summaryrefslogtreecommitdiff
path: root/gcc/early-remat.c
blob: 9f5f85416448b046c16ec59f9499da48576f11f1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
/* Early (pre-RA) rematerialization
   Copyright (C) 2017-2020 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "rtl.h"
#include "df.h"
#include "tree-pass.h"
#include "memmodel.h"
#include "emit-rtl.h"
#include "insn-config.h"
#include "recog.h"
/* FIXME: The next two are only needed for gen_move_insn.  */
#include "tree.h"
#include "expr.h"
#include "target.h"
#include "inchash.h"
#include "rtlhash.h"
#include "print-rtl.h"
#include "rtl-iter.h"
#include "regs.h"
#include "function-abi.h"

/* This pass runs before register allocation and implements an aggressive
   form of rematerialization.  It looks for pseudo registers R of mode M
   for which:

     (a) there are no call-preserved registers of mode M; and
     (b) spilling R to the stack is expensive.

   The assumption is that it's better to recompute R after each call instead
   of spilling it, even if this extends the live ranges of other registers.

   The motivating example for which these conditions hold are AArch64 SVE
   vectors and predicates.  Spilling them to the stack makes the frame
   variable-sized, which we'd like to avoid if possible.  It's also very
   rare for SVE values to be "naturally" live across a call: usually this
   happens as a result of CSE or other code motion.

   The pass is split into the following phases:

   Collection phase
   ================

   First we go through all pseudo registers looking for any that meet
   the conditions above.  For each such register R, we go through each
   instruction that defines R to see whether any of them are suitable
   rematerialization candidates.  If at least one is, we treat all the
   instructions that define R as candidates, but record which ones are
   not in fact suitable.  These unsuitable candidates exist only for the
   sake of calculating reaching definitions (see below).

   A "candidate" is a single instruction that we want to rematerialize
   and a "candidate register" is a register that is set by at least one
   candidate.

   Candidate sorting
   =================

   Next we sort the candidates based on the cfg postorder, so that if
   candidate C1 uses candidate C2, C1 has a lower index than C2.
   This is useful when iterating through candidate bitmaps.

   Reaching definition calculation
   ===============================

   We then compute standard reaching-definition sets for each candidate.
   Each set specifies which candidates might provide the current definition
   of a live candidate register.

   From here on, a candidate C is "live" at a point P if the candidate
   register defined by C is live at P and if C's definition reaches P.
   An instruction I "uses" a candidate C if I takes the register defined by
   C as input and if C is one of the reaching definitions of that register.

   Candidate validation and value numbering
   ========================================

   Next we simultaneously decide which candidates are valid and look
   for candidates that are equivalent to each other, assigning numbers
   to each unique candidate value.  A candidate C is invalid if:

     (a) C uses an invalid candidate;

     (b) there is a cycle of candidate uses involving C; or

     (c) C takes a candidate register R as input and the reaching
         definitions of R do not have the same value number.

   We assign a "representative" candidate C to each value number and from
   here on replace references to other candidates with that value number
   with references to C.  It is then only possible to rematerialize a
   register R at point P if (after this replacement) there is a single
   reaching definition of R at P.

   Local phase
   ===========

   During this phase we go through each block and look for cases in which:

     (a) an instruction I comes between two call instructions CI1 and CI2;

     (b) I uses a candidate register R;

     (c) a candidate C provides the only reaching definition of R; and

     (d) C does not come between CI1 and I.

   We then emit a copy of C after CI1, as well as the transitive closure
   TC of the candidates used by C.  The copies of TC might use the original
   candidate registers or new temporary registers, depending on circumstances.

   For example, if elsewhere we have:

       C3: R3 <- f3 (...)
	   ...
       C2: R2 <- f2 (...)
	   ...
       C1: R1 <- f1 (R2, R3, ...)  // uses C2 and C3

   then for a block containing:

      CI1: call
	   ...
	I: use R1  // uses C1
	   ...
      CI2: call

   we would emit:

      CI1: call
      C3': R3' <- f3 (...)
      C2': R2' <- f2 (...)
      C1': R1 <- f1 (R2', R3', ...)
	   ...
	I: use R1
	   ...
      CI2: call

   where R2' and R3' might be fresh registers.  If instead we had:

      CI1: call
	   ...
       I1: use R1  // uses C1
	   ...
       I2: use R3  // uses C3
	   ...
      CI2: call

   we would keep the original R3:

      CI1: call
      C3': R3 <- f3 (...)
      C2': R2' <- f2 (...)
      C1': R1 <- f1 (R2', R3, ...)
	   ...
       I1: use R1  // uses C1
	   ...
       I2: use R3  // uses C3
	   ...
      CI2: call

   We also record the last call in each block (if any) and compute:

     rd_after_call:
       The set of candidates that either (a) are defined outside the block
       and are live after the last call or (b) are defined within the block
       and reach the end of the last call.  (We don't track whether the
       latter values are live or not.)

     required_after_call:
       The set of candidates that need to be rematerialized after the
       last call in order to satisfy uses in the block itself.

     required_in:
       The set of candidates that are live on entry to the block and are
       used without an intervening call.

   In addition, we compute the initial values of the sets required by
   the global phase below.

   Global phase
   ============

   We next compute a maximal solution to the following availability
   problem:

     available_in:
       The set of candidates that are live on entry to a block and can
       be used at that point without rematerialization.

     available_out:
       The set of candidates that are live on exit from a block and can
       be used at that point without rematerialization.

     available_locally:
       The subset of available_out that is due to code in the block itself.
       It contains candidates that are defined or used in the block and
       not invalidated by a later call.

   We then go through each block B and look for an appropriate place
   to insert copies of required_in - available_in.  Conceptually we
   start by placing the copies at the head of B, but then move the
   copy of a candidate C to predecessors if:

     (a) that seems cheaper;

     (b) there is more than one reaching definition of C's register at
	 the head of B; or

     (c) copying C would clobber a hard register that is live on entry to B.

   Moving a copy of C to a predecessor block PB involves:

     (1) adding C to PB's required_after_call, if PB contains a call; or

     (2) adding C PB's required_in otherwise.

   C is then available on output from each PB and on input to B.

   Once all this is done, we emit instructions for the final required_in
   and required_after_call sets.  */

namespace {

/* An invalid candidate index, used to indicate that there is more than
   one reaching definition.  */
const unsigned int MULTIPLE_CANDIDATES = -1U;

/* Pass-specific information about one basic block.  */
struct remat_block_info {
  /* The last call instruction in the block.  */
  rtx_insn *last_call;

  /* The set of candidates that are live on entry to the block.  NULL is
     equivalent to an empty set.  */
  bitmap rd_in;

  /* The set of candidates that are live on exit from the block.  This might
     reuse rd_in.  NULL is equivalent to an empty set.  */
  bitmap rd_out;

  /* The subset of RD_OUT that comes from local definitions.  NULL is
     equivalent to an empty set.  */
  bitmap rd_gen;

  /* The set of candidates that the block invalidates (because it defines
     the register to something else, or because the register's value is
     no longer important).  NULL is equivalent to an empty set.  */
  bitmap rd_kill;

  /* The set of candidates that either (a) are defined outside the block
     and are live after LAST_CALL or (b) are defined within the block
     and reach the instruction after LAST_CALL.  (We don't track whether
     the latter values are live or not.)

     Only used if LAST_CALL is nonnull.  NULL is equivalent to an
     empty set.  */
  bitmap rd_after_call;

  /* Candidates that are live and available without rematerialization
     on entry to the block.  NULL is equivalent to an empty set.  */
  bitmap available_in;

  /* Candidates that become available without rematerialization within the
     block, and remain so on exit.  NULL is equivalent to an empty set.  */
  bitmap available_locally;

  /* Candidates that are available without rematerialization on exit from
     the block.  This might reuse available_in or available_locally.  */
  bitmap available_out;

  /* Candidates that need to be rematerialized either at the start of the
     block or before entering the block.  */
  bitmap required_in;

  /* Candidates that need to be rematerialized after LAST_CALL.
     Only used if LAST_CALL is nonnull.  */
  bitmap required_after_call;

  /* The number of candidates in the block.  */
  unsigned int num_candidates;

  /* The earliest candidate in the block (i.e. the one with the
     highest index).  Only valid if NUM_CANDIDATES is nonzero.  */
  unsigned int first_candidate;

  /* The best (lowest) execution frequency for rematerializing REQUIRED_IN.
     This is the execution frequency of the block if LOCAL_REMAT_CHEAPER_P,
     otherwise it is the sum of the execution frequencies of whichever
     predecessor blocks would do the rematerialization.  */
  int remat_frequency;

  /* True if the block ends with an abnormal call.  */
  unsigned int abnormal_call_p : 1;

  /* Used to record whether a graph traversal has visited this block.  */
  unsigned int visited_p : 1;

  /* True if we have calculated REMAT_FREQUENCY.  */
  unsigned int remat_frequency_valid_p : 1;

  /* True if it is cheaper to rematerialize candidates at the start of
     the block, rather than moving them to predecessor blocks.  */
  unsigned int local_remat_cheaper_p : 1;
};

/* Information about a group of candidates with the same value number.  */
struct remat_equiv_class {
  /* The candidates that have the same value number.  */
  bitmap members;

  /* The candidate that was first added to MEMBERS.  */
  unsigned int earliest;

  /* The candidate that represents the others.  This is always the one
     with the highest index.  */
  unsigned int representative;
};

/* Information about an instruction that we might want to rematerialize.  */
struct remat_candidate {
  /* The pseudo register that the instruction sets.  */
  unsigned int regno;

  /* A temporary register used when rematerializing uses of this candidate,
     if REGNO doesn't have the right value or isn't worth using.  */
  unsigned int copy_regno;

  /* True if we intend to rematerialize this instruction by emitting
     a move of a constant into REGNO, false if we intend to emit a
     copy of the original instruction.  */
  unsigned int constant_p : 1;

  /* True if we still think it's possible to rematerialize INSN.  */
  unsigned int can_copy_p : 1;

  /* Used to record whether a graph traversal has visited this candidate.  */
  unsigned int visited_p : 1;

  /* True if we have verified that it's possible to rematerialize INSN.
     Once this is true, both it and CAN_COPY_P remain true.  */
  unsigned int validated_p : 1;

  /* True if we have "stabilized" INSN, i.e. ensured that all non-candidate
     registers read by INSN will have the same value when rematerializing INSN.
     Only ever true if CAN_COPY_P.  */
  unsigned int stabilized_p : 1;

  /* Hash value used for value numbering.  */
  hashval_t hash;

  /* The instruction that sets REGNO.  */
  rtx_insn *insn;

  /* If CONSTANT_P, the value that should be moved into REGNO when
     rematerializing, otherwise the pattern of the instruction that
     should be used.  */
  rtx remat_rtx;

  /* The set of candidates that INSN takes as input.  NULL is equivalent
     to the empty set.  All candidates in this set have a higher index
     than the current candidate.  */
  bitmap uses;

  /* The set of hard registers that would be clobbered by rematerializing
     the candidate, including (transitively) all those that would be
     clobbered by rematerializing USES.  */
  bitmap clobbers;

  /* The equivalence class to which the candidate belongs, or null if none.  */
  remat_equiv_class *equiv_class;
};

/* Hash functions used for value numbering.  */
struct remat_candidate_hasher : nofree_ptr_hash <remat_candidate>
{
  typedef value_type compare_type;
  static hashval_t hash (const remat_candidate *);
  static bool equal (const remat_candidate *, const remat_candidate *);
};

/* Main class for this pass.  */
class early_remat {
public:
  early_remat (function *, sbitmap);
  ~early_remat ();

  void run (void);

private:
  bitmap alloc_bitmap (void);
  bitmap get_bitmap (bitmap *);
  void init_temp_bitmap (bitmap *);
  void copy_temp_bitmap (bitmap *, bitmap *);

  void dump_insn_id (rtx_insn *);
  void dump_candidate_bitmap (bitmap);
  void dump_all_candidates (void);
  void dump_edge_list (basic_block, bool);
  void dump_block_info (basic_block);
  void dump_all_blocks (void);

  bool interesting_regno_p (unsigned int);
  remat_candidate *add_candidate (rtx_insn *, unsigned int, bool);
  bool maybe_add_candidate (rtx_insn *, unsigned int);
  bool collect_candidates (void);
  void init_block_info (void);
  void sort_candidates (void);
  void finalize_candidate_indices (void);
  void record_equiv_candidates (unsigned int, unsigned int);
  static bool rd_confluence_n (edge);
  static bool rd_transfer (int);
  void compute_rd (void);
  unsigned int canon_candidate (unsigned int);
  void canon_bitmap (bitmap *);
  unsigned int resolve_reaching_def (bitmap);
  bool check_candidate_uses (unsigned int);
  void compute_clobbers (unsigned int);
  void assign_value_number (unsigned int);
  void decide_candidate_validity (void);
  void restrict_remat_for_unavail_regs (bitmap, const_bitmap);
  void restrict_remat_for_call (bitmap, rtx_insn *);
  bool stable_use_p (unsigned int);
  void emit_copy_before (unsigned int, rtx, rtx);
  void stabilize_pattern (unsigned int);
  void replace_dest_with_copy (unsigned int);
  void stabilize_candidate_uses (unsigned int, bitmap, bitmap, bitmap,
				 bitmap);
  void emit_remat_insns (bitmap, bitmap, bitmap, rtx_insn *);
  bool set_available_out (remat_block_info *);
  void process_block (basic_block);
  void local_phase (void);
  static bool avail_confluence_n (edge);
  static bool avail_transfer (int);
  void compute_availability (void);
  void unshare_available_sets (remat_block_info *);
  bool can_move_across_edge_p (edge);
  bool local_remat_cheaper_p (unsigned int);
  bool need_to_move_candidate_p (unsigned int, unsigned int);
  void compute_minimum_move_set (unsigned int, bitmap);
  void move_to_predecessors (unsigned int, bitmap, bitmap);
  void choose_rematerialization_points (void);
  void emit_remat_insns_for_block (basic_block);
  void global_phase (void);

  /* The function that we're optimizing.  */
  function *m_fn;

  /* The modes that we want to rematerialize.  */
  sbitmap m_selected_modes;

  /* All rematerialization candidates, identified by their index into the
     vector.  */
  auto_vec<remat_candidate> m_candidates;

  /* The set of candidate registers.  */
  bitmap_head m_candidate_regnos;

  /* Temporary sets.  */
  bitmap_head m_tmp_bitmap;
  bitmap m_available;
  bitmap m_required;

  /* Information about each basic block.  */
  auto_vec<remat_block_info> m_block_info;

  /* A mapping from register numbers to the set of associated candidates.
     Only valid for registers in M_CANDIDATE_REGNOS.  */
  auto_vec<bitmap> m_regno_to_candidates;

  /* An obstack used for allocating bitmaps, so that we can free them all
     in one go.  */
  bitmap_obstack m_obstack;

  /* A hash table of candidates used for value numbering.  If a candidate
     in the table is in an equivalence class, the candidate is marked as
     the earliest member of the class.  */
  hash_table<remat_candidate_hasher> m_value_table;

  /* Used temporarily by callback functions.  */
  static early_remat *er;
};

}

early_remat *early_remat::er;

/* rtx_equal_p_cb callback that treats any two SCRATCHes as equal.
   This allows us to compare two copies of a pattern, even though their
   SCRATCHes are always distinct.  */

static int
scratch_equal (const_rtx *x, const_rtx *y, rtx *nx, rtx *ny)
{
  if (GET_CODE (*x) == SCRATCH && GET_CODE (*y) == SCRATCH)
    {
      *nx = const0_rtx;
      *ny = const0_rtx;
      return 1;
    }
  return 0;
}

/* Hash callback functions for remat_candidate.  */

hashval_t
remat_candidate_hasher::hash (const remat_candidate *cand)
{
  return cand->hash;
}

bool
remat_candidate_hasher::equal (const remat_candidate *cand1,
			       const remat_candidate *cand2)
{
  return (cand1->regno == cand2->regno
	  && cand1->constant_p == cand2->constant_p
	  && (cand1->constant_p
	      ? rtx_equal_p (cand1->remat_rtx, cand2->remat_rtx)
	      : rtx_equal_p_cb (cand1->remat_rtx, cand2->remat_rtx,
				scratch_equal))
	  && (!cand1->uses || bitmap_equal_p (cand1->uses, cand2->uses)));
}

/* Return true if B is null or empty.  */

inline bool
empty_p (bitmap b)
{
  return !b || bitmap_empty_p (b);
}

/* Allocate a new bitmap.  It will be automatically freed at the end of
   the pass.  */

inline bitmap
early_remat::alloc_bitmap (void)
{
  return bitmap_alloc (&m_obstack);
}

/* Initialize *PTR to an empty bitmap if it is currently null.  */

inline bitmap
early_remat::get_bitmap (bitmap *ptr)
{
  if (!*ptr)
    *ptr = alloc_bitmap ();
  return *ptr;
}

/* *PTR is either null or empty.  If it is null, initialize it to an
   empty bitmap.  */

inline void
early_remat::init_temp_bitmap (bitmap *ptr)
{
  if (!*ptr)
    *ptr = alloc_bitmap ();
  else
    gcc_checking_assert (bitmap_empty_p (*ptr));
}

/* Move *SRC to *DEST and leave *SRC empty.  */

inline void
early_remat::copy_temp_bitmap (bitmap *dest, bitmap *src)
{
  if (!empty_p (*src))
    {
      *dest = *src;
      *src = NULL;
    }
  else
    *dest = NULL;
}

/* Print INSN's identifier to the dump file.  */

void
early_remat::dump_insn_id (rtx_insn *insn)
{
  fprintf (dump_file, "%d[bb:%d]", INSN_UID (insn),
	   BLOCK_FOR_INSN (insn)->index);
}

/* Print candidate set CANDIDATES to the dump file, with a leading space.  */

void
early_remat::dump_candidate_bitmap (bitmap candidates)
{
  if (empty_p (candidates))
    {
      fprintf (dump_file, " none");
      return;
    }

  unsigned int cand_index;
  bitmap_iterator bi;
  EXECUTE_IF_SET_IN_BITMAP (candidates, 0, cand_index, bi)
    fprintf (dump_file, " %d", cand_index);
}

/* Print information about all candidates to the dump file.  */

void
early_remat::dump_all_candidates (void)
{
  fprintf (dump_file, "\n;; Candidates:\n;;\n");
  fprintf (dump_file, ";; %5s %5s %8s %s\n", "#", "reg", "mode", "insn");
  fprintf (dump_file, ";; %5s %5s %8s %s\n", "=", "===", "====", "====");
  unsigned int cand_index;
  remat_candidate *cand;
  FOR_EACH_VEC_ELT (m_candidates, cand_index, cand)
    {
      fprintf (dump_file, ";; %5d %5d %8s ", cand_index, cand->regno,
	       GET_MODE_NAME (GET_MODE (regno_reg_rtx[cand->regno])));
      dump_insn_id (cand->insn);
      if (!cand->can_copy_p)
	fprintf (dump_file, "   -- can't copy");
      fprintf (dump_file, "\n");
    }

  fprintf (dump_file, "\n;; Register-to-candidate mapping:\n;;\n");
  unsigned int regno;
  bitmap_iterator bi;
  EXECUTE_IF_SET_IN_BITMAP (&m_candidate_regnos, 0, regno, bi)
    {
      fprintf (dump_file, ";; %5d:", regno);
      dump_candidate_bitmap (m_regno_to_candidates[regno]);
      fprintf (dump_file, "\n");
    }
}

/* Print the predecessors or successors of BB to the dump file, with a
   leading space.  DO_SUCC is true to print successors and false to print
   predecessors.  */

void
early_remat::dump_edge_list (basic_block bb, bool do_succ)
{
  edge e;
  edge_iterator ei;
  FOR_EACH_EDGE (e, ei, do_succ ? bb->succs : bb->preds)
    dump_edge_info (dump_file, e, TDF_NONE, do_succ);
}

/* Print information about basic block BB to the dump file.  */

void
early_remat::dump_block_info (basic_block bb)
{
  remat_block_info *info = &m_block_info[bb->index];
  fprintf (dump_file, ";;\n;; Block %d:", bb->index);
  int width = 25;

  fprintf (dump_file, "\n;;%*s:", width, "predecessors");
  dump_edge_list (bb, false);

  fprintf (dump_file, "\n;;%*s:", width, "successors");
  dump_edge_list (bb, true);

  fprintf (dump_file, "\n;;%*s: %d", width, "frequency",
	   bb->count.to_frequency (m_fn));

  if (info->last_call)
    fprintf (dump_file, "\n;;%*s: %d", width, "last call",
	     INSN_UID (info->last_call));

  if (!empty_p (info->rd_in))
    {
      fprintf (dump_file, "\n;;%*s:", width, "RD in");
      dump_candidate_bitmap (info->rd_in);
    }
  if (!empty_p (info->rd_kill))
    {
      fprintf (dump_file, "\n;;%*s:", width, "RD kill");
      dump_candidate_bitmap (info->rd_kill);
    }
  if (!empty_p (info->rd_gen))
    {
      fprintf (dump_file, "\n;;%*s:", width, "RD gen");
      dump_candidate_bitmap (info->rd_gen);
    }
  if (!empty_p (info->rd_after_call))
    {
      fprintf (dump_file, "\n;;%*s:", width, "RD after call");
      dump_candidate_bitmap (info->rd_after_call);
    }
  if (!empty_p (info->rd_out))
    {
      fprintf (dump_file, "\n;;%*s:", width, "RD out");
      if (info->rd_in == info->rd_out)
	fprintf (dump_file, " RD in");
      else
	dump_candidate_bitmap (info->rd_out);
    }
  if (!empty_p (info->available_in))
    {
      fprintf (dump_file, "\n;;%*s:", width, "available in");
      dump_candidate_bitmap (info->available_in);
    }
  if (!empty_p (info->available_locally))
    {
      fprintf (dump_file, "\n;;%*s:", width, "available locally");
      dump_candidate_bitmap (info->available_locally);
    }
  if (!empty_p (info->available_out))
    {
      fprintf (dump_file, "\n;;%*s:", width, "available out");
      if (info->available_in == info->available_out)
	fprintf (dump_file, " available in");
      else if (info->available_locally == info->available_out)
	fprintf (dump_file, " available locally");
      else
	dump_candidate_bitmap (info->available_out);
    }
  if (!empty_p (info->required_in))
    {
      fprintf (dump_file, "\n;;%*s:", width, "required in");
      dump_candidate_bitmap (info->required_in);
    }
  if (!empty_p (info->required_after_call))
    {
      fprintf (dump_file, "\n;;%*s:", width, "required after call");
      dump_candidate_bitmap (info->required_after_call);
    }
  fprintf (dump_file, "\n");
}

/* Print information about all basic blocks to the dump file.  */

void
early_remat::dump_all_blocks (void)
{
  basic_block bb;
  FOR_EACH_BB_FN (bb, m_fn)
    dump_block_info (bb);
}

/* Return true if REGNO is worth rematerializing.  */

bool
early_remat::interesting_regno_p (unsigned int regno)
{
  /* Ignore unused registers.  */
  rtx reg = regno_reg_rtx[regno];
  if (!reg || DF_REG_DEF_COUNT (regno) == 0)
    return false;

  /* Make sure the register has a mode that we want to rematerialize.  */
  if (!bitmap_bit_p (m_selected_modes, GET_MODE (reg)))
    return false;

  /* Ignore values that might sometimes be used uninitialized.  We could
     instead add dummy candidates for the entry block definition, and so
     handle uses that are definitely not uninitialized, but the combination
     of the two should be rare in practice.  */
  if (bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR_FOR_FN (m_fn)), regno))
    return false;

  return true;
}

/* Record the set of register REGNO in instruction INSN as a
   rematerialization candidate.  CAN_COPY_P is true unless we already
   know that rematerialization is impossible (in which case the candidate
   only exists for the reaching definition calculation).

   The candidate's index is not fixed at this stage.  */

remat_candidate *
early_remat::add_candidate (rtx_insn *insn, unsigned int regno,
			    bool can_copy_p)
{
  remat_candidate cand;
  memset (&cand, 0, sizeof (cand));
  cand.regno = regno;
  cand.insn = insn;
  cand.remat_rtx = PATTERN (insn);
  cand.can_copy_p = can_copy_p;
  m_candidates.safe_push (cand);

  bitmap_set_bit (&m_candidate_regnos, regno);

  return &m_candidates.last ();
}

/* Return true if we can rematerialize the set of register REGNO in
   instruction INSN, and add it as a candidate if so.  When returning
   false, print the reason to the dump file.  */

bool
early_remat::maybe_add_candidate (rtx_insn *insn, unsigned int regno)
{
#define FAILURE_FORMAT ";; Can't rematerialize set of reg %d in %d[bb:%d]: "
#define FAILURE_ARGS regno, INSN_UID (insn), BLOCK_FOR_INSN (insn)->index

  /* The definition must come from an ordinary instruction.  */
  basic_block bb = BLOCK_FOR_INSN (insn);
  if (!NONJUMP_INSN_P (insn)
      || (insn == BB_END (bb)
	  && has_abnormal_or_eh_outgoing_edge_p (bb)))
    {
      if (dump_file)
	fprintf (dump_file, FAILURE_FORMAT "insn alters control flow\n",
		 FAILURE_ARGS);
      return false;
    }

  /* Prefer to rematerialize constants directly -- it's much easier.  */
  machine_mode mode = GET_MODE (regno_reg_rtx[regno]);
  if (rtx note = find_reg_equal_equiv_note (insn))
    {
      rtx val = XEXP (note, 0);
      if (CONSTANT_P (val)
	  && targetm.legitimate_constant_p (mode, val))
	{
	  remat_candidate *cand = add_candidate (insn, regno, true);
	  cand->constant_p = true;
	  cand->remat_rtx = val;
	  return true;
	}
    }

  /* See whether the target has reasons to prevent a copy.  */
  if (targetm.cannot_copy_insn_p && targetm.cannot_copy_insn_p (insn))
    {
      if (dump_file)
	fprintf (dump_file, FAILURE_FORMAT "target forbids copying\n",
		 FAILURE_ARGS);
      return false;
    }

  /* We can't copy trapping instructions.  */
  rtx pat = PATTERN (insn);
  if (may_trap_p (pat))
    {
      if (dump_file)
	fprintf (dump_file, FAILURE_FORMAT "insn might trap\n", FAILURE_ARGS);
      return false;
    }

  /* We can't copy instructions that read memory, unless we know that
     the contents never change.  */
  subrtx_iterator::array_type array;
  FOR_EACH_SUBRTX (iter, array, pat, ALL)
    if (MEM_P (*iter) && !MEM_READONLY_P (*iter))
      {
	if (dump_file)
	  fprintf (dump_file, FAILURE_FORMAT "insn references non-constant"
		   " memory\n", FAILURE_ARGS);
	return false;
      }

  /* Check each defined register.  */
  df_ref ref;
  FOR_EACH_INSN_DEF (ref, insn)
    {
      unsigned int def_regno = DF_REF_REGNO (ref);
      if (def_regno == regno)
	{
	  /* Make sure the definition is write-only.  (Partial definitions,
	     such as setting the low part and clobbering the high part,
	     are otherwise OK.)  */
	  if (DF_REF_FLAGS_IS_SET (ref, DF_REF_READ_WRITE))
	    {
	      if (dump_file)
		fprintf (dump_file, FAILURE_FORMAT "destination is"
			 " read-modify-write\n", FAILURE_ARGS);
	      return false;
	    }
	}
      else
	{
	  /* The instruction can set additional registers, provided that
	     they're hard registers.  This is useful for instructions
	     that alter the condition codes.  */
	  if (!HARD_REGISTER_NUM_P (def_regno))
	    {
	      if (dump_file)
		fprintf (dump_file, FAILURE_FORMAT "insn also sets"
			 " pseudo reg %d\n", FAILURE_ARGS, def_regno);
	      return false;
	    }
	}
    }

  /* If the instruction uses fixed hard registers, check that those
     registers have the same value throughout the function.  If the
     instruction uses non-fixed hard registers, check that we can
     replace them with pseudos.  */
  FOR_EACH_INSN_USE (ref, insn)
    {
      unsigned int use_regno = DF_REF_REGNO (ref);
      if (HARD_REGISTER_NUM_P (use_regno) && fixed_regs[use_regno])
	{
	  if (rtx_unstable_p (DF_REF_REAL_REG (ref)))
	    {
	      if (dump_file)
		fprintf (dump_file, FAILURE_FORMAT "insn uses fixed hard reg"
			 " %d\n", FAILURE_ARGS, use_regno);
	      return false;
	    }
	}
      else if (HARD_REGISTER_NUM_P (use_regno))
	{
	  /* Allocate a dummy pseudo register and temporarily install it.
	     Make the register number depend on the mode, which should
	     provide enough sharing for match_dup while also weeding
	     out cases in which operands with different modes are
	     explicitly tied.  */
	  rtx *loc = DF_REF_REAL_LOC (ref);
	  unsigned int size = RTX_CODE_SIZE (REG);
	  rtx new_reg = (rtx) alloca (size);
	  memset (new_reg, 0, size);
	  PUT_CODE (new_reg, REG);
	  set_mode_and_regno (new_reg, GET_MODE (*loc),
			      LAST_VIRTUAL_REGISTER + 1 + GET_MODE (*loc));
	  validate_change (insn, loc, new_reg, 1);
	}
    }
  bool ok_p = verify_changes (0);
  cancel_changes (0);
  if (!ok_p)
    {
      if (dump_file)
	fprintf (dump_file, FAILURE_FORMAT "insn does not allow hard"
		 " register inputs to be replaced\n", FAILURE_ARGS);
      return false;
    }

#undef FAILURE_ARGS
#undef FAILURE_FORMAT

  add_candidate (insn, regno, true);
  return true;
}

/* Calculate the set of rematerialization candidates.  Return true if
   we find at least one.  */

bool
early_remat::collect_candidates (void)
{
  unsigned int nregs = DF_REG_SIZE (df);
  for (unsigned int regno = FIRST_PSEUDO_REGISTER; regno < nregs; ++regno)
    if (interesting_regno_p (regno))
      {
	/* Create candidates for all suitable definitions.  */
	bitmap_clear (&m_tmp_bitmap);
	unsigned int bad = 0;
	unsigned int id = 0;
	for (df_ref ref = DF_REG_DEF_CHAIN (regno); ref;
	     ref = DF_REF_NEXT_REG (ref))
	  {
	    rtx_insn *insn = DF_REF_INSN (ref);
	    if (maybe_add_candidate (insn, regno))
	      bitmap_set_bit (&m_tmp_bitmap, id);
	    else
	      bad += 1;
	    id += 1;
	  }

	/* If we found at least one suitable definition, add dummy
	   candidates for the rest, so that we can see which definitions
	   are live where.  */
	if (!bitmap_empty_p (&m_tmp_bitmap) && bad)
	  {
	    id = 0;
	    for (df_ref ref = DF_REG_DEF_CHAIN (regno); ref;
		 ref = DF_REF_NEXT_REG (ref))
	      {
		if (!bitmap_bit_p (&m_tmp_bitmap, id))
		  add_candidate (DF_REF_INSN (ref), regno, false);
		id += 1;
	      }
	  }
      }


  return !m_candidates.is_empty ();
}

/* Initialize the m_block_info array.  */

void
early_remat::init_block_info (void)
{
  unsigned int n_blocks = last_basic_block_for_fn (m_fn);
  m_block_info.safe_grow_cleared (n_blocks);
}

/* Maps basic block indices to their position in the post order.  */
static unsigned int *postorder_index;

/* Order remat_candidates X_IN and Y_IN according to the cfg postorder.  */

static int
compare_candidates (const void *x_in, const void *y_in)
{
  const remat_candidate *x = (const remat_candidate *) x_in;
  const remat_candidate *y = (const remat_candidate *) y_in;
  basic_block x_bb = BLOCK_FOR_INSN (x->insn);
  basic_block y_bb = BLOCK_FOR_INSN (y->insn);
  if (x_bb != y_bb)
    /* Make X and Y follow block postorder.  */
    return postorder_index[x_bb->index] - postorder_index[y_bb->index];

  /* Make X and Y follow a backward traversal of the containing block.  */
  return DF_INSN_LUID (y->insn) - DF_INSN_LUID (x->insn);
}

/* Sort the collected rematerialization candidates so that they follow
   cfg postorder.  */

void
early_remat::sort_candidates (void)
{
  /* Make sure the DF LUIDs are up-to-date for all the blocks we
     care about.  */
  bitmap_clear (&m_tmp_bitmap);
  unsigned int cand_index;
  remat_candidate *cand;
  FOR_EACH_VEC_ELT (m_candidates, cand_index, cand)
    {
      basic_block bb = BLOCK_FOR_INSN (cand->insn);
      if (bitmap_set_bit (&m_tmp_bitmap, bb->index))
	df_recompute_luids (bb);
    }

  /* Create a mapping from block numbers to their position in the
     postorder.  */
  unsigned int n_blocks = last_basic_block_for_fn (m_fn);
  int *postorder = df_get_postorder (DF_BACKWARD);
  unsigned int postorder_len = df_get_n_blocks (DF_BACKWARD);
  postorder_index = new unsigned int[n_blocks];
  for (unsigned int i = 0; i < postorder_len; ++i)
    postorder_index[postorder[i]] = i;

  m_candidates.qsort (compare_candidates);

  delete postorder_index;
}

/* Commit to the current candidate indices and initialize cross-references.  */

void
early_remat::finalize_candidate_indices (void)
{
  /* Create a bitmap for each candidate register.  */
  m_regno_to_candidates.safe_grow (max_reg_num ());
  unsigned int regno;
  bitmap_iterator bi;
  EXECUTE_IF_SET_IN_BITMAP (&m_candidate_regnos, 0, regno, bi)
    m_regno_to_candidates[regno] = alloc_bitmap ();

  /* Go through each candidate and record its index.  */
  unsigned int cand_index;
  remat_candidate *cand;
  FOR_EACH_VEC_ELT (m_candidates, cand_index, cand)
    {
      basic_block bb = BLOCK_FOR_INSN (cand->insn);
      remat_block_info *info = &m_block_info[bb->index];
      info->num_candidates += 1;
      info->first_candidate = cand_index;
      bitmap_set_bit (m_regno_to_candidates[cand->regno], cand_index);
    }
}

/* Record that candidates CAND1_INDEX and CAND2_INDEX are equivalent.
   CAND1_INDEX might already have an equivalence class, but CAND2_INDEX
   doesn't.  */

void
early_remat::record_equiv_candidates (unsigned int cand1_index,
				      unsigned int cand2_index)
{
  if (dump_file)
    fprintf (dump_file, ";; Candidate %d is equivalent to candidate %d\n",
	     cand2_index, cand1_index);

  remat_candidate *cand1 = &m_candidates[cand1_index];
  remat_candidate *cand2 = &m_candidates[cand2_index];
  gcc_checking_assert (!cand2->equiv_class);

  remat_equiv_class *ec = cand1->equiv_class;
  if (!ec)
    {
      ec = XOBNEW (&m_obstack.obstack, remat_equiv_class);
      ec->members = alloc_bitmap ();
      bitmap_set_bit (ec->members, cand1_index);
      ec->earliest = cand1_index;
      ec->representative = cand1_index;
      cand1->equiv_class = ec;
    }
  cand2->equiv_class = ec;
  bitmap_set_bit (ec->members, cand2_index);
  if (cand2_index > ec->representative)
    ec->representative = cand2_index;
}

/* Propagate information from the rd_out set of E->src to the rd_in set
   of E->dest, when computing global reaching definitions.  Return true
   if something changed.  */

bool
early_remat::rd_confluence_n (edge e)
{
  remat_block_info *src = &er->m_block_info[e->src->index];
  remat_block_info *dest = &er->m_block_info[e->dest->index];

  /* available_in temporarily contains the set of candidates whose
     registers are live on entry.  */
  if (empty_p (src->rd_out) || empty_p (dest->available_in))
    return false;

  return bitmap_ior_and_into (er->get_bitmap (&dest->rd_in),
			      src->rd_out, dest->available_in);
}

/* Propagate information from the rd_in set of block BB_INDEX to rd_out.
   Return true if something changed.  */

bool
early_remat::rd_transfer (int bb_index)
{
  remat_block_info *info = &er->m_block_info[bb_index];

  if (empty_p (info->rd_in))
    return false;

  if (empty_p (info->rd_kill))
    {
      gcc_checking_assert (empty_p (info->rd_gen));
      if (!info->rd_out)
	info->rd_out = info->rd_in;
      else
	gcc_checking_assert (info->rd_out == info->rd_in);
      /* Assume that we only get called if something changed.  */
      return true;
    }

  if (empty_p (info->rd_gen))
    return bitmap_and_compl (er->get_bitmap (&info->rd_out),
			     info->rd_in, info->rd_kill);

  return bitmap_ior_and_compl (er->get_bitmap (&info->rd_out), info->rd_gen,
			       info->rd_in, info->rd_kill);
}

/* Calculate the rd_* sets for each block.  */

void
early_remat::compute_rd (void)
{
  /* First calculate the rd_kill and rd_gen sets, using the fact
     that m_candidates is sorted in order of decreasing LUID.  */
  unsigned int cand_index;
  remat_candidate *cand;
  FOR_EACH_VEC_ELT_REVERSE (m_candidates, cand_index, cand)
    {
      rtx_insn *insn = cand->insn;
      basic_block bb = BLOCK_FOR_INSN (insn);
      remat_block_info *info = &m_block_info[bb->index];
      bitmap kill = m_regno_to_candidates[cand->regno];
      bitmap_ior_into (get_bitmap (&info->rd_kill), kill);
      if (bitmap_bit_p (DF_LR_OUT (bb), cand->regno))
	{
	  bitmap_and_compl_into (get_bitmap (&info->rd_gen), kill);
	  bitmap_set_bit (info->rd_gen, cand_index);
	}
    }

  /* Set up the initial values of the other sets.  */
  basic_block bb;
  FOR_EACH_BB_FN (bb, m_fn)
    {
      remat_block_info *info = &m_block_info[bb->index];
      unsigned int regno;
      bitmap_iterator bi;
      EXECUTE_IF_AND_IN_BITMAP (DF_LR_IN (bb), &m_candidate_regnos,
				0, regno, bi)
	{
	  /* Use available_in to record the set of candidates whose
	     registers are live on entry (i.e. a maximum bound on rd_in).  */
	  bitmap_ior_into (get_bitmap (&info->available_in),
			   m_regno_to_candidates[regno]);

	  /* Add registers that die in a block to the block's kill set,
	     so that we don't needlessly propagate them through the rest
	     of the function.  */
	  if (!bitmap_bit_p (DF_LR_OUT (bb), regno))
	    bitmap_ior_into (get_bitmap (&info->rd_kill),
			     m_regno_to_candidates[regno]);
	}

      /* Initialize each block's rd_out to the minimal set (the set of
	 local definitions).  */
      if (!empty_p (info->rd_gen))
	bitmap_copy (get_bitmap (&info->rd_out), info->rd_gen);
    }

  /* Iterate until we reach a fixed point.  */
  er = this;
  bitmap_clear (&m_tmp_bitmap);
  bitmap_set_range (&m_tmp_bitmap, 0, last_basic_block_for_fn (m_fn));
  df_simple_dataflow (DF_FORWARD, NULL, NULL, rd_confluence_n, rd_transfer,
		      &m_tmp_bitmap, df_get_postorder (DF_FORWARD),
		      df_get_n_blocks (DF_FORWARD));
  er = 0;

  /* Work out which definitions reach which candidates, again taking
     advantage of the candidate order.  */
  bitmap_head reaching;
  bitmap_initialize (&reaching, &m_obstack);
  basic_block old_bb = NULL;
  FOR_EACH_VEC_ELT_REVERSE (m_candidates, cand_index, cand)
    {
      bb = BLOCK_FOR_INSN (cand->insn);
      if (bb != old_bb)
	{
	  /* Get the definitions that reach the start of the new block.  */
	  remat_block_info *info = &m_block_info[bb->index];
	  if (info->rd_in)
	    bitmap_copy (&reaching, info->rd_in);
	  else
	    bitmap_clear (&reaching);
	  old_bb = bb;
	}
      else
	{
	  /* Process the definitions of the previous instruction.  */
	  bitmap kill = m_regno_to_candidates[cand[1].regno];
	  bitmap_and_compl_into (&reaching, kill);
	  bitmap_set_bit (&reaching, cand_index + 1);
	}

      if (cand->can_copy_p && !cand->constant_p)
	{
	  df_ref ref;
	  FOR_EACH_INSN_USE (ref, cand->insn)
	    {
	      unsigned int regno = DF_REF_REGNO (ref);
	      if (bitmap_bit_p (&m_candidate_regnos, regno))
		{
		  bitmap defs = m_regno_to_candidates[regno];
		  bitmap_and (&m_tmp_bitmap, defs, &reaching);
		  bitmap_ior_into (get_bitmap (&cand->uses), &m_tmp_bitmap);
		}
	    }
	}
    }
  bitmap_clear (&reaching);
}

/* If CAND_INDEX is in an equivalence class, return the representative
   of the class, otherwise return CAND_INDEX.  */

inline unsigned int
early_remat::canon_candidate (unsigned int cand_index)
{
  if (remat_equiv_class *ec = m_candidates[cand_index].equiv_class)
    return ec->representative;
  return cand_index;
}

/* Make candidate set *PTR refer to candidates using the representative
   of each equivalence class.  */

void
early_remat::canon_bitmap (bitmap *ptr)
{
  bitmap old_set = *ptr;
  if (empty_p (old_set))
    return;

  bitmap new_set = NULL;
  unsigned int old_index;
  bitmap_iterator bi;
  EXECUTE_IF_SET_IN_BITMAP (old_set, 0, old_index, bi)
    {
      unsigned int new_index = canon_candidate (old_index);
      if (old_index != new_index)
	{
	  if (!new_set)
	    {
	      new_set = alloc_bitmap ();
	      bitmap_copy (new_set, old_set);
	    }
	  bitmap_clear_bit (new_set, old_index);
	  bitmap_set_bit (new_set, new_index);
	}
    }
  if (new_set)
    {
      BITMAP_FREE (*ptr);
      *ptr = new_set;
    }
}

/* If the candidates in REACHING all have the same value, return the
   earliest instance of that value (i.e. the first one to be added
   to m_value_table), otherwise return MULTIPLE_CANDIDATES.  */

unsigned int
early_remat::resolve_reaching_def (bitmap reaching)
{
  unsigned int cand_index = bitmap_first_set_bit (reaching);
  if (remat_equiv_class *ec = m_candidates[cand_index].equiv_class)
    {
      if (!bitmap_intersect_compl_p (reaching, ec->members))
	return ec->earliest;
    }
  else if (bitmap_single_bit_set_p (reaching))
    return cand_index;

  return MULTIPLE_CANDIDATES;
}

/* Check whether all candidate registers used by candidate CAND_INDEX have
   unique definitions.  Return true if so, replacing the candidate's uses
   set with the appropriate form for value numbering.  */

bool
early_remat::check_candidate_uses (unsigned int cand_index)
{
  remat_candidate *cand = &m_candidates[cand_index];

  /* Process the uses for each register in turn.  */
  bitmap_head uses;
  bitmap_initialize (&uses, &m_obstack);
  bitmap_copy (&uses, cand->uses);
  bitmap uses_ec = alloc_bitmap ();
  while (!bitmap_empty_p (&uses))
    {
      /* Get the register for the lowest-indexed candidate remaining,
	 and the reaching definitions of that register.  */
      unsigned int first = bitmap_first_set_bit (&uses);
      unsigned int regno = m_candidates[first].regno;
      bitmap_and (&m_tmp_bitmap, &uses, m_regno_to_candidates[regno]);

      /* See whether all reaching definitions have the same value and if
	 so get the index of the first candidate we saw with that value.  */
      unsigned int def = resolve_reaching_def (&m_tmp_bitmap);
      if (def == MULTIPLE_CANDIDATES)
	{
	  if (dump_file)
	    fprintf (dump_file, ";; Removing candidate %d because there is"
		     " more than one reaching definition of reg %d\n",
		     cand_index, regno);
	  cand->can_copy_p = false;
	  break;
	}
      bitmap_set_bit (uses_ec, def);
      bitmap_and_compl_into (&uses, &m_tmp_bitmap);
    }
  BITMAP_FREE (cand->uses);
  cand->uses = uses_ec;
  return cand->can_copy_p;
}

/* Calculate the set of hard registers that would be clobbered by
   rematerializing candidate CAND_INDEX.  At this point the candidate's
   set of uses is final.  */

void
early_remat::compute_clobbers (unsigned int cand_index)
{
  remat_candidate *cand = &m_candidates[cand_index];
  if (cand->uses)
    {
      unsigned int use_index;
      bitmap_iterator bi;
      EXECUTE_IF_SET_IN_BITMAP (cand->uses, 0, use_index, bi)
	if (bitmap clobbers = m_candidates[use_index].clobbers)
	  bitmap_ior_into (get_bitmap (&cand->clobbers), clobbers);
    }

  df_ref ref;
  FOR_EACH_INSN_DEF (ref, cand->insn)
    {
      unsigned int def_regno = DF_REF_REGNO (ref);
      if (def_regno != cand->regno)
	bitmap_set_bit (get_bitmap (&cand->clobbers), def_regno);
    }
}

/* Mark candidate CAND_INDEX as validated and add it to the value table.  */

void
early_remat::assign_value_number (unsigned int cand_index)
{
  remat_candidate *cand = &m_candidates[cand_index];
  gcc_checking_assert (cand->can_copy_p && !cand->validated_p);

  compute_clobbers (cand_index);
  cand->validated_p = true;

  inchash::hash h;
  h.add_int (cand->regno);
  inchash::add_rtx (cand->remat_rtx, h);
  cand->hash = h.end ();

  remat_candidate **slot
    = m_value_table.find_slot_with_hash (cand, cand->hash, INSERT);
  if (!*slot)
    {
      *slot = cand;
      if (dump_file)
	fprintf (dump_file, ";; Candidate %d is not equivalent to"
		 " others seen so far\n", cand_index);
    }
  else
    record_equiv_candidates (*slot - m_candidates.address (), cand_index);
}

/* Make a final decision about which candidates are valid and assign
   value numbers to those that are.  */

void
early_remat::decide_candidate_validity (void)
{
  auto_vec<unsigned int, 16> stack;
  unsigned int cand1_index;
  remat_candidate *cand1;
  FOR_EACH_VEC_ELT_REVERSE (m_candidates, cand1_index, cand1)
    {
      if (!cand1->can_copy_p || cand1->validated_p)
	continue;

      if (empty_p (cand1->uses))
	{
	  assign_value_number (cand1_index);
	  continue;
	}

      stack.safe_push (cand1_index);
      while (!stack.is_empty ())
	{
	  unsigned int cand2_index = stack.last ();
	  unsigned int watermark = stack.length ();
	  remat_candidate *cand2 = &m_candidates[cand2_index];
	  if (!cand2->can_copy_p || cand2->validated_p)
	    {
	      stack.pop ();
	      continue;
	    }
	  cand2->visited_p = true;
	  unsigned int cand3_index;
	  bitmap_iterator bi;
	  EXECUTE_IF_SET_IN_BITMAP (cand2->uses, 0, cand3_index, bi)
	    {
	      remat_candidate *cand3 = &m_candidates[cand3_index];
	      if (!cand3->can_copy_p)
		{
		  if (dump_file)
		    fprintf (dump_file, ";; Removing candidate %d because"
			     " it uses removed candidate %d\n", cand2_index,
			     cand3_index);
		  cand2->can_copy_p = false;
		  break;
		}
	      if (!cand3->validated_p)
		{
		  if (empty_p (cand3->uses))
		    assign_value_number (cand3_index);
		  else if (cand3->visited_p)
		    {
		      if (dump_file)
			fprintf (dump_file, ";; Removing candidate %d"
				 " because its definition is cyclic\n",
				 cand2_index);
		      cand2->can_copy_p = false;
		      break;
		    }
		  else
		    stack.safe_push (cand3_index);
		}
	    }
	  if (!cand2->can_copy_p)
	    {
	      cand2->visited_p = false;
	      stack.truncate (watermark - 1);
	    }
	  else if (watermark == stack.length ())
	    {
	      cand2->visited_p = false;
	      if (check_candidate_uses (cand2_index))
		assign_value_number (cand2_index);
	      stack.pop ();
	    }
	}
    }

  /* Ensure that the candidates always use the same candidate index
     to refer to an equivalence class.  */
  FOR_EACH_VEC_ELT_REVERSE (m_candidates, cand1_index, cand1)
    if (cand1->can_copy_p && !empty_p (cand1->uses))
      {
	canon_bitmap (&cand1->uses);
	gcc_checking_assert (bitmap_first_set_bit (cand1->uses) > cand1_index);
      }
}

/* Remove any candidates in CANDIDATES that would clobber a register in
   UNAVAIL_REGS.  */

void
early_remat::restrict_remat_for_unavail_regs (bitmap candidates,
					      const_bitmap unavail_regs)
{
  bitmap_clear (&m_tmp_bitmap);
  unsigned int cand_index;
  bitmap_iterator bi;
  EXECUTE_IF_SET_IN_BITMAP (candidates, 0, cand_index, bi)
    {
      remat_candidate *cand = &m_candidates[cand_index];
      if (cand->clobbers
	  && bitmap_intersect_p (cand->clobbers, unavail_regs))
	bitmap_set_bit (&m_tmp_bitmap, cand_index);
    }
  bitmap_and_compl_into (candidates, &m_tmp_bitmap);
}

/* Remove any candidates in CANDIDATES that would clobber a register
   that is potentially live across CALL.  */

void
early_remat::restrict_remat_for_call (bitmap candidates, rtx_insn *call)
{
  /* We don't know whether partially-clobbered registers are live
     across the call or not, so assume that they are.  */
  bitmap_view<HARD_REG_SET> call_preserved_regs
    (~insn_callee_abi (call).full_reg_clobbers ());
  restrict_remat_for_unavail_regs (candidates, call_preserved_regs);
}

/* Assuming that every path reaching a point P contains a copy of a
   use U of REGNO, return true if another copy of U at P would have
   access to the same value of REGNO.  */

bool
early_remat::stable_use_p (unsigned int regno)
{
  /* Conservatively assume not for hard registers.  */
  if (HARD_REGISTER_NUM_P (regno))
    return false;

  /* See if REGNO has a single definition and is never used uninitialized.
     In this case the definition of REGNO dominates the common dominator
     of the uses U, which in turn dominates P.  */
  if (DF_REG_DEF_COUNT (regno) == 1
      && !bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR_FOR_FN (m_fn)), regno))
    return true;

  return false;
}

/* Emit a copy from register DEST to register SRC before candidate
   CAND_INDEX's instruction.  */

void
early_remat::emit_copy_before (unsigned int cand_index, rtx dest, rtx src)
{
  remat_candidate *cand = &m_candidates[cand_index];
  if (dump_file)
    {
      fprintf (dump_file, ";; Stabilizing insn ");
      dump_insn_id (cand->insn);
      fprintf (dump_file, " by copying source reg %d:%s to temporary reg %d\n",
	       REGNO (src), GET_MODE_NAME (GET_MODE (src)), REGNO (dest));
    }
  emit_insn_before (gen_move_insn (dest, src), cand->insn);
}

/* Check whether any inputs to candidate CAND_INDEX's instruction could
   change at rematerialization points and replace them with new pseudo
   registers if so.  */

void
early_remat::stabilize_pattern (unsigned int cand_index)
{
  remat_candidate *cand = &m_candidates[cand_index];
  if (cand->stabilized_p)
    return;

  remat_equiv_class *ec = cand->equiv_class;
  gcc_checking_assert (!ec || cand_index == ec->representative);

  /* Record the replacements we've made so far, so that we don't
     create two separate registers for match_dups.  Lookup is O(n),
     but the n is very small.  */
  typedef std::pair<rtx, rtx> reg_pair;
  auto_vec<reg_pair, 16> reg_map;

  rtx_insn *insn = cand->insn;
  df_ref ref;
  FOR_EACH_INSN_USE (ref, insn)
    {
      unsigned int old_regno = DF_REF_REGNO (ref);
      rtx *loc = DF_REF_REAL_LOC (ref);

      if (HARD_REGISTER_NUM_P (old_regno) && fixed_regs[old_regno])
	{
	  /* We checked when adding the candidate that the value is stable.  */
	  gcc_checking_assert (!rtx_unstable_p (*loc));
	  continue;
	}

      if (bitmap_bit_p (&m_candidate_regnos, old_regno))
	/* We already know which candidate provides the definition
	   and will handle it during copying.  */
	continue;

      if (stable_use_p (old_regno))
	/* We can continue to use the existing register.  */
	continue;

      /* We need to replace the register.  See whether we've already
	 created a suitable copy.  */
      rtx old_reg = *loc;
      rtx new_reg = NULL_RTX;
      machine_mode mode = GET_MODE (old_reg);
      reg_pair *p;
      unsigned int pi;
      FOR_EACH_VEC_ELT (reg_map, pi, p)
	if (REGNO (p->first) == old_regno
	    && GET_MODE (p->first) == mode)
	  {
	    new_reg = p->second;
	    break;
	  }

      if (!new_reg)
	{
	  /* Create a new register and initialize it just before
	     the instruction.  */
	  new_reg = gen_reg_rtx (mode);
	  reg_map.safe_push (reg_pair (old_reg, new_reg));
	  if (ec)
	    {
	      unsigned int member_index;
	      bitmap_iterator bi;
	      EXECUTE_IF_SET_IN_BITMAP (ec->members, 0, member_index, bi)
		emit_copy_before (member_index, new_reg, old_reg);
	    }
	  else
	    emit_copy_before (cand_index, new_reg, old_reg);
	}
      validate_change (insn, loc, new_reg, true);
    }
  if (num_changes_pending ())
    {
      if (!apply_change_group ())
	/* We checked when adding the candidates that the pattern allows
	   hard registers to be replaced.  Nothing else should make the
	   changes invalid.  */
	gcc_unreachable ();

      if (ec)
	{
	  /* Copy the new pattern to other members of the equivalence
	     class.  */
	  unsigned int member_index;
	  bitmap_iterator bi;
	  EXECUTE_IF_SET_IN_BITMAP (ec->members, 0, member_index, bi)
	    if (cand_index != member_index)
	      {
		rtx_insn *other_insn = m_candidates[member_index].insn;
		if (!validate_change (other_insn, &PATTERN (other_insn),
				      copy_insn (PATTERN (insn)), 0))
		  /* If the original instruction was valid then the copy
		     should be too.  */
		  gcc_unreachable ();
	      }
	}
    }

  cand->stabilized_p = true;
}

/* Change CAND's instruction so that it sets CAND->copy_regno instead
   of CAND->regno.  */

void
early_remat::replace_dest_with_copy (unsigned int cand_index)
{
  remat_candidate *cand = &m_candidates[cand_index];
  df_ref def;
  FOR_EACH_INSN_DEF (def, cand->insn)
    if (DF_REF_REGNO (def) == cand->regno)
      validate_change (cand->insn, DF_REF_REAL_LOC (def),
		       regno_reg_rtx[cand->copy_regno], 1);
}

/* Make sure that the candidates used by candidate CAND_INDEX are available.
   There are two ways of doing this for an input candidate I:

   (1) Using the existing register number and ensuring that I is available.

   (2) Using a new register number (recorded in copy_regno) and adding I
       to VIA_COPY.  This guarantees that making I available does not
       conflict with other uses of the original register.

   REQUIRED is the set of candidates that are required but not available
   before the copy of CAND_INDEX.  AVAILABLE is the set of candidates
   that are already available before the copy of CAND_INDEX.  REACHING
   is the set of candidates that reach the copy of CAND_INDEX.  VIA_COPY
   is the set of candidates that will use new register numbers recorded
   in copy_regno instead of the original ones.  */

void
early_remat::stabilize_candidate_uses (unsigned int cand_index,
				       bitmap required, bitmap available,
				       bitmap reaching, bitmap via_copy)
{
  remat_candidate *cand = &m_candidates[cand_index];
  df_ref use;
  FOR_EACH_INSN_USE (use, cand->insn)
    {
      unsigned int regno = DF_REF_REGNO (use);
      if (!bitmap_bit_p (&m_candidate_regnos, regno))
	continue;

      /* Work out which candidate provides the definition.  */
      bitmap defs = m_regno_to_candidates[regno];
      bitmap_and (&m_tmp_bitmap, cand->uses, defs);
      gcc_checking_assert (bitmap_single_bit_set_p (&m_tmp_bitmap));
      unsigned int def_index = bitmap_first_set_bit (&m_tmp_bitmap);

      /* First see if DEF_INDEX is the only reaching definition of REGNO
	 at this point too and if it is or will become available.  We can
	 continue to use REGNO if so.  */
      bitmap_and (&m_tmp_bitmap, reaching, defs);
      if (bitmap_single_bit_set_p (&m_tmp_bitmap)
	  && bitmap_first_set_bit (&m_tmp_bitmap) == def_index
	  && ((available && bitmap_bit_p (available, def_index))
	      || bitmap_bit_p (required, def_index)))
	{
	  if (dump_file)
	    fprintf (dump_file, ";; Keeping reg %d for use of candidate %d"
		     " in candidate %d\n", regno, def_index, cand_index);
	  continue;
	}

      /* Otherwise fall back to using a copy.  There are other cases
	 in which we *could* continue to use REGNO, but there's not
	 really much point.  Using a separate register ought to make
	 things easier for the register allocator.  */
      remat_candidate *def_cand = &m_candidates[def_index];
      rtx *loc = DF_REF_REAL_LOC (use);
      rtx new_reg;
      if (bitmap_set_bit (via_copy, def_index))
	{
	  new_reg = gen_reg_rtx (GET_MODE (*loc));
	  def_cand->copy_regno = REGNO (new_reg);
	  if (dump_file)
	    fprintf (dump_file, ";; Creating reg %d for use of candidate %d"
		     " in candidate %d\n", REGNO (new_reg), def_index,
		     cand_index);
	}
      else
	new_reg = regno_reg_rtx[def_cand->copy_regno];
      validate_change (cand->insn, loc, new_reg, 1);
    }
}

/* Rematerialize the candidates in REQUIRED after instruction INSN,
   given that the candidates in AVAILABLE are already available
   and that REACHING is the set of candidates live after INSN.
   REQUIRED and AVAILABLE are disjoint on entry.

   Clear REQUIRED on exit.  */

void
early_remat::emit_remat_insns (bitmap required, bitmap available,
			       bitmap reaching, rtx_insn *insn)
{
  /* Quick exit if there's nothing to do.  */
  if (empty_p (required))
    return;

  /* Only reaching definitions should be available or required.  */
  gcc_checking_assert (!bitmap_intersect_compl_p (required, reaching));
  if (available)
    gcc_checking_assert (!bitmap_intersect_compl_p (available, reaching));

  bitmap_head via_copy;
  bitmap_initialize (&via_copy, &m_obstack);
  while (!bitmap_empty_p (required) || !bitmap_empty_p (&via_copy))
    {
      /* Pick the lowest-indexed candidate left.  */
      unsigned int required_index = (bitmap_empty_p (required)
				     ? ~0U : bitmap_first_set_bit (required));
      unsigned int via_copy_index = (bitmap_empty_p (&via_copy)
				     ? ~0U : bitmap_first_set_bit (&via_copy));
      unsigned int cand_index = MIN (required_index, via_copy_index);
      remat_candidate *cand = &m_candidates[cand_index];

      bool via_copy_p = (cand_index == via_copy_index);
      if (via_copy_p)
	bitmap_clear_bit (&via_copy, cand_index);
      else
	{
	  /* Remove all candidates for the same register from REQUIRED.  */
	  bitmap_and (&m_tmp_bitmap, reaching,
		      m_regno_to_candidates[cand->regno]);
	  bitmap_and_compl_into (required, &m_tmp_bitmap);
	  gcc_checking_assert (!bitmap_bit_p (required, cand_index));

	  /* Only rematerialize if we have a single reaching definition
	     of the register.  */
	  if (!bitmap_single_bit_set_p (&m_tmp_bitmap))
	    {
	      if (dump_file)
		{
		  fprintf (dump_file, ";; Can't rematerialize reg %d after ",
			   cand->regno);
		  dump_insn_id (insn);
		  fprintf (dump_file, ": more than one reaching definition\n");
		}
	      continue;
	    }

	  /* Skip candidates that can't be rematerialized.  */
	  if (!cand->can_copy_p)
	    continue;

	  /* Check the function precondition.  */
	  gcc_checking_assert (!available
			       || !bitmap_bit_p (available, cand_index));
	}

      /* Invalid candidates should have been weeded out by now.  */
      gcc_assert (cand->can_copy_p);

      rtx new_pattern;
      if (cand->constant_p)
	{
	  /* Emit a simple move.  */
	  unsigned int regno = via_copy_p ? cand->copy_regno : cand->regno;
	  new_pattern = gen_move_insn (regno_reg_rtx[regno], cand->remat_rtx);
	}
      else
	{
	  /* If this is the first time we've copied the instruction, make
	     sure that any inputs will have the same value after INSN.  */
	  stabilize_pattern (cand_index);

	  /* Temporarily adjust the original instruction so that it has
	     the right form for the copy.  */
	  if (via_copy_p)
	    replace_dest_with_copy (cand_index);
	  if (cand->uses)
	    stabilize_candidate_uses (cand_index, required, available,
				      reaching, &via_copy);

	  /* Get the new instruction pattern.  */
	  new_pattern = copy_insn (cand->remat_rtx);

	  /* Undo the temporary changes.  */
	  cancel_changes (0);
	}

      /* Emit the new instruction.  */
      rtx_insn *new_insn = emit_insn_after (new_pattern, insn);

      if (dump_file)
	{
	  fprintf (dump_file, ";; Rematerializing candidate %d after ",
		   cand_index);
	  dump_insn_id (insn);
	  if (via_copy_p)
	    fprintf (dump_file, " with new destination reg %d",
		     cand->copy_regno);
	  fprintf (dump_file, ":\n\n");
	  print_rtl_single (dump_file, new_insn);
	  fprintf (dump_file, "\n");
	}
    }
}

/* Recompute INFO's available_out set, given that it's distinct from
   available_in and available_locally.  */

bool
early_remat::set_available_out (remat_block_info *info)
{
  if (empty_p (info->available_locally))
    return bitmap_and_compl (get_bitmap (&info->available_out),
			     info->available_in, info->rd_kill);

  if (empty_p (info->rd_kill))
    return bitmap_ior (get_bitmap (&info->available_out),
		       info->available_locally, info->available_in);

  return bitmap_ior_and_compl (get_bitmap (&info->available_out),
			       info->available_locally, info->available_in,
			       info->rd_kill);
}

/* If BB has more than one call, decide which candidates should be
   rematerialized after the non-final calls and emit the associated
   instructions.  Record other information about the block in preparation
   for the global phase.  */

void
early_remat::process_block (basic_block bb)
{
  remat_block_info *info = &m_block_info[bb->index];
  rtx_insn *last_call = NULL;
  rtx_insn *insn;

  /* Ensure that we always use the same candidate index to refer to an
     equivalence class.  */
  if (info->rd_out == info->rd_in)
    {
      canon_bitmap (&info->rd_in);
      info->rd_out = info->rd_in;
    }
  else
    {
      canon_bitmap (&info->rd_in);
      canon_bitmap (&info->rd_out);
    }
  canon_bitmap (&info->rd_kill);
  canon_bitmap (&info->rd_gen);

  /* The set of candidates that should be rematerialized on entry to the
     block or after the previous call (whichever is more recent).  */
  init_temp_bitmap (&m_required);

  /* The set of candidates that reach the current instruction (i.e. are
     live just before the instruction).  */
  bitmap_head reaching;
  bitmap_initialize (&reaching, &m_obstack);
  if (info->rd_in)
    bitmap_copy (&reaching, info->rd_in);

  /* The set of candidates that are live and available without
     rematerialization just before the current instruction.  This only
     accounts for earlier candidates in the block, or those that become
     available by being added to M_REQUIRED.  */
  init_temp_bitmap (&m_available);

  /* Get the range of candidates in the block.  */
  unsigned int next_candidate = info->first_candidate;
  unsigned int num_candidates = info->num_candidates;
  remat_candidate *next_def = (num_candidates > 0
			       ? &m_candidates[next_candidate]
			       : NULL);

  FOR_BB_INSNS (bb, insn)
    {
      if (!NONDEBUG_INSN_P (insn))
	continue;

      /* First process uses, since this is a forward walk.  */
      df_ref ref;
      FOR_EACH_INSN_USE (ref, insn)
	{
	  unsigned int regno = DF_REF_REGNO (ref);
	  if (bitmap_bit_p (&m_candidate_regnos, regno))
	    {
	      bitmap defs = m_regno_to_candidates[regno];
	      bitmap_and (&m_tmp_bitmap, defs, &reaching);
	      gcc_checking_assert (!bitmap_empty_p (&m_tmp_bitmap));
	      if (!bitmap_intersect_p (defs, m_available))
		{
		  /* There has been no definition of the register since
		     the last call or the start of the block (whichever
		     is most recent).  Mark the reaching definitions
		     as required at that point and thus available here.  */
		  bitmap_ior_into (m_required, &m_tmp_bitmap);
		  bitmap_ior_into (m_available, &m_tmp_bitmap);
		}
	    }
	}

      if (CALL_P (insn))
	{
	  if (!last_call)
	    {
	      /* The first call in the block.  Record which candidates are
		 required at the start of the block.  */
	      copy_temp_bitmap (&info->required_in, &m_required);
	      init_temp_bitmap (&m_required);
	    }
	  else
	    {
	      /* The fully-local case: candidates that need to be
		 rematerialized after a previous call in the block.  */
	      restrict_remat_for_call (m_required, last_call);
	      emit_remat_insns (m_required, NULL, info->rd_after_call,
				last_call);
	    }
	  last_call = insn;
	  bitmap_clear (m_available);
	  gcc_checking_assert (empty_p (m_required));
	}

      /* Now process definitions.  */
      while (next_def && insn == next_def->insn)
	{
	  unsigned int gen = canon_candidate (next_candidate);

	  /* Other candidates with the same regno are not available
	     any more.  */
	  bitmap kill = m_regno_to_candidates[next_def->regno];
	  bitmap_and_compl_into (m_available, kill);
	  bitmap_and_compl_into (&reaching, kill);

	  /* Record that this candidate is available without
	     rematerialization.  */
	  bitmap_set_bit (m_available, gen);
	  bitmap_set_bit (&reaching, gen);

	  /* Find the next candidate in the block.  */
	  num_candidates -= 1;
	  next_candidate -= 1;
	  if (num_candidates > 0)
	    next_def -= 1;
	  else
	    next_def = NULL;
	}

      if (insn == last_call)
	bitmap_copy (get_bitmap (&info->rd_after_call), &reaching);
    }
  bitmap_clear (&reaching);
  gcc_checking_assert (num_candidates == 0);

  /* Remove values from the available set if they aren't live (and so
     aren't interesting to successor blocks).  */
  if (info->rd_out)
    bitmap_and_into (m_available, info->rd_out);

  /* Record the accumulated information.  */
  info->last_call = last_call;
  info->abnormal_call_p = (last_call
			   && last_call == BB_END (bb)
			   && has_abnormal_or_eh_outgoing_edge_p (bb));
  copy_temp_bitmap (&info->available_locally, &m_available);
  if (last_call)
    copy_temp_bitmap (&info->required_after_call, &m_required);
  else
    copy_temp_bitmap (&info->required_in, &m_required);

  /* Assume at first that all live-in values are available without
     rematerialization (i.e. start with the most optimistic assumption).  */
  if (info->available_in)
    {
      if (info->rd_in)
	bitmap_copy (info->available_in, info->rd_in);
      else
	BITMAP_FREE (info->available_in);
    }

  if (last_call || empty_p (info->available_in))
    /* The values available on exit from the block are exactly those that
       are available locally.  This set doesn't change.  */
    info->available_out = info->available_locally;
  else if (empty_p (info->available_locally) && empty_p (info->rd_kill))
    /* The values available on exit are the same as those available on entry.
       Updating one updates the other.  */
    info->available_out = info->available_in;
  else
    set_available_out (info);
}

/* Process each block as for process_block, visiting dominators before
   the blocks they dominate.  */

void
early_remat::local_phase (void)
{
  if (dump_file)
    fprintf (dump_file, "\n;; Local phase:\n");

  int *postorder = df_get_postorder (DF_BACKWARD);
  unsigned int postorder_len = df_get_n_blocks (DF_BACKWARD);
  for (unsigned int i = postorder_len; i-- > 0; )
    if (postorder[i] >= NUM_FIXED_BLOCKS)
      process_block (BASIC_BLOCK_FOR_FN (m_fn, postorder[i]));
}

/* Return true if available values survive across edge E.  */

static inline bool
available_across_edge_p (edge e)
{
  return (e->flags & EDGE_EH) == 0;
}

/* Propagate information from the available_out set of E->src to the
   available_in set of E->dest, when computing global availability.
   Return true if something changed.  */

bool
early_remat::avail_confluence_n (edge e)
{
  remat_block_info *src = &er->m_block_info[e->src->index];
  remat_block_info *dest = &er->m_block_info[e->dest->index];

  if (!available_across_edge_p (e))
    return false;

  if (empty_p (dest->available_in))
    return false;

  if (!src->available_out)
    {
      bitmap_clear (dest->available_in);
      return true;
    }

  return bitmap_and_into (dest->available_in, src->available_out);
}

/* Propagate information from the available_in set of block BB_INDEX
   to available_out.  Return true if something changed.  */

bool
early_remat::avail_transfer (int bb_index)
{
  remat_block_info *info = &er->m_block_info[bb_index];

  if (info->available_out == info->available_locally)
    return false;

  if (info->available_out == info->available_in)
    /* Assume that we are only called if the input changed.  */
    return true;

  return er->set_available_out (info);
}

/* Compute global availability for the function, starting with the local
   information computed by local_phase.  */

void
early_remat::compute_availability (void)
{
  /* We use df_simple_dataflow instead of the lcm routines for three reasons:

     (1) it avoids recomputing the traversal order;
     (2) many of the sets are likely to be sparse, so we don't necessarily
	 want to use sbitmaps; and
     (3) it means we can avoid creating an explicit kill set for the call.  */
  er = this;
  bitmap_clear (&m_tmp_bitmap);
  bitmap_set_range (&m_tmp_bitmap, 0, last_basic_block_for_fn (m_fn));
  df_simple_dataflow (DF_FORWARD, NULL, NULL,
		      avail_confluence_n, avail_transfer,
		      &m_tmp_bitmap, df_get_postorder (DF_FORWARD),
		      df_get_n_blocks (DF_FORWARD));
  er = 0;

  /* Restrict the required_in sets to values that aren't available.  */
  basic_block bb;
  FOR_EACH_BB_FN (bb, m_fn)
    {
      remat_block_info *info = &m_block_info[bb->index];
      if (info->required_in && info->available_in)
	bitmap_and_compl_into (info->required_in, info->available_in);
    }
}

/* Make sure that INFO's available_out and available_in sets are unique.  */

inline void
early_remat::unshare_available_sets (remat_block_info *info)
{
  if (info->available_in && info->available_in == info->available_out)
    {
      info->available_in = alloc_bitmap ();
      bitmap_copy (info->available_in, info->available_out);
    }
}

/* Return true if it is possible to move rematerializations from the
   destination of E to the source of E.  */

inline bool
early_remat::can_move_across_edge_p (edge e)
{
  return (available_across_edge_p (e)
	  && !m_block_info[e->src->index].abnormal_call_p);
}

/* Return true if it is cheaper to rematerialize values at the head of
   block QUERY_BB_INDEX instead of rematerializing in its predecessors.  */

bool
early_remat::local_remat_cheaper_p (unsigned int query_bb_index)
{
  if (m_block_info[query_bb_index].remat_frequency_valid_p)
    return m_block_info[query_bb_index].local_remat_cheaper_p;

  /* Iteratively compute the cost of rematerializing values in the
     predecessor blocks, then compare that with the cost of
     rematerializing at the head of the block.

     A cycle indicates that there is no call on that execution path,
     so it isn't necessary to rematerialize on that path.  */
  auto_vec<basic_block, 16> stack;
  stack.quick_push (BASIC_BLOCK_FOR_FN (m_fn, query_bb_index));
  while (!stack.is_empty ())
    {
      basic_block bb = stack.last ();
      remat_block_info *info = &m_block_info[bb->index];
      if (info->remat_frequency_valid_p)
	{
	  stack.pop ();
	  continue;
	}

      info->visited_p = true;
      int frequency = 0;
      bool can_move_p = true;
      edge e;
      edge_iterator ei;
      FOR_EACH_EDGE (e, ei, bb->preds)
	if (!can_move_across_edge_p (e))
	  {
	    can_move_p = false;
	    break;
	  }
	else if (m_block_info[e->src->index].last_call)
	  /* We'll rematerialize after the call.  */
	  frequency += e->src->count.to_frequency (m_fn);
	else if (m_block_info[e->src->index].remat_frequency_valid_p)
	  /* Add the cost of rematerializing at the head of E->src
	     or in its predecessors (whichever is cheaper).  */
	  frequency += m_block_info[e->src->index].remat_frequency;
	else if (!m_block_info[e->src->index].visited_p)
	  /* Queue E->src and then revisit this block again.  */
	  stack.safe_push (e->src);

      /* Come back to this block later if we need to process some of
	 its predecessors.  */
      if (stack.last () != bb)
	continue;

      /* If rematerializing in and before the block have equal cost, prefer
	 rematerializing in the block.  This should shorten the live range.  */
      int bb_frequency = bb->count.to_frequency (m_fn);
      if (!can_move_p || frequency >= bb_frequency)
	{
	  info->local_remat_cheaper_p = true;
	  info->remat_frequency = bb_frequency;
	}
      else
	info->remat_frequency = frequency;
      info->remat_frequency_valid_p = true;
      info->visited_p = false;
      if (dump_file)
	{
	  if (!can_move_p)
	    fprintf (dump_file, ";; Need to rematerialize at the head of"
		     " block %d; cannot move to predecessors.\n", bb->index);
	  else
	    {
	      fprintf (dump_file, ";; Block %d has frequency %d,"
		       " rematerializing in predecessors has frequency %d",
		       bb->index, bb_frequency, frequency);
	      if (info->local_remat_cheaper_p)
		fprintf (dump_file, "; prefer to rematerialize"
			 " in the block\n");
	      else
		fprintf (dump_file, "; prefer to rematerialize"
			 " in predecessors\n");
	    }
	}
      stack.pop ();
    }
  return m_block_info[query_bb_index].local_remat_cheaper_p;
}

/* Return true if we cannot rematerialize candidate CAND_INDEX at the head of
   block BB_INDEX.  */

bool
early_remat::need_to_move_candidate_p (unsigned int bb_index,
				       unsigned int cand_index)
{
  remat_block_info *info = &m_block_info[bb_index];
  remat_candidate *cand = &m_candidates[cand_index];
  basic_block bb = BASIC_BLOCK_FOR_FN (m_fn, bb_index);

  /* If there is more than one reaching definition of REGNO,
     we'll need to rematerialize in predecessors instead.  */
  bitmap_and (&m_tmp_bitmap, info->rd_in, m_regno_to_candidates[cand->regno]);
  if (!bitmap_single_bit_set_p (&m_tmp_bitmap))
    {
      if (dump_file)
	fprintf (dump_file, ";; Cannot rematerialize %d at the"
		 " head of block %d because there is more than one"
		 " reaching definition of reg %d\n", cand_index,
		 bb_index, cand->regno);
      return true;
    }

  /* Likewise if rematerializing CAND here would clobber a live register.  */
  if (cand->clobbers
      && bitmap_intersect_p (cand->clobbers, DF_LR_IN (bb)))
    {
      if (dump_file)
	fprintf (dump_file, ";; Cannot rematerialize %d at the"
		 " head of block %d because it would clobber live"
		 " registers\n", cand_index, bb_index);
      return true;
    }

  return false;
}

/* Set REQUIRED to the minimum set of candidates that must be rematerialized
   in predecessors of block BB_INDEX instead of at the start of the block.  */

void
early_remat::compute_minimum_move_set (unsigned int bb_index,
				       bitmap required)
{
  remat_block_info *info = &m_block_info[bb_index];
  bitmap_head remaining;

  bitmap_clear (required);
  bitmap_initialize (&remaining, &m_obstack);
  bitmap_copy (&remaining, info->required_in);
  while (!bitmap_empty_p (&remaining))
    {
      unsigned int cand_index = bitmap_first_set_bit (&remaining);
      remat_candidate *cand = &m_candidates[cand_index];
      bitmap_clear_bit (&remaining, cand_index);

      /* Leave invalid candidates where they are.  */
      if (!cand->can_copy_p)
	continue;

      /* Decide whether to move this candidate.  */
      if (!bitmap_bit_p (required, cand_index))
	{
	  if (!need_to_move_candidate_p (bb_index, cand_index))
	    continue;
	  bitmap_set_bit (required, cand_index);
	}

      /* Also move values used by the candidate, so that we don't
	 rematerialize them twice.  */
      if (cand->uses)
	{
	  bitmap_ior_and_into (required, cand->uses, info->required_in);
	  bitmap_ior_and_into (&remaining, cand->uses, info->required_in);
	}
    }
}

/* Make the predecessors of BB_INDEX rematerialize the candidates in
   REQUIRED.  Add any blocks whose required_in set changes to
   PENDING_BLOCKS.  */

void
early_remat::move_to_predecessors (unsigned int bb_index, bitmap required,
				   bitmap pending_blocks)
{
  if (empty_p (required))
    return;
  remat_block_info *dest_info = &m_block_info[bb_index];
  basic_block bb = BASIC_BLOCK_FOR_FN (m_fn, bb_index);
  edge e;
  edge_iterator ei;
  FOR_EACH_EDGE (e, ei, bb->preds)
    {
      remat_block_info *src_info = &m_block_info[e->src->index];

      /* Restrict the set we add to the reaching definitions.  */
      bitmap_and (&m_tmp_bitmap, required, src_info->rd_out);
      if (bitmap_empty_p (&m_tmp_bitmap))
	continue;

      if (!can_move_across_edge_p (e))
	{
	  /* We can't move the rematerialization and we can't do it at
	     the start of the block either.  In this case we just give up
	     and rely on spilling to make the values available across E.  */
	  if (dump_file)
	    {
	      fprintf (dump_file, ";; Cannot rematerialize the following"
		       " candidates in block %d:", e->src->index);
	      dump_candidate_bitmap (required);
	      fprintf (dump_file, "\n");
	    }
	  continue;
	}

      /* Remove candidates that are already available.  */
      if (src_info->available_out)
	{
	  bitmap_and_compl_into (&m_tmp_bitmap, src_info->available_out);
	  if (bitmap_empty_p (&m_tmp_bitmap))
	    continue;
	}

      /* Add the remaining candidates to the appropriate required set.  */
      if (dump_file)
	{
	  fprintf (dump_file, ";; Moving this set from block %d"
		   " to block %d:", bb_index, e->src->index);
	  dump_candidate_bitmap (&m_tmp_bitmap);
	  fprintf (dump_file, "\n");
	}
      /* If the source block contains a call, we want to rematerialize
	 after the call, otherwise we want to rematerialize at the start
	 of the block.  */
      bitmap src_required = get_bitmap (src_info->last_call
					? &src_info->required_after_call
					: &src_info->required_in);
      if (bitmap_ior_into (src_required, &m_tmp_bitmap))
	{
	  if (!src_info->last_call)
	    bitmap_set_bit (pending_blocks, e->src->index);
	  unshare_available_sets (src_info);
	  bitmap_ior_into (get_bitmap (&src_info->available_out),
			   &m_tmp_bitmap);
	}
    }

  /* The candidates are now available on entry to the block.  */
  bitmap_and_compl_into (dest_info->required_in, required);
  unshare_available_sets (dest_info);
  bitmap_ior_into (get_bitmap (&dest_info->available_in), required);
}

/* Go through the candidates that are currently marked as being
   rematerialized at the beginning of a block.  Decide in each case
   whether that's valid and profitable; if it isn't, move the
   rematerialization to predecessor blocks instead.  */

void
early_remat::choose_rematerialization_points (void)
{
  bitmap_head required;
  bitmap_head pending_blocks;

  int *postorder = df_get_postorder (DF_BACKWARD);
  unsigned int postorder_len = df_get_n_blocks (DF_BACKWARD);
  bitmap_initialize (&required, &m_obstack);
  bitmap_initialize (&pending_blocks, &m_obstack);
  do
    /* Process the blocks in postorder, to reduce the number of iterations
       of the outer loop.  */
    for (unsigned int i = 0; i < postorder_len; ++i)
      {
	unsigned int bb_index = postorder[i];
	remat_block_info *info = &m_block_info[bb_index];
	bitmap_clear_bit (&pending_blocks, bb_index);

	if (empty_p (info->required_in))
	  continue;

	if (info->available_in)
	  gcc_checking_assert (!bitmap_intersect_p (info->required_in,
						    info->available_in));

	if (local_remat_cheaper_p (bb_index))
	  {
	    /* We'd prefer to rematerialize at the head of the block.
	       Only move candidates if we need to.  */
	    compute_minimum_move_set (bb_index, &required);
	    move_to_predecessors (bb_index, &required, &pending_blocks);
	  }
	else
	  move_to_predecessors (bb_index, info->required_in,
				&pending_blocks);
      }
  while (!bitmap_empty_p (&pending_blocks));
  bitmap_clear (&required);
}

/* Emit all rematerialization instructions queued for BB.  */

void
early_remat::emit_remat_insns_for_block (basic_block bb)
{
  remat_block_info *info = &m_block_info[bb->index];

  if (info->last_call && !empty_p (info->required_after_call))
    {
      restrict_remat_for_call (info->required_after_call, info->last_call);
      emit_remat_insns (info->required_after_call, NULL,
			info->rd_after_call, info->last_call);
    }

  if (!empty_p (info->required_in))
    {
      rtx_insn *insn = BB_HEAD (bb);
      while (insn != BB_END (bb)
	     && !INSN_P (NEXT_INSN (insn)))
	insn = NEXT_INSN (insn);
      restrict_remat_for_unavail_regs (info->required_in, DF_LR_IN (bb));
      emit_remat_insns (info->required_in, info->available_in,
			info->rd_in, insn);
    }
}

/* Decide which candidates in each block's REQUIRED_IN set need to be
   rematerialized and decide where the rematerialization instructions
   should go.  Emit queued rematerialization instructions at the start
   of blocks and after the last calls in blocks.  */

void
early_remat::global_phase (void)
{
  compute_availability ();
  if (dump_file)
    {
      fprintf (dump_file, "\n;; Blocks after computing global"
	       " availability:\n");
      dump_all_blocks ();
    }

  choose_rematerialization_points ();
  if (dump_file)
    {
      fprintf (dump_file, "\n;; Blocks after choosing rematerialization"
	       " points:\n");
      dump_all_blocks ();
    }

  basic_block bb;
  FOR_EACH_BB_FN (bb, m_fn)
    emit_remat_insns_for_block (bb);
}

/* Main function for the pass.  */

void
early_remat::run (void)
{
  df_analyze ();

  if (!collect_candidates ())
    return;

  init_block_info ();
  sort_candidates ();
  finalize_candidate_indices ();
  if (dump_file)
    dump_all_candidates ();

  compute_rd ();
  decide_candidate_validity ();
  local_phase ();
  global_phase ();
}

early_remat::early_remat (function *fn, sbitmap selected_modes)
  : m_fn (fn),
    m_selected_modes (selected_modes),
    m_available (0),
    m_required (0),
    m_value_table (63)
{
  bitmap_obstack_initialize (&m_obstack);
  bitmap_initialize (&m_candidate_regnos, &m_obstack);
  bitmap_initialize (&m_tmp_bitmap, &m_obstack);
}

early_remat::~early_remat ()
{
  bitmap_obstack_release (&m_obstack);
}

namespace {

const pass_data pass_data_early_remat =
{
  RTL_PASS, /* type */
  "early_remat", /* name */
  OPTGROUP_NONE, /* optinfo_flags */
  TV_EARLY_REMAT, /* tv_id */
  0, /* properties_required */
  0, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
  TODO_df_finish, /* todo_flags_finish */
};

class pass_early_remat : public rtl_opt_pass
{
public:
  pass_early_remat (gcc::context *ctxt)
    : rtl_opt_pass (pass_data_early_remat, ctxt)
  {}

  /* opt_pass methods: */
  virtual bool gate (function *)
  {
    return optimize > 1 && NUM_POLY_INT_COEFFS > 1;
  }

  virtual unsigned int execute (function *f)
  {
    auto_sbitmap selected_modes (NUM_MACHINE_MODES);
    bitmap_clear (selected_modes);
    targetm.select_early_remat_modes (selected_modes);
    if (!bitmap_empty_p (selected_modes))
      early_remat (f, selected_modes).run ();
    return 0;
  }
}; // class pass_early_remat

} // anon namespace

rtl_opt_pass *
make_pass_early_remat (gcc::context *ctxt)
{
  return new pass_early_remat (ctxt);
}