvm.coro.alloc``' intrinsic returns `true` if dynamic allocation is
required to obtain a memory for the coroutine frame and `false` otherwise.

Arguments:
""""""""""

The first argument is a token returned by a call to '``llvm.coro.id``' 
identifying the coroutine.

Semantics:
""""""""""

A frontend should emit at most one `coro.alloc` intrinsic per coroutine.
The intrinsic is used to suppress dynamic allocation of the coroutine frame
when possible.

Example:
""""""""

.. code-block:: llvm

  entry:
    %id = call token @llvm.coro.id(i32 0, i8* null, i8* null, i8* null)
    %dyn.alloc.required = call i1 @llvm.coro.alloc(token %id)
    br i1 %dyn.alloc.required, label %coro.alloc, label %coro.begin

  coro.alloc:
    %frame.size = call i32 @llvm.coro.size()
    %alloc = call i8* @MyAlloc(i32 %frame.size)
    br label %coro.begin

  coro.begin:
    %phi = phi i8* [ null, %entry ], [ %alloc, %coro.alloc ]
    %frame = call i8* @llvm.coro.begin(token %id, i8* %phi)

.. _coro.noop:

'llvm.coro.noop' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
::

  declare i8* @llvm.coro.noop()

Overview:
"""""""""

The '``llvm.coro.noop``' intrinsic returns an address of the coroutine frame of
a coroutine that does nothing when resumed or destroyed.

Arguments:
""""""""""

None

Semantics:
""""""""""

This intrinsic is lowered to refer to a private constant coroutine frame. The
resume and destroy handlers for this frame are empty functions that do nothing.
Note that in different translation units llvm.coro.noop may return different pointers.

.. _coro.frame:

'llvm.coro.frame' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
::

  declare i8* @llvm.coro.frame()

Overview:
"""""""""

The '``llvm.coro.frame``' intrinsic returns an address of the coroutine frame of
the enclosing coroutine.

Arguments:
""""""""""

None

Semantics:
""""""""""

This intrinsic is lowered to refer to the `coro.begin`_ instruction. This is
a frontend convenience intrinsic that makes it easier to refer to the
coroutine frame.

.. _coro.id:

'llvm.coro.id' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
::

  declare token @llvm.coro.id(i32 <align>, i8* <promise>, i8* <coroaddr>, 
                                                          i8* <fnaddrs>)

Overview:
"""""""""

The '``llvm.coro.id``' intrinsic returns a token identifying a coroutine.

Arguments:
""""""""""

The first argument provides information on the alignment of the memory returned 
by the allocation function and given to `coro.begin` by the first argument. If 
this argument is 0, the memory is assumed to be aligned to 2 * sizeof(i8*).
This argument only accepts constants.

The second argument, if not `null`, designates a particular alloca instruction
to be a `coroutine promise`_.

The third argument is `null` coming out of the frontend. The CoroEarly pass sets
this argument to point to the function this coro.id belongs to. 

The fourth argument is `null` before coroutine is split, and later is replaced 
to point to a private global constant array containing function pointers to 
outlined resume and destroy parts of the coroutine.


Semantics:
""""""""""

The purpose of this intrinsic is to tie together `coro.id`, `coro.alloc` and
`coro.begin` belonging to the same coroutine to prevent optimization passes from
duplicating any of these instructions unless entire body of the coroutine is
duplicated.

A frontend should emit exactly one `coro.id` intrinsic per coroutine.

.. _coro.end:

'llvm.coro.end' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
::

  declare i1 @llvm.coro.end(i8* <handle>, i1 <unwind>)

Overview:
"""""""""

The '``llvm.coro.end``' marks the point where execution of the resume part of 
the coroutine should end and control should return to the caller.


Arguments:
""""""""""

The first argument should refer to the coroutine handle of the enclosing
coroutine. A frontend is allowed to supply null as the first parameter, in this
case `coro-early` pass will replace the null with an appropriate coroutine 
handle value.

The second argument should be `true` if this coro.end is in the block that is 
part of the unwind sequence leaving the coroutine body due to an exception and 
`false` otherwise.

Semantics:
""""""""""
The purpose of this intrinsic is to allow frontends to mark the cleanup and
other code that is only relevant during the initial invocation of the coroutine
and should not be present in resume and destroy parts. 

This intrinsic is lowered when a coroutine is split into
the start, resume and destroy parts. In the start part, it is a no-op,
in resume and destroy parts, it is replaced with `ret void` instruction and
the rest of the block containing `coro.end` instruction is discarded.
In landing pads it is replaced with an appropriate instruction to unwind to 
caller. The handling of coro.end differs depending on whether the target is 
using landingpad or WinEH exception model.

For landingpad based exception model, it is expected that frontend uses the 
`coro.end`_ intrinsic as follows:

.. code-block:: llvm

    ehcleanup:
      %InResumePart = call i1 @llvm.coro.end(i8* null, i1 true)
      br i1 %InResumePart, label %eh.resume, label %cleanup.cont

    cleanup.cont:
      ; rest of the cleanup

    eh.resume:
      %exn = load i8*, i8** %exn.slot, align 8
      %sel = load i32, i32* %ehselector.slot, align 4
      %lpad.val = insertvalue { i8*, i32 } undef, i8* %exn, 0
      %lpad.val29 = insertvalue { i8*, i32 } %lpad.val, i32 %sel, 1
      resume { i8*, i32 } %lpad.val29

The `CoroSpit` pass replaces `coro.end` with ``True`` in the resume functions,
thus leading to immediate unwind to the caller, whereas in start function it
is replaced with ``False``, thus allowing to proceed to the rest of the cleanup
code that is only needed during initial invocation of the coroutine.

For Windows Exception handling model, a frontend should attach a funclet bundle
referring to an enclosing cleanuppad as follows:

.. code-block:: llvm

    ehcleanup: 
      %tok = cleanuppad within none []
      %unused = call i1 @llvm.coro.end(i8* null, i1 true) [ "funclet"(token %tok) ]
      cleanupret from %tok unwind label %RestOfTheCleanup

The `CoroSplit` pass, if the funclet bundle is present, will insert 
``cleanupret from %tok unwind to caller`` before
the `coro.end`_ intrinsic and will remove the rest of the block.

The following table summarizes the handling of `coro.end`_ intrinsic.

+--------------------------+-------------------+-------------------------------+
|                          | In Start Function | In Resume/Destroy Functions   |
+--------------------------+-------------------+-------------------------------+
|unwind=false              | nothing           |``ret void``                   |
+------------+-------------+-------------------+-------------------------------+
|            | WinEH       | nothing           |``cleanupret unwind to caller``|
|unwind=true +-------------+-------------------+-------------------------------+
|            | Landingpad  | nothing           | nothing                       |
+------------+-------------+-------------------+-------------------------------+

.. _coro.suspend:
.. _suspend points:

'llvm.coro.suspend' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
::

  declare i8 @llvm.coro.suspend(token <save>, i1 <final>)

Overview:
"""""""""

The '``llvm.coro.suspend``' marks the point where execution of the coroutine 
need to get suspended and control returned back to the caller.
Conditional branches consuming the result of this intrinsic lead to basic blocks
where coroutine should proceed when suspended (-1), resumed (0) or destroyed 
(1).

Arguments:
""""""""""

The first argument refers to a token of `coro.save` intrinsic that marks the 
point when coroutine state is prepared for suspension. If `none` token is passed,
the intrinsic behaves as if there were a `coro.save` immediately preceding
the `coro.suspend` intrinsic.

The second argument indicates whether this suspension point is `final`_.
The second argument only accepts constants. If more than one suspend point is
designated as final, the resume and destroy branches should lead to the same
basic blocks.

Example (normal suspend point):
"""""""""""""""""""""""""""""""

.. code-block:: llvm

    %0 = call i8 @llvm.coro.suspend(token none, i1 false)
    switch i8 %0, label %suspend [i8 0, label %resume
                                  i8 1, label %cleanup]

Example (final suspend point):
""""""""""""""""""""""""""""""

.. code-block:: llvm

  while.end:
    %s.final = call i8 @llvm.coro.suspend(token none, i1 true)
    switch i8 %s.final, label %suspend [i8 0, label %trap
                                        i8 1, label %cleanup]
  trap: 
    call void @llvm.trap()
    unreachable

Semantics:
""""""""""

If a coroutine that was suspended at the suspend point marked by this intrinsic
is resumed via `coro.resume`_ the control will transfer to the basic block
of the 0-case. If it is resumed via `coro.destroy`_, it will proceed to the
basic block indicated by the 1-case. To suspend, coroutine proceed to the 
default label.

If suspend intrinsic is marked as final, it can consider the `true` branch
unreachable and can perform optimizations that can take advantage of that fact.

.. _coro.save:

'llvm.coro.save' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
::

  declare token @llvm.coro.save(i8* <handle>)

Overview:
"""""""""

The '``llvm.coro.save``' marks the point where a coroutine need to update its 
state to prepare for resumption to be considered suspended (and thus eligible 
for resumption). 

Arguments:
""""""""""

The first argument points to a coroutine handle of the enclosing coroutine.

Semantics:
""""""""""

Whatever coroutine state changes are required to enable resumption of
the coroutine from the corresponding suspend point should be done at the point 
of `coro.save` intrinsic.

Example:
""""""""

Separate save and suspend points are necessary when a coroutine is used to 
represent an asynchronous control flow driven by callbacks representing
completions of asynchronous operations.

In such a case, a coroutine should be ready for resumption prior to a call to 
`async_op` function that may trigger resumption of a coroutine from the same or
a different thread possibly prior to `async_op` call returning control back
to the coroutine:

.. code-block:: llvm

    %save1 = call token @llvm.coro.save(i8* %hdl)
    call void @async_op1(i8* %hdl)
    %suspend1 = call i1 @llvm.coro.suspend(token %save1, i1 false)
    switch i8 %suspend1, label %suspend [i8 0, label %resume1
                                         i8 1, label %cleanup]

.. _coro.param:

'llvm.coro.param' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
::

  declare i1 @llvm.coro.param(i8* <original>, i8* <copy>)

Overview:
"""""""""

The '``llvm.coro.param``' is used by a frontend to mark up the code used to
construct and destruct copies of the parameters. If the optimizer discovers that
a particular parameter copy is not used after any suspends, it can remove the
construction and destruction of the copy by replacing corresponding coro.param
with `i1 false` and replacing any use of the `copy` with the `original`.

Arguments:
""""""""""

The first argument points to an `alloca` storing the value of a parameter to a 
coroutine. 

The second argument points to an `alloca` storing the value of the copy of that
parameter.

Semantics:
""""""""""

The optimizer is free to always replace this intrinsic with `i1 true`.

The optimizer is also allowed to replace it with `i1 false` provided that the 
parameter copy is only used prior to control flow reaching any of the suspend
points. The code that would be DCE'd if the `coro.param` is replaced with 
`i1 false` is not considered to be a use of the parameter copy.

The frontend can emit this intrinsic if its language rules allow for this 
optimization.

Example:
""""""""
Consider the following example. A coroutine takes two parameters `a` and `b`
that has a destructor and a move constructor.

.. code-block:: c++

  struct A { ~A(); A(A&&); bool foo(); void bar(); };

  task<int> f(A a, A b) {
    if (a.foo())
      return 42;

    a.bar();
    co_await read_async(); // introduces suspend point
    b.bar();
  }

Note that, uses of `b` is used after a suspend point and thus must be copied
into a coroutine frame, whereas `a` does not have to, since it never used 
after suspend.

A frontend can create parameter copies for `a` and `b` as follows:

.. code-block:: text

  task<int> f(A a', A b') {
    a = alloca A;
    b = alloca A;
    // move parameters to its copies
    if (coro.param(a', a)) A::A(a, A&& a');
    if (coro.param(b', b)) A::A(b, A&& b');
    ...
    // destroy parameters copies
    if (coro.param(a', a)) A::~A(a);
    if (coro.param(b', b)) A::~A(b);
  }

The optimizer can replace coro.param(a',a) with `i1 false` and replace all uses
of `a` with `a'`, since it is not used after suspend.

The optimizer must replace coro.param(b', b) with `i1 true`, since `b` is used
after suspend and therefore, it has to reside in the coroutine frame.

Coroutine Transformation Passes
===============================
CoroEarly
---------
The pass CoroEarly lowers coroutine intrinsics that hide the details of the
structure of the coroutine frame, but, otherwise not needed to be preserved to
help later coroutine passes. This pass lowers `coro.frame`_, `coro.done`_, 
and `coro.promise`_ intrinsics.

.. _CoroSplit:

CoroSplit
---------
The pass CoroSplit buides coroutine frame and outlines resume and destroy parts 
into separate functions.

CoroElide
---------
The pass CoroElide examines if the inlined coroutine is eligible for heap 
allocation elision optimization. If so, it replaces 
`coro.begin` intrinsic with an address of a coroutine frame placed on its caller
and replaces `coro.alloc` and `coro.free` intrinsics with `false` and `null`
respectively to remove the deallocation code. 
This pass also replaces `coro.resume` and `coro.destroy` intrinsics with direct 
calls to resume and destroy functions for a particular coroutine where possible.

CoroCleanup
-----------
This pass runs late to lower all coroutine related intrinsics not replaced by
earlier passes.

Areas Requiring Attention
=========================
#. A coroutine frame is bigger than it could be. Adding stack packing and stack 
   coloring like optimization on the coroutine frame will result in tighter
   coroutine frames.

#. Take advantage of the lifetime intrinsics for the data that goes into the
   coroutine frame. Leave lifetime intrinsics as is for the data that stays in
   allocas.

#. The CoroElide optimization pass relies on coroutine ramp function to be
   inlined. It would be beneficial to split the ramp function further to 
   increase the chance that it will get inlined into its caller.

#. Design a convention that would make it possible to apply coroutine heap
   elision optimization across ABI boundaries.

#. Cannot handle coroutines with `inalloca` parameters (used in x86 on Windows).

#. Alignment is ignored by coro.begin and coro.free intrinsics.

#. Make required changes to make sure that coroutine optimizations work with
   LTO.

#. More tests, more tests, more tests