summaryrefslogtreecommitdiff
path: root/libsanitizer/tsan/tsan_clock.cc
blob: 037afc83fc6c660c777254a40788af199cd743ba (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
//===-- tsan_clock.cc -----------------------------------------------------===//
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of ThreadSanitizer (TSan), a race detector.
//
//===----------------------------------------------------------------------===//
#include "tsan_clock.h"
#include "tsan_rtl.h"
#include "sanitizer_common/sanitizer_placement_new.h"

// SyncClock and ThreadClock implement vector clocks for sync variables
// (mutexes, atomic variables, file descriptors, etc) and threads, respectively.
// ThreadClock contains fixed-size vector clock for maximum number of threads.
// SyncClock contains growable vector clock for currently necessary number of
// threads.
// Together they implement very simple model of operations, namely:
//
//   void ThreadClock::acquire(const SyncClock *src) {
//     for (int i = 0; i < kMaxThreads; i++)
//       clock[i] = max(clock[i], src->clock[i]);
//   }
//
//   void ThreadClock::release(SyncClock *dst) const {
//     for (int i = 0; i < kMaxThreads; i++)
//       dst->clock[i] = max(dst->clock[i], clock[i]);
//   }
//
//   void ThreadClock::ReleaseStore(SyncClock *dst) const {
//     for (int i = 0; i < kMaxThreads; i++)
//       dst->clock[i] = clock[i];
//   }
//
//   void ThreadClock::acq_rel(SyncClock *dst) {
//     acquire(dst);
//     release(dst);
//   }
//
// Conformance to this model is extensively verified in tsan_clock_test.cc.
// However, the implementation is significantly more complex. The complexity
// allows to implement important classes of use cases in O(1) instead of O(N).
//
// The use cases are:
// 1. Singleton/once atomic that has a single release-store operation followed
//    by zillions of acquire-loads (the acquire-load is O(1)).
// 2. Thread-local mutex (both lock and unlock can be O(1)).
// 3. Leaf mutex (unlock is O(1)).
// 4. A mutex shared by 2 threads (both lock and unlock can be O(1)).
// 5. An atomic with a single writer (writes can be O(1)).
// The implementation dynamically adopts to workload. So if an atomic is in
// read-only phase, these reads will be O(1); if it later switches to read/write
// phase, the implementation will correctly handle that by switching to O(N).
//
// Thread-safety note: all const operations on SyncClock's are conducted under
// a shared lock; all non-const operations on SyncClock's are conducted under
// an exclusive lock; ThreadClock's are private to respective threads and so
// do not need any protection.
//
// Description of ThreadClock state:
// clk_ - fixed size vector clock.
// nclk_ - effective size of the vector clock (the rest is zeros).
// tid_ - index of the thread associated with he clock ("current thread").
// last_acquire_ - current thread time when it acquired something from
//   other threads.
//
// Description of SyncClock state:
// clk_ - variable size vector clock, low kClkBits hold timestamp,
//   the remaining bits hold "acquired" flag (the actual value is thread's
//   reused counter);
//   if acquried == thr->reused_, then the respective thread has already
//   acquired this clock (except possibly dirty_tids_).
// dirty_tids_ - holds up to two indeces in the vector clock that other threads
//   need to acquire regardless of "acquired" flag value;
// release_store_tid_ - denotes that the clock state is a result of
//   release-store operation by the thread with release_store_tid_ index.
// release_store_reused_ - reuse count of release_store_tid_.

// We don't have ThreadState in these methods, so this is an ugly hack that
// works only in C++.
#ifndef SANITIZER_GO
# define CPP_STAT_INC(typ) StatInc(cur_thread(), typ)
#else
# define CPP_STAT_INC(typ) (void)0
#endif

namespace __tsan {

ThreadClock::ThreadClock(unsigned tid, unsigned reused)
    : tid_(tid)
    , reused_(reused + 1) {  // 0 has special meaning
  CHECK_LT(tid, kMaxTidInClock);
  CHECK_EQ(reused_, ((u64)reused_ << kClkBits) >> kClkBits);
  nclk_ = tid_ + 1;
  last_acquire_ = 0;
  internal_memset(clk_, 0, sizeof(clk_));
  clk_[tid_].reused = reused_;
}

void ThreadClock::acquire(ClockCache *c, const SyncClock *src) {
  DCHECK_LE(nclk_, kMaxTid);
  DCHECK_LE(src->size_, kMaxTid);
  CPP_STAT_INC(StatClockAcquire);

  // Check if it's empty -> no need to do anything.
  const uptr nclk = src->size_;
  if (nclk == 0) {
    CPP_STAT_INC(StatClockAcquireEmpty);
    return;
  }

  // Check if we've already acquired src after the last release operation on src
  bool acquired = false;
  if (nclk > tid_) {
    CPP_STAT_INC(StatClockAcquireLarge);
    if (src->elem(tid_).reused == reused_) {
      CPP_STAT_INC(StatClockAcquireRepeat);
      for (unsigned i = 0; i < kDirtyTids; i++) {
        unsigned tid = src->dirty_tids_[i];
        if (tid != kInvalidTid) {
          u64 epoch = src->elem(tid).epoch;
          if (clk_[tid].epoch < epoch) {
            clk_[tid].epoch = epoch;
            acquired = true;
          }
        }
      }
      if (acquired) {
        CPP_STAT_INC(StatClockAcquiredSomething);
        last_acquire_ = clk_[tid_].epoch;
      }
      return;
    }
  }

  // O(N) acquire.
  CPP_STAT_INC(StatClockAcquireFull);
  nclk_ = max(nclk_, nclk);
  for (uptr i = 0; i < nclk; i++) {
    u64 epoch = src->elem(i).epoch;
    if (clk_[i].epoch < epoch) {
      clk_[i].epoch = epoch;
      acquired = true;
    }
  }

  // Remember that this thread has acquired this clock.
  if (nclk > tid_)
    src->elem(tid_).reused = reused_;

  if (acquired) {
    CPP_STAT_INC(StatClockAcquiredSomething);
    last_acquire_ = clk_[tid_].epoch;
  }
}

void ThreadClock::release(ClockCache *c, SyncClock *dst) const {
  DCHECK_LE(nclk_, kMaxTid);
  DCHECK_LE(dst->size_, kMaxTid);

  if (dst->size_ == 0) {
    // ReleaseStore will correctly set release_store_tid_,
    // which can be important for future operations.
    ReleaseStore(c, dst);
    return;
  }

  CPP_STAT_INC(StatClockRelease);
  // Check if we need to resize dst.
  if (dst->size_ < nclk_)
    dst->Resize(c, nclk_);

  // Check if we had not acquired anything from other threads
  // since the last release on dst. If so, we need to update
  // only dst->elem(tid_).
  if (dst->elem(tid_).epoch > last_acquire_) {
    UpdateCurrentThread(dst);
    if (dst->release_store_tid_ != tid_ ||
        dst->release_store_reused_ != reused_)
      dst->release_store_tid_ = kInvalidTid;
    return;
  }

  // O(N) release.
  CPP_STAT_INC(StatClockReleaseFull);
  // First, remember whether we've acquired dst.
  bool acquired = IsAlreadyAcquired(dst);
  if (acquired)
    CPP_STAT_INC(StatClockReleaseAcquired);
  // Update dst->clk_.
  for (uptr i = 0; i < nclk_; i++) {
    ClockElem &ce = dst->elem(i);
    ce.epoch = max(ce.epoch, clk_[i].epoch);
    ce.reused = 0;
  }
  // Clear 'acquired' flag in the remaining elements.
  if (nclk_ < dst->size_)
    CPP_STAT_INC(StatClockReleaseClearTail);
  for (uptr i = nclk_; i < dst->size_; i++)
    dst->elem(i).reused = 0;
  for (unsigned i = 0; i < kDirtyTids; i++)
    dst->dirty_tids_[i] = kInvalidTid;
  dst->release_store_tid_ = kInvalidTid;
  dst->release_store_reused_ = 0;
  // If we've acquired dst, remember this fact,
  // so that we don't need to acquire it on next acquire.
  if (acquired)
    dst->elem(tid_).reused = reused_;
}

void ThreadClock::ReleaseStore(ClockCache *c, SyncClock *dst) const {
  DCHECK_LE(nclk_, kMaxTid);
  DCHECK_LE(dst->size_, kMaxTid);
  CPP_STAT_INC(StatClockStore);

  // Check if we need to resize dst.
  if (dst->size_ < nclk_)
    dst->Resize(c, nclk_);

  if (dst->release_store_tid_ == tid_ &&
      dst->release_store_reused_ == reused_ &&
      dst->elem(tid_).epoch > last_acquire_) {
    CPP_STAT_INC(StatClockStoreFast);
    UpdateCurrentThread(dst);
    return;
  }

  // O(N) release-store.
  CPP_STAT_INC(StatClockStoreFull);
  for (uptr i = 0; i < nclk_; i++) {
    ClockElem &ce = dst->elem(i);
    ce.epoch = clk_[i].epoch;
    ce.reused = 0;
  }
  // Clear the tail of dst->clk_.
  if (nclk_ < dst->size_) {
    for (uptr i = nclk_; i < dst->size_; i++) {
      ClockElem &ce = dst->elem(i);
      ce.epoch = 0;
      ce.reused = 0;
    }
    CPP_STAT_INC(StatClockStoreTail);
  }
  for (unsigned i = 0; i < kDirtyTids; i++)
    dst->dirty_tids_[i] = kInvalidTid;
  dst->release_store_tid_ = tid_;
  dst->release_store_reused_ = reused_;
  // Rememeber that we don't need to acquire it in future.
  dst->elem(tid_).reused = reused_;
}

void ThreadClock::acq_rel(ClockCache *c, SyncClock *dst) {
  CPP_STAT_INC(StatClockAcquireRelease);
  acquire(c, dst);
  ReleaseStore(c, dst);
}

// Updates only single element related to the current thread in dst->clk_.
void ThreadClock::UpdateCurrentThread(SyncClock *dst) const {
  // Update the threads time, but preserve 'acquired' flag.
  dst->elem(tid_).epoch = clk_[tid_].epoch;

  for (unsigned i = 0; i < kDirtyTids; i++) {
    if (dst->dirty_tids_[i] == tid_) {
      CPP_STAT_INC(StatClockReleaseFast1);
      return;
    }
    if (dst->dirty_tids_[i] == kInvalidTid) {
      CPP_STAT_INC(StatClockReleaseFast2);
      dst->dirty_tids_[i] = tid_;
      return;
    }
  }
  // Reset all 'acquired' flags, O(N).
  CPP_STAT_INC(StatClockReleaseSlow);
  for (uptr i = 0; i < dst->size_; i++)
    dst->elem(i).reused = 0;
  for (unsigned i = 0; i < kDirtyTids; i++)
    dst->dirty_tids_[i] = kInvalidTid;
}

// Checks whether the current threads has already acquired src.
bool ThreadClock::IsAlreadyAcquired(const SyncClock *src) const {
  if (src->elem(tid_).reused != reused_)
    return false;
  for (unsigned i = 0; i < kDirtyTids; i++) {
    unsigned tid = src->dirty_tids_[i];
    if (tid != kInvalidTid) {
      if (clk_[tid].epoch < src->elem(tid).epoch)
        return false;
    }
  }
  return true;
}

void SyncClock::Resize(ClockCache *c, uptr nclk) {
  CPP_STAT_INC(StatClockReleaseResize);
  if (RoundUpTo(nclk, ClockBlock::kClockCount) <=
      RoundUpTo(size_, ClockBlock::kClockCount)) {
    // Growing within the same block.
    // Memory is already allocated, just increase the size.
    size_ = nclk;
    return;
  }
  if (nclk <= ClockBlock::kClockCount) {
    // Grow from 0 to one-level table.
    CHECK_EQ(size_, 0);
    CHECK_EQ(tab_, 0);
    CHECK_EQ(tab_idx_, 0);
    size_ = nclk;
    tab_idx_ = ctx->clock_alloc.Alloc(c);
    tab_ = ctx->clock_alloc.Map(tab_idx_);
    internal_memset(tab_, 0, sizeof(*tab_));
    return;
  }
  // Growing two-level table.
  if (size_ == 0) {
    // Allocate first level table.
    tab_idx_ = ctx->clock_alloc.Alloc(c);
    tab_ = ctx->clock_alloc.Map(tab_idx_);
    internal_memset(tab_, 0, sizeof(*tab_));
  } else if (size_ <= ClockBlock::kClockCount) {
    // Transform one-level table to two-level table.
    u32 old = tab_idx_;
    tab_idx_ = ctx->clock_alloc.Alloc(c);
    tab_ = ctx->clock_alloc.Map(tab_idx_);
    internal_memset(tab_, 0, sizeof(*tab_));
    tab_->table[0] = old;
  }
  // At this point we have first level table allocated.
  // Add second level tables as necessary.
  for (uptr i = RoundUpTo(size_, ClockBlock::kClockCount);
      i < nclk; i += ClockBlock::kClockCount) {
    u32 idx = ctx->clock_alloc.Alloc(c);
    ClockBlock *cb = ctx->clock_alloc.Map(idx);
    internal_memset(cb, 0, sizeof(*cb));
    CHECK_EQ(tab_->table[i/ClockBlock::kClockCount], 0);
    tab_->table[i/ClockBlock::kClockCount] = idx;
  }
  size_ = nclk;
}

// Sets a single element in the vector clock.
// This function is called only from weird places like AcquireGlobal.
void ThreadClock::set(unsigned tid, u64 v) {
  DCHECK_LT(tid, kMaxTid);
  DCHECK_GE(v, clk_[tid].epoch);
  clk_[tid].epoch = v;
  if (nclk_ <= tid)
    nclk_ = tid + 1;
  last_acquire_ = clk_[tid_].epoch;
}

void ThreadClock::DebugDump(int(*printf)(const char *s, ...)) {
  printf("clock=[");
  for (uptr i = 0; i < nclk_; i++)
    printf("%s%llu", i == 0 ? "" : ",", clk_[i].epoch);
  printf("] reused=[");
  for (uptr i = 0; i < nclk_; i++)
    printf("%s%llu", i == 0 ? "" : ",", clk_[i].reused);
  printf("] tid=%u/%u last_acq=%llu",
      tid_, reused_, last_acquire_);
}

SyncClock::SyncClock()
    : release_store_tid_(kInvalidTid)
    , release_store_reused_()
    , tab_()
    , tab_idx_()
    , size_() {
  for (uptr i = 0; i < kDirtyTids; i++)
    dirty_tids_[i] = kInvalidTid;
}

SyncClock::~SyncClock() {
  // Reset must be called before dtor.
  CHECK_EQ(size_, 0);
  CHECK_EQ(tab_, 0);
  CHECK_EQ(tab_idx_, 0);
}

void SyncClock::Reset(ClockCache *c) {
  if (size_ == 0) {
    // nothing
  } else if (size_ <= ClockBlock::kClockCount) {
    // One-level table.
    ctx->clock_alloc.Free(c, tab_idx_);
  } else {
    // Two-level table.
    for (uptr i = 0; i < size_; i += ClockBlock::kClockCount)
      ctx->clock_alloc.Free(c, tab_->table[i / ClockBlock::kClockCount]);
    ctx->clock_alloc.Free(c, tab_idx_);
  }
  tab_ = 0;
  tab_idx_ = 0;
  size_ = 0;
  release_store_tid_ = kInvalidTid;
  release_store_reused_ = 0;
  for (uptr i = 0; i < kDirtyTids; i++)
    dirty_tids_[i] = kInvalidTid;
}

ClockElem &SyncClock::elem(unsigned tid) const {
  DCHECK_LT(tid, size_);
  if (size_ <= ClockBlock::kClockCount)
    return tab_->clock[tid];
  u32 idx = tab_->table[tid / ClockBlock::kClockCount];
  ClockBlock *cb = ctx->clock_alloc.Map(idx);
  return cb->clock[tid % ClockBlock::kClockCount];
}

void SyncClock::DebugDump(int(*printf)(const char *s, ...)) {
  printf("clock=[");
  for (uptr i = 0; i < size_; i++)
    printf("%s%llu", i == 0 ? "" : ",", elem(i).epoch);
  printf("] reused=[");
  for (uptr i = 0; i < size_; i++)
    printf("%s%llu", i == 0 ? "" : ",", elem(i).reused);
  printf("] release_store_tid=%d/%d dirty_tids=%d/%d",
      release_store_tid_, release_store_reused_,
      dirty_tids_[0], dirty_tids_[1]);
}
}  // namespace __tsan