// SPDX-License-Identifier: GPL-2.0+ /* * Image manipulator for Marvell SoCs * supports Kirkwood, Dove, Armada 370, Armada XP, Armada 375, Armada 38x and * Armada 39x * * (C) Copyright 2013 Thomas Petazzoni * * * (C) Copyright 2022 Pali Rohár */ #define OPENSSL_API_COMPAT 0x10101000L #include "imagetool.h" #include #include #include #include #include "kwbimage.h" #include #include #include #include #include #if OPENSSL_VERSION_NUMBER < 0x10100000L || \ (defined(LIBRESSL_VERSION_NUMBER) && LIBRESSL_VERSION_NUMBER < 0x2070000fL) static void RSA_get0_key(const RSA *r, const BIGNUM **n, const BIGNUM **e, const BIGNUM **d) { if (n != NULL) *n = r->n; if (e != NULL) *e = r->e; if (d != NULL) *d = r->d; } #elif !defined(LIBRESSL_VERSION_NUMBER) void EVP_MD_CTX_cleanup(EVP_MD_CTX *ctx) { EVP_MD_CTX_reset(ctx); } #endif /* fls - find last (most-significant) bit set in 4-bit integer */ static inline int fls4(int num) { if (num & 0x8) return 4; else if (num & 0x4) return 3; else if (num & 0x2) return 2; else if (num & 0x1) return 1; else return 0; } static struct image_cfg_element *image_cfg; static int cfgn; static int verbose_mode; struct boot_mode { unsigned int id; const char *name; }; /* * SHA2-256 hash */ struct hash_v1 { uint8_t hash[32]; }; struct boot_mode boot_modes[] = { { IBR_HDR_I2C_ID, "i2c" }, { IBR_HDR_SPI_ID, "spi" }, { IBR_HDR_NAND_ID, "nand" }, { IBR_HDR_SATA_ID, "sata" }, { IBR_HDR_PEX_ID, "pex" }, { IBR_HDR_UART_ID, "uart" }, { IBR_HDR_SDIO_ID, "sdio" }, {}, }; struct nand_ecc_mode { unsigned int id; const char *name; }; struct nand_ecc_mode nand_ecc_modes[] = { { IBR_HDR_ECC_DEFAULT, "default" }, { IBR_HDR_ECC_FORCED_HAMMING, "hamming" }, { IBR_HDR_ECC_FORCED_RS, "rs" }, { IBR_HDR_ECC_DISABLED, "disabled" }, {}, }; /* Used to identify an undefined execution or destination address */ #define ADDR_INVALID ((uint32_t)-1) #define BINARY_MAX_ARGS 255 /* In-memory representation of a line of the configuration file */ enum image_cfg_type { IMAGE_CFG_VERSION = 0x1, IMAGE_CFG_BOOT_FROM, IMAGE_CFG_DEST_ADDR, IMAGE_CFG_EXEC_ADDR, IMAGE_CFG_NAND_BLKSZ, IMAGE_CFG_NAND_BADBLK_LOCATION, IMAGE_CFG_NAND_ECC_MODE, IMAGE_CFG_NAND_PAGESZ, IMAGE_CFG_CPU, IMAGE_CFG_BINARY, IMAGE_CFG_DATA, IMAGE_CFG_DATA_DELAY, IMAGE_CFG_BAUDRATE, IMAGE_CFG_UART_PORT, IMAGE_CFG_UART_MPP, IMAGE_CFG_DEBUG, IMAGE_CFG_KAK, IMAGE_CFG_CSK, IMAGE_CFG_CSK_INDEX, IMAGE_CFG_JTAG_DELAY, IMAGE_CFG_BOX_ID, IMAGE_CFG_FLASH_ID, IMAGE_CFG_SEC_COMMON_IMG, IMAGE_CFG_SEC_SPECIALIZED_IMG, IMAGE_CFG_SEC_BOOT_DEV, IMAGE_CFG_SEC_FUSE_DUMP, IMAGE_CFG_COUNT } type; static const char * const id_strs[] = { [IMAGE_CFG_VERSION] = "VERSION", [IMAGE_CFG_BOOT_FROM] = "BOOT_FROM", [IMAGE_CFG_DEST_ADDR] = "DEST_ADDR", [IMAGE_CFG_EXEC_ADDR] = "EXEC_ADDR", [IMAGE_CFG_NAND_BLKSZ] = "NAND_BLKSZ", [IMAGE_CFG_NAND_BADBLK_LOCATION] = "NAND_BADBLK_LOCATION", [IMAGE_CFG_NAND_ECC_MODE] = "NAND_ECC_MODE", [IMAGE_CFG_NAND_PAGESZ] = "NAND_PAGE_SIZE", [IMAGE_CFG_CPU] = "CPU", [IMAGE_CFG_BINARY] = "BINARY", [IMAGE_CFG_DATA] = "DATA", [IMAGE_CFG_DATA_DELAY] = "DATA_DELAY", [IMAGE_CFG_BAUDRATE] = "BAUDRATE", [IMAGE_CFG_UART_PORT] = "UART_PORT", [IMAGE_CFG_UART_MPP] = "UART_MPP", [IMAGE_CFG_DEBUG] = "DEBUG", [IMAGE_CFG_KAK] = "KAK", [IMAGE_CFG_CSK] = "CSK", [IMAGE_CFG_CSK_INDEX] = "CSK_INDEX", [IMAGE_CFG_JTAG_DELAY] = "JTAG_DELAY", [IMAGE_CFG_BOX_ID] = "BOX_ID", [IMAGE_CFG_FLASH_ID] = "FLASH_ID", [IMAGE_CFG_SEC_COMMON_IMG] = "SEC_COMMON_IMG", [IMAGE_CFG_SEC_SPECIALIZED_IMG] = "SEC_SPECIALIZED_IMG", [IMAGE_CFG_SEC_BOOT_DEV] = "SEC_BOOT_DEV", [IMAGE_CFG_SEC_FUSE_DUMP] = "SEC_FUSE_DUMP" }; struct image_cfg_element { enum image_cfg_type type; union { unsigned int version; unsigned int cpu_sheeva; unsigned int bootfrom; struct { const char *file; unsigned int loadaddr; unsigned int args[BINARY_MAX_ARGS]; unsigned int nargs; } binary; unsigned int dstaddr; unsigned int execaddr; unsigned int nandblksz; unsigned int nandbadblklocation; unsigned int nandeccmode; unsigned int nandpagesz; struct ext_hdr_v0_reg regdata; unsigned int regdata_delay; unsigned int baudrate; unsigned int uart_port; unsigned int uart_mpp; unsigned int debug; const char *key_name; int csk_idx; uint8_t jtag_delay; uint32_t boxid; uint32_t flashid; bool sec_specialized_img; unsigned int sec_boot_dev; const char *name; }; }; #define IMAGE_CFG_ELEMENT_MAX 256 /* * Utility functions to manipulate boot mode and ecc modes (convert * them back and forth between description strings and the * corresponding numerical identifiers). */ static const char *image_boot_mode_name(unsigned int id) { int i; for (i = 0; boot_modes[i].name; i++) if (boot_modes[i].id == id) return boot_modes[i].name; return NULL; } static int image_boot_mode_id(const char *boot_mode_name) { int i; for (i = 0; boot_modes[i].name; i++) if (!strcmp(boot_modes[i].name, boot_mode_name)) return boot_modes[i].id; return -1; } static const char *image_nand_ecc_mode_name(unsigned int id) { int i; for (i = 0; nand_ecc_modes[i].name; i++) if (nand_ecc_modes[i].id == id) return nand_ecc_modes[i].name; return NULL; } static int image_nand_ecc_mode_id(const char *nand_ecc_mode_name) { int i; for (i = 0; nand_ecc_modes[i].name; i++) if (!strcmp(nand_ecc_modes[i].name, nand_ecc_mode_name)) return nand_ecc_modes[i].id; return -1; } static struct image_cfg_element * image_find_option(unsigned int optiontype) { int i; for (i = 0; i < cfgn; i++) { if (image_cfg[i].type == optiontype) return &image_cfg[i]; } return NULL; } static unsigned int image_count_options(unsigned int optiontype) { int i; unsigned int count = 0; for (i = 0; i < cfgn; i++) if (image_cfg[i].type == optiontype) count++; return count; } static int image_get_csk_index(void) { struct image_cfg_element *e; e = image_find_option(IMAGE_CFG_CSK_INDEX); if (!e) return -1; return e->csk_idx; } static bool image_get_spezialized_img(void) { struct image_cfg_element *e; e = image_find_option(IMAGE_CFG_SEC_SPECIALIZED_IMG); if (!e) return false; return e->sec_specialized_img; } static int image_get_bootfrom(void) { struct image_cfg_element *e; e = image_find_option(IMAGE_CFG_BOOT_FROM); if (!e) /* fallback to SPI if no BOOT_FROM is not provided */ return IBR_HDR_SPI_ID; return e->bootfrom; } static int image_is_cpu_sheeva(void) { struct image_cfg_element *e; e = image_find_option(IMAGE_CFG_CPU); if (!e) return 0; return e->cpu_sheeva; } /* * Compute a 8-bit checksum of a memory area. This algorithm follows * the requirements of the Marvell SoC BootROM specifications. */ static uint8_t image_checksum8(void *start, uint32_t len) { uint8_t csum = 0; uint8_t *p = start; /* check len and return zero checksum if invalid */ if (!len) return 0; do { csum += *p; p++; } while (--len); return csum; } /* * Verify checksum over a complete header that includes the checksum field. * Return 1 when OK, otherwise 0. */ static int main_hdr_checksum_ok(void *hdr) { /* Offsets of checksum in v0 and v1 headers are the same */ struct main_hdr_v0 *main_hdr = (struct main_hdr_v0 *)hdr; uint8_t checksum; checksum = image_checksum8(hdr, kwbheader_size_for_csum(hdr)); /* Calculated checksum includes the header checksum field. Compensate * for that. */ checksum -= main_hdr->checksum; return checksum == main_hdr->checksum; } static uint32_t image_checksum32(void *start, uint32_t len) { uint32_t csum = 0; uint32_t *p = start; /* check len and return zero checksum if invalid */ if (!len) return 0; if (len % sizeof(uint32_t)) { fprintf(stderr, "Length %d is not in multiple of %zu\n", len, sizeof(uint32_t)); return 0; } do { csum += *p; p++; len -= sizeof(uint32_t); } while (len > 0); return csum; } static unsigned int options_to_baudrate(uint8_t options) { switch (options & 0x7) { case MAIN_HDR_V1_OPT_BAUD_2400: return 2400; case MAIN_HDR_V1_OPT_BAUD_4800: return 4800; case MAIN_HDR_V1_OPT_BAUD_9600: return 9600; case MAIN_HDR_V1_OPT_BAUD_19200: return 19200; case MAIN_HDR_V1_OPT_BAUD_38400: return 38400; case MAIN_HDR_V1_OPT_BAUD_57600: return 57600; case MAIN_HDR_V1_OPT_BAUD_115200: return 115200; case MAIN_HDR_V1_OPT_BAUD_DEFAULT: default: return 0; } } static uint8_t baudrate_to_option(unsigned int baudrate) { switch (baudrate) { case 2400: return MAIN_HDR_V1_OPT_BAUD_2400; case 4800: return MAIN_HDR_V1_OPT_BAUD_4800; case 9600: return MAIN_HDR_V1_OPT_BAUD_9600; case 19200: return MAIN_HDR_V1_OPT_BAUD_19200; case 38400: return MAIN_HDR_V1_OPT_BAUD_38400; case 57600: return MAIN_HDR_V1_OPT_BAUD_57600; case 115200: return MAIN_HDR_V1_OPT_BAUD_115200; default: return MAIN_HDR_V1_OPT_BAUD_DEFAULT; } } static void kwb_msg(const char *fmt, ...) { if (verbose_mode) { va_list ap; va_start(ap, fmt); vfprintf(stdout, fmt, ap); va_end(ap); } } static int openssl_err(const char *msg) { unsigned long ssl_err = ERR_get_error(); fprintf(stderr, "%s", msg); fprintf(stderr, ": %s\n", ERR_error_string(ssl_err, 0)); return -1; } static int kwb_load_rsa_key(const char *keydir, const char *name, RSA **p_rsa) { char path[PATH_MAX]; RSA *rsa; FILE *f; if (!keydir) keydir = "."; snprintf(path, sizeof(path), "%s/%s.key", keydir, name); f = fopen(path, "r"); if (!f) { fprintf(stderr, "Couldn't open RSA private key: '%s': %s\n", path, strerror(errno)); return -ENOENT; } rsa = PEM_read_RSAPrivateKey(f, 0, NULL, ""); if (!rsa) { openssl_err("Failure reading private key"); fclose(f); return -EPROTO; } fclose(f); *p_rsa = rsa; return 0; } static int kwb_load_cfg_key(struct image_tool_params *params, unsigned int cfg_option, const char *key_name, RSA **p_key) { struct image_cfg_element *e_key; RSA *key; int res; *p_key = NULL; e_key = image_find_option(cfg_option); if (!e_key) { fprintf(stderr, "%s not configured\n", key_name); return -ENOENT; } res = kwb_load_rsa_key(params->keydir, e_key->key_name, &key); if (res < 0) { fprintf(stderr, "Failed to load %s\n", key_name); return -ENOENT; } *p_key = key; return 0; } static int kwb_load_kak(struct image_tool_params *params, RSA **p_kak) { return kwb_load_cfg_key(params, IMAGE_CFG_KAK, "KAK", p_kak); } static int kwb_load_csk(struct image_tool_params *params, RSA **p_csk) { return kwb_load_cfg_key(params, IMAGE_CFG_CSK, "CSK", p_csk); } static int kwb_compute_pubkey_hash(struct pubkey_der_v1 *pk, struct hash_v1 *hash) { EVP_MD_CTX *ctx; unsigned int key_size; unsigned int hash_size; int ret = 0; if (!pk || !hash || pk->key[0] != 0x30 || pk->key[1] != 0x82) return -EINVAL; key_size = (pk->key[2] << 8) + pk->key[3] + 4; ctx = EVP_MD_CTX_create(); if (!ctx) return openssl_err("EVP context creation failed"); EVP_MD_CTX_init(ctx); if (!EVP_DigestInit(ctx, EVP_sha256())) { ret = openssl_err("Digest setup failed"); goto hash_err_ctx; } if (!EVP_DigestUpdate(ctx, pk->key, key_size)) { ret = openssl_err("Hashing data failed"); goto hash_err_ctx; } if (!EVP_DigestFinal(ctx, hash->hash, &hash_size)) { ret = openssl_err("Could not obtain hash"); goto hash_err_ctx; } EVP_MD_CTX_cleanup(ctx); hash_err_ctx: EVP_MD_CTX_destroy(ctx); return ret; } static int kwb_import_pubkey(RSA **key, struct pubkey_der_v1 *src, char *keyname) { RSA *rsa; const unsigned char *ptr; if (!key || !src) goto fail; ptr = src->key; rsa = d2i_RSAPublicKey(key, &ptr, sizeof(src->key)); if (!rsa) { openssl_err("error decoding public key"); goto fail; } return 0; fail: fprintf(stderr, "Failed to decode %s pubkey\n", keyname); return -EINVAL; } static int kwb_export_pubkey(RSA *key, struct pubkey_der_v1 *dst, FILE *hashf, char *keyname) { int size_exp, size_mod, size_seq; const BIGNUM *key_e, *key_n; uint8_t *cur; char *errmsg = "Failed to encode %s\n"; RSA_get0_key(key, NULL, &key_e, NULL); RSA_get0_key(key, &key_n, NULL, NULL); if (!key || !key_e || !key_n || !dst) { fprintf(stderr, "export pk failed: (%p, %p, %p, %p)", key, key_e, key_n, dst); fprintf(stderr, errmsg, keyname); return -EINVAL; } /* * According to the specs, the key should be PKCS#1 DER encoded. * But unfortunately the really required encoding seems to be different; * it violates DER...! (But it still conformes to BER.) * (Length always in long form w/ 2 byte length code; no leading zero * when MSB of first byte is set...) * So we cannot use the encoding func provided by OpenSSL and have to * do the encoding manually. */ size_exp = BN_num_bytes(key_e); size_mod = BN_num_bytes(key_n); size_seq = 4 + size_mod + 4 + size_exp; if (size_mod > 256) { fprintf(stderr, "export pk failed: wrong mod size: %d\n", size_mod); fprintf(stderr, errmsg, keyname); return -EINVAL; } if (4 + size_seq > sizeof(dst->key)) { fprintf(stderr, "export pk failed: seq too large (%d, %zu)\n", 4 + size_seq, sizeof(dst->key)); fprintf(stderr, errmsg, keyname); return -ENOBUFS; } cur = dst->key; /* PKCS#1 (RFC3447) RSAPublicKey structure */ *cur++ = 0x30; /* SEQUENCE */ *cur++ = 0x82; *cur++ = (size_seq >> 8) & 0xFF; *cur++ = size_seq & 0xFF; /* Modulus */ *cur++ = 0x02; /* INTEGER */ *cur++ = 0x82; *cur++ = (size_mod >> 8) & 0xFF; *cur++ = size_mod & 0xFF; BN_bn2bin(key_n, cur); cur += size_mod; /* Exponent */ *cur++ = 0x02; /* INTEGER */ *cur++ = 0x82; *cur++ = (size_exp >> 8) & 0xFF; *cur++ = size_exp & 0xFF; BN_bn2bin(key_e, cur); if (hashf) { struct hash_v1 pk_hash; int i; int ret = 0; ret = kwb_compute_pubkey_hash(dst, &pk_hash); if (ret < 0) { fprintf(stderr, errmsg, keyname); return ret; } fprintf(hashf, "SHA256 = "); for (i = 0 ; i < sizeof(pk_hash.hash); ++i) fprintf(hashf, "%02X", pk_hash.hash[i]); fprintf(hashf, "\n"); } return 0; } static int kwb_sign(RSA *key, void *data, int datasz, struct sig_v1 *sig, char *signame) { EVP_PKEY *evp_key; EVP_MD_CTX *ctx; unsigned int sig_size; int size; int ret = 0; evp_key = EVP_PKEY_new(); if (!evp_key) return openssl_err("EVP_PKEY object creation failed"); if (!EVP_PKEY_set1_RSA(evp_key, key)) { ret = openssl_err("EVP key setup failed"); goto err_key; } size = EVP_PKEY_size(evp_key); if (size > sizeof(sig->sig)) { fprintf(stderr, "Buffer to small for signature (%d bytes)\n", size); ret = -ENOBUFS; goto err_key; } ctx = EVP_MD_CTX_create(); if (!ctx) { ret = openssl_err("EVP context creation failed"); goto err_key; } EVP_MD_CTX_init(ctx); if (!EVP_SignInit(ctx, EVP_sha256())) { ret = openssl_err("Signer setup failed"); goto err_ctx; } if (!EVP_SignUpdate(ctx, data, datasz)) { ret = openssl_err("Signing data failed"); goto err_ctx; } if (!EVP_SignFinal(ctx, sig->sig, &sig_size, evp_key)) { ret = openssl_err("Could not obtain signature"); goto err_ctx; } EVP_MD_CTX_cleanup(ctx); EVP_MD_CTX_destroy(ctx); EVP_PKEY_free(evp_key); return 0; err_ctx: EVP_MD_CTX_destroy(ctx); err_key: EVP_PKEY_free(evp_key); fprintf(stderr, "Failed to create %s signature\n", signame); return ret; } static int kwb_verify(RSA *key, void *data, int datasz, struct sig_v1 *sig, char *signame) { EVP_PKEY *evp_key; EVP_MD_CTX *ctx; int size; int ret = 0; evp_key = EVP_PKEY_new(); if (!evp_key) return openssl_err("EVP_PKEY object creation failed"); if (!EVP_PKEY_set1_RSA(evp_key, key)) { ret = openssl_err("EVP key setup failed"); goto err_key; } size = EVP_PKEY_size(evp_key); if (size > sizeof(sig->sig)) { fprintf(stderr, "Invalid signature size (%d bytes)\n", size); ret = -EINVAL; goto err_key; } ctx = EVP_MD_CTX_create(); if (!ctx) { ret = openssl_err("EVP context creation failed"); goto err_key; } EVP_MD_CTX_init(ctx); if (!EVP_VerifyInit(ctx, EVP_sha256())) { ret = openssl_err("Verifier setup failed"); goto err_ctx; } if (!EVP_VerifyUpdate(ctx, data, datasz)) { ret = openssl_err("Hashing data failed"); goto err_ctx; } if (EVP_VerifyFinal(ctx, sig->sig, sizeof(sig->sig), evp_key) != 1) { ret = openssl_err("Could not verify signature"); goto err_ctx; } EVP_MD_CTX_cleanup(ctx); EVP_MD_CTX_destroy(ctx); EVP_PKEY_free(evp_key); return 0; err_ctx: EVP_MD_CTX_destroy(ctx); err_key: EVP_PKEY_free(evp_key); fprintf(stderr, "Failed to verify %s signature\n", signame); return ret; } static int kwb_sign_and_verify(RSA *key, void *data, int datasz, struct sig_v1 *sig, char *signame) { if (kwb_sign(key, data, datasz, sig, signame) < 0) return -1; if (kwb_verify(key, data, datasz, sig, signame) < 0) return -1; return 0; } static int kwb_dump_fuse_cmds_38x(FILE *out, struct secure_hdr_v1 *sec_hdr) { struct hash_v1 kak_pub_hash; struct image_cfg_element *e; unsigned int fuse_line; int i, idx; uint8_t *ptr; uint32_t val; int ret = 0; if (!out || !sec_hdr) return -EINVAL; ret = kwb_compute_pubkey_hash(&sec_hdr->kak, &kak_pub_hash); if (ret < 0) goto done; fprintf(out, "# burn KAK pub key hash\n"); ptr = kak_pub_hash.hash; for (fuse_line = 26; fuse_line <= 30; ++fuse_line) { fprintf(out, "fuse prog -y %u 0 ", fuse_line); for (i = 4; i-- > 0;) fprintf(out, "%02hx", (ushort)ptr[i]); ptr += 4; fprintf(out, " 00"); if (fuse_line < 30) { for (i = 3; i-- > 0;) fprintf(out, "%02hx", (ushort)ptr[i]); ptr += 3; } else { fprintf(out, "000000"); } fprintf(out, " 1\n"); } fprintf(out, "# burn CSK selection\n"); idx = image_get_csk_index(); if (idx < 0 || idx > 15) { ret = -EINVAL; goto done; } if (idx > 0) { for (fuse_line = 31; fuse_line < 31 + idx; ++fuse_line) fprintf(out, "fuse prog -y %u 0 00000001 00000000 1\n", fuse_line); } else { fprintf(out, "# CSK index is 0; no mods needed\n"); } e = image_find_option(IMAGE_CFG_BOX_ID); if (e) { fprintf(out, "# set box ID\n"); fprintf(out, "fuse prog -y 48 0 %08x 00000000 1\n", e->boxid); } e = image_find_option(IMAGE_CFG_FLASH_ID); if (e) { fprintf(out, "# set flash ID\n"); fprintf(out, "fuse prog -y 47 0 %08x 00000000 1\n", e->flashid); } fprintf(out, "# enable secure mode "); fprintf(out, "(must be the last fuse line written)\n"); val = 1; e = image_find_option(IMAGE_CFG_SEC_BOOT_DEV); if (!e) { fprintf(stderr, "ERROR: secured mode boot device not given\n"); ret = -EINVAL; goto done; } if (e->sec_boot_dev > 0xff) { fprintf(stderr, "ERROR: secured mode boot device invalid\n"); ret = -EINVAL; goto done; } val |= (e->sec_boot_dev << 8); fprintf(out, "fuse prog -y 24 0 %08x 0103e0a9 1\n", val); fprintf(out, "# lock (unused) fuse lines (0-23)s\n"); for (fuse_line = 0; fuse_line < 24; ++fuse_line) fprintf(out, "fuse prog -y %u 2 1\n", fuse_line); fprintf(out, "# OK, that's all :-)\n"); done: return ret; } static int kwb_dump_fuse_cmds(struct secure_hdr_v1 *sec_hdr) { int ret = 0; struct image_cfg_element *e; e = image_find_option(IMAGE_CFG_SEC_FUSE_DUMP); if (!e) return 0; if (!strcmp(e->name, "a38x")) { FILE *out = fopen("kwb_fuses_a38x.txt", "w+"); if (!out) { fprintf(stderr, "Couldn't open eFuse settings: '%s': %s\n", "kwb_fuses_a38x.txt", strerror(errno)); return -ENOENT; } kwb_dump_fuse_cmds_38x(out, sec_hdr); fclose(out); goto done; } ret = -ENOSYS; done: return ret; } static size_t image_headersz_align(size_t headersz, uint8_t blockid) { /* * Header needs to be 4-byte aligned, which is already ensured by code * above. Moreover UART images must have header aligned to 128 bytes * (xmodem block size), NAND images to 256 bytes (ECC calculation), * and SATA and SDIO images to 512 bytes (storage block size). * Note that SPI images do not have to have header size aligned * to 256 bytes because it is possible to read from SPI storage from * any offset (read offset does not have to be aligned to block size). */ if (blockid == IBR_HDR_UART_ID) return ALIGN(headersz, 128); else if (blockid == IBR_HDR_NAND_ID) return ALIGN(headersz, 256); else if (blockid == IBR_HDR_SATA_ID || blockid == IBR_HDR_SDIO_ID) return ALIGN(headersz, 512); else return headersz; } static size_t image_headersz_v0(int *hasext) { size_t headersz; headersz = sizeof(struct main_hdr_v0); if (image_count_options(IMAGE_CFG_DATA) > 0) { headersz += sizeof(struct ext_hdr_v0); if (hasext) *hasext = 1; } return image_headersz_align(headersz, image_get_bootfrom()); } static void *image_create_v0(size_t *imagesz, struct image_tool_params *params, int payloadsz) { struct image_cfg_element *e; size_t headersz; struct main_hdr_v0 *main_hdr; uint8_t *image; int has_ext = 0; /* * Calculate the size of the header and the size of the * payload */ headersz = image_headersz_v0(&has_ext); image = malloc(headersz); if (!image) { fprintf(stderr, "Cannot allocate memory for image\n"); return NULL; } memset(image, 0, headersz); main_hdr = (struct main_hdr_v0 *)image; /* Fill in the main header */ main_hdr->blocksize = cpu_to_le32(payloadsz); main_hdr->srcaddr = cpu_to_le32(headersz); main_hdr->ext = has_ext; main_hdr->version = 0; main_hdr->destaddr = cpu_to_le32(params->addr); main_hdr->execaddr = cpu_to_le32(params->ep); main_hdr->blockid = image_get_bootfrom(); e = image_find_option(IMAGE_CFG_NAND_ECC_MODE); if (e) main_hdr->nandeccmode = e->nandeccmode; e = image_find_option(IMAGE_CFG_NAND_BLKSZ); if (e) main_hdr->nandblocksize = e->nandblksz / (64 * 1024); e = image_find_option(IMAGE_CFG_NAND_PAGESZ); if (e) main_hdr->nandpagesize = cpu_to_le16(e->nandpagesz); e = image_find_option(IMAGE_CFG_NAND_BADBLK_LOCATION); if (e) main_hdr->nandbadblklocation = e->nandbadblklocation; main_hdr->checksum = image_checksum8(image, sizeof(struct main_hdr_v0)); /* * For SATA srcaddr is specified in number of sectors starting from * sector 0. The main header is stored at sector number 1. * This expects the sector size to be 512 bytes. * Header size is already aligned. */ if (main_hdr->blockid == IBR_HDR_SATA_ID) main_hdr->srcaddr = cpu_to_le32(headersz / 512 + 1); /* * For SDIO srcaddr is specified in number of sectors starting from * sector 0. The main header is stored at sector number 0. * This expects sector size to be 512 bytes. * Header size is already aligned. */ if (main_hdr->blockid == IBR_HDR_SDIO_ID) main_hdr->srcaddr = cpu_to_le32(headersz / 512); /* For PCIe srcaddr is not used and must be set to 0xFFFFFFFF. */ if (main_hdr->blockid == IBR_HDR_PEX_ID) main_hdr->srcaddr = cpu_to_le32(0xFFFFFFFF); /* Generate the ext header */ if (has_ext) { struct ext_hdr_v0 *ext_hdr; int cfgi, datai; ext_hdr = (struct ext_hdr_v0 *) (image + sizeof(struct main_hdr_v0)); ext_hdr->offset = cpu_to_le32(0x40); for (cfgi = 0, datai = 0; cfgi < cfgn; cfgi++) { e = &image_cfg[cfgi]; if (e->type != IMAGE_CFG_DATA) continue; ext_hdr->rcfg[datai].raddr = cpu_to_le32(e->regdata.raddr); ext_hdr->rcfg[datai].rdata = cpu_to_le32(e->regdata.rdata); datai++; } ext_hdr->checksum = image_checksum8(ext_hdr, sizeof(struct ext_hdr_v0)); } *imagesz = headersz; return image; } static size_t image_headersz_v1(int *hasext) { struct image_cfg_element *e; unsigned int count; size_t headersz; int cpu_sheeva; struct stat s; int cfgi; int ret; /* * Calculate the size of the header and the size of the * payload */ headersz = sizeof(struct main_hdr_v1); if (image_get_csk_index() >= 0) { headersz += sizeof(struct secure_hdr_v1); if (hasext) *hasext = 1; } cpu_sheeva = image_is_cpu_sheeva(); count = 0; for (cfgi = 0; cfgi < cfgn; cfgi++) { e = &image_cfg[cfgi]; if (e->type == IMAGE_CFG_DATA) count++; if (e->type == IMAGE_CFG_DATA_DELAY || (e->type == IMAGE_CFG_BINARY && count > 0)) { headersz += sizeof(struct register_set_hdr_v1) + 8 * count + 4; count = 0; } if (e->type != IMAGE_CFG_BINARY) continue; ret = stat(e->binary.file, &s); if (ret < 0) { char cwd[PATH_MAX]; char *dir = cwd; memset(cwd, 0, sizeof(cwd)); if (!getcwd(cwd, sizeof(cwd))) { dir = "current working directory"; perror("getcwd() failed"); } fprintf(stderr, "Didn't find the file '%s' in '%s' which is mandatory to generate the image\n" "This file generally contains the DDR3 training code, and should be extracted from an existing bootable\n" "image for your board. Use 'dumpimage -T kwbimage -p 1' to extract it from an existing image.\n", e->binary.file, dir); return 0; } headersz += sizeof(struct opt_hdr_v1) + sizeof(uint32_t) + (e->binary.nargs) * sizeof(uint32_t); if (e->binary.loadaddr) { /* * BootROM loads kwbimage header (in which the * executable code is also stored) to address * 0x40004000 or 0x40000000. Thus there is * restriction for the load address of the N-th * BINARY image. */ unsigned int base_addr, low_addr, high_addr; base_addr = cpu_sheeva ? 0x40004000 : 0x40000000; low_addr = base_addr + headersz; high_addr = low_addr + (BINARY_MAX_ARGS - e->binary.nargs) * sizeof(uint32_t); if (cpu_sheeva && e->binary.loadaddr % 16) { fprintf(stderr, "Invalid LOAD_ADDRESS 0x%08x for BINARY %s with %d args.\n" "Address for CPU SHEEVA must be 16-byte aligned.\n", e->binary.loadaddr, e->binary.file, e->binary.nargs); return 0; } if (e->binary.loadaddr % 4 || e->binary.loadaddr < low_addr || e->binary.loadaddr > high_addr) { fprintf(stderr, "Invalid LOAD_ADDRESS 0x%08x for BINARY %s with %d args.\n" "Address must be 4-byte aligned and in range 0x%08x-0x%08x.\n", e->binary.loadaddr, e->binary.file, e->binary.nargs, low_addr, high_addr); return 0; } headersz = e->binary.loadaddr - base_addr; } else if (cpu_sheeva) { headersz = ALIGN(headersz, 16); } else { headersz = ALIGN(headersz, 4); } headersz += ALIGN(s.st_size, 4) + sizeof(uint32_t); if (hasext) *hasext = 1; } if (count > 0) headersz += sizeof(struct register_set_hdr_v1) + 8 * count + 4; return image_headersz_align(headersz, image_get_bootfrom()); } static int add_binary_header_v1(uint8_t **cur, uint8_t **next_ext, struct image_cfg_element *binarye, struct main_hdr_v1 *main_hdr) { struct opt_hdr_v1 *hdr = (struct opt_hdr_v1 *)*cur; uint32_t base_addr; uint32_t add_args; uint32_t offset; uint32_t *args; size_t binhdrsz; int cpu_sheeva; struct stat s; int argi; FILE *bin; int ret; hdr->headertype = OPT_HDR_V1_BINARY_TYPE; bin = fopen(binarye->binary.file, "r"); if (!bin) { fprintf(stderr, "Cannot open binary file %s\n", binarye->binary.file); return -1; } if (fstat(fileno(bin), &s)) { fprintf(stderr, "Cannot stat binary file %s\n", binarye->binary.file); goto err_close; } *cur += sizeof(struct opt_hdr_v1); args = (uint32_t *)*cur; *args = cpu_to_le32(binarye->binary.nargs); args++; for (argi = 0; argi < binarye->binary.nargs; argi++) args[argi] = cpu_to_le32(binarye->binary.args[argi]); *cur += (binarye->binary.nargs + 1) * sizeof(uint32_t); /* * ARM executable code inside the BIN header on platforms with Sheeva * CPU (A370 and AXP) must always be aligned with the 128-bit boundary. * In the case when this code is not position independent (e.g. ARM * SPL), it must be placed at fixed load and execute address. * This requirement can be met by inserting dummy arguments into * BIN header, if needed. */ cpu_sheeva = image_is_cpu_sheeva(); base_addr = cpu_sheeva ? 0x40004000 : 0x40000000; offset = *cur - (uint8_t *)main_hdr; if (binarye->binary.loadaddr) add_args = (binarye->binary.loadaddr - base_addr - offset) / sizeof(uint32_t); else if (cpu_sheeva) add_args = ((16 - offset % 16) % 16) / sizeof(uint32_t); else add_args = 0; if (add_args) { *(args - 1) = cpu_to_le32(binarye->binary.nargs + add_args); *cur += add_args * sizeof(uint32_t); } ret = fread(*cur, s.st_size, 1, bin); if (ret != 1) { fprintf(stderr, "Could not read binary image %s\n", binarye->binary.file); goto err_close; } fclose(bin); *cur += ALIGN(s.st_size, 4); *((uint32_t *)*cur) = 0x00000000; **next_ext = 1; *next_ext = *cur; *cur += sizeof(uint32_t); binhdrsz = sizeof(struct opt_hdr_v1) + (binarye->binary.nargs + add_args + 2) * sizeof(uint32_t) + ALIGN(s.st_size, 4); hdr->headersz_lsb = cpu_to_le16(binhdrsz & 0xFFFF); hdr->headersz_msb = (binhdrsz & 0xFFFF0000) >> 16; return 0; err_close: fclose(bin); return -1; } static int export_pub_kak_hash(RSA *kak, struct secure_hdr_v1 *secure_hdr) { FILE *hashf; int res; hashf = fopen("pub_kak_hash.txt", "w"); if (!hashf) { fprintf(stderr, "Couldn't open hash file: '%s': %s\n", "pub_kak_hash.txt", strerror(errno)); return 1; } res = kwb_export_pubkey(kak, &secure_hdr->kak, hashf, "KAK"); fclose(hashf); return res < 0 ? 1 : 0; } static int kwb_sign_csk_with_kak(struct image_tool_params *params, struct secure_hdr_v1 *secure_hdr, RSA *csk) { RSA *kak = NULL; RSA *kak_pub = NULL; int csk_idx = image_get_csk_index(); struct sig_v1 tmp_sig; if (csk_idx < 0 || csk_idx > 15) { fprintf(stderr, "Invalid CSK index %d\n", csk_idx); return 1; } if (kwb_load_kak(params, &kak) < 0) return 1; if (export_pub_kak_hash(kak, secure_hdr)) return 1; if (kwb_import_pubkey(&kak_pub, &secure_hdr->kak, "KAK") < 0) return 1; if (kwb_export_pubkey(csk, &secure_hdr->csk[csk_idx], NULL, "CSK") < 0) return 1; if (kwb_sign_and_verify(kak, &secure_hdr->csk, sizeof(secure_hdr->csk) + sizeof(secure_hdr->csksig), &tmp_sig, "CSK") < 0) return 1; if (kwb_verify(kak_pub, &secure_hdr->csk, sizeof(secure_hdr->csk) + sizeof(secure_hdr->csksig), &tmp_sig, "CSK (2)") < 0) return 1; secure_hdr->csksig = tmp_sig; return 0; } static int add_secure_header_v1(struct image_tool_params *params, uint8_t *ptr, int payloadsz, size_t headersz, uint8_t *image, struct secure_hdr_v1 *secure_hdr) { struct image_cfg_element *e_jtagdelay; struct image_cfg_element *e_boxid; struct image_cfg_element *e_flashid; RSA *csk = NULL; unsigned char *image_ptr; size_t image_size; struct sig_v1 tmp_sig; bool specialized_img = image_get_spezialized_img(); kwb_msg("Create secure header content\n"); e_jtagdelay = image_find_option(IMAGE_CFG_JTAG_DELAY); e_boxid = image_find_option(IMAGE_CFG_BOX_ID); e_flashid = image_find_option(IMAGE_CFG_FLASH_ID); if (kwb_load_csk(params, &csk) < 0) return 1; secure_hdr->headertype = OPT_HDR_V1_SECURE_TYPE; secure_hdr->headersz_msb = 0; secure_hdr->headersz_lsb = cpu_to_le16(sizeof(struct secure_hdr_v1)); if (e_jtagdelay) secure_hdr->jtag_delay = e_jtagdelay->jtag_delay; if (e_boxid && specialized_img) secure_hdr->boxid = cpu_to_le32(e_boxid->boxid); if (e_flashid && specialized_img) secure_hdr->flashid = cpu_to_le32(e_flashid->flashid); if (kwb_sign_csk_with_kak(params, secure_hdr, csk)) return 1; image_ptr = ptr + headersz; image_size = payloadsz - headersz; if (kwb_sign_and_verify(csk, image_ptr, image_size, &secure_hdr->imgsig, "image") < 0) return 1; if (kwb_sign_and_verify(csk, image, headersz, &tmp_sig, "header") < 0) return 1; secure_hdr->hdrsig = tmp_sig; kwb_dump_fuse_cmds(secure_hdr); return 0; } static void finish_register_set_header_v1(uint8_t **cur, uint8_t **next_ext, struct register_set_hdr_v1 *register_set_hdr, int *datai, uint8_t delay) { int size = sizeof(struct register_set_hdr_v1) + 8 * (*datai) + 4; register_set_hdr->headertype = OPT_HDR_V1_REGISTER_TYPE; register_set_hdr->headersz_lsb = cpu_to_le16(size & 0xFFFF); register_set_hdr->headersz_msb = size >> 16; register_set_hdr->data[*datai].last_entry.delay = delay; *cur += size; **next_ext = 1; *next_ext = ®ister_set_hdr->data[*datai].last_entry.next; *datai = 0; } static void *image_create_v1(size_t *imagesz, struct image_tool_params *params, uint8_t *ptr, int payloadsz) { struct image_cfg_element *e; struct main_hdr_v1 *main_hdr; struct opt_hdr_v1 *ohdr; struct register_set_hdr_v1 *register_set_hdr; struct secure_hdr_v1 *secure_hdr = NULL; size_t headersz; uint8_t *image, *cur; int hasext = 0; uint8_t *next_ext = NULL; int cfgi, datai; uint8_t delay; /* * Calculate the size of the header and the size of the * payload */ headersz = image_headersz_v1(&hasext); if (headersz == 0) return NULL; image = malloc(headersz); if (!image) { fprintf(stderr, "Cannot allocate memory for image\n"); return NULL; } memset(image, 0, headersz); main_hdr = (struct main_hdr_v1 *)image; cur = image; cur += sizeof(struct main_hdr_v1); next_ext = &main_hdr->ext; /* Fill the main header */ main_hdr->blocksize = cpu_to_le32(payloadsz); main_hdr->headersz_lsb = cpu_to_le16(headersz & 0xFFFF); main_hdr->headersz_msb = (headersz & 0xFFFF0000) >> 16; main_hdr->destaddr = cpu_to_le32(params->addr); main_hdr->execaddr = cpu_to_le32(params->ep); main_hdr->srcaddr = cpu_to_le32(headersz); main_hdr->ext = hasext; main_hdr->version = 1; main_hdr->blockid = image_get_bootfrom(); e = image_find_option(IMAGE_CFG_NAND_BLKSZ); if (e) main_hdr->nandblocksize = e->nandblksz / (64 * 1024); e = image_find_option(IMAGE_CFG_NAND_PAGESZ); if (e) main_hdr->nandpagesize = cpu_to_le16(e->nandpagesz); e = image_find_option(IMAGE_CFG_NAND_BADBLK_LOCATION); if (e) main_hdr->nandbadblklocation = e->nandbadblklocation; e = image_find_option(IMAGE_CFG_BAUDRATE); if (e) main_hdr->options |= baudrate_to_option(e->baudrate); e = image_find_option(IMAGE_CFG_UART_PORT); if (e) main_hdr->options |= (e->uart_port & 3) << 3; e = image_find_option(IMAGE_CFG_UART_MPP); if (e) main_hdr->options |= (e->uart_mpp & 7) << 5; e = image_find_option(IMAGE_CFG_DEBUG); if (e) main_hdr->flags = e->debug ? 0x1 : 0; /* * For SATA srcaddr is specified in number of sectors starting from * sector 0. The main header is stored at sector number 1. * This expects the sector size to be 512 bytes. * Header size is already aligned. */ if (main_hdr->blockid == IBR_HDR_SATA_ID) main_hdr->srcaddr = cpu_to_le32(headersz / 512 + 1); /* * For SDIO srcaddr is specified in number of sectors starting from * sector 0. The main header is stored at sector number 0. * This expects sector size to be 512 bytes. * Header size is already aligned. */ if (main_hdr->blockid == IBR_HDR_SDIO_ID) main_hdr->srcaddr = cpu_to_le32(headersz / 512); /* For PCIe srcaddr is not used and must be set to 0xFFFFFFFF. */ if (main_hdr->blockid == IBR_HDR_PEX_ID) main_hdr->srcaddr = cpu_to_le32(0xFFFFFFFF); if (image_get_csk_index() >= 0) { /* * only reserve the space here; we fill the header later since * we need the header to be complete to compute the signatures */ secure_hdr = (struct secure_hdr_v1 *)cur; cur += sizeof(struct secure_hdr_v1); *next_ext = 1; next_ext = &secure_hdr->next; } datai = 0; for (cfgi = 0; cfgi < cfgn; cfgi++) { e = &image_cfg[cfgi]; if (e->type != IMAGE_CFG_DATA && e->type != IMAGE_CFG_DATA_DELAY && e->type != IMAGE_CFG_BINARY) continue; if (datai == 0) register_set_hdr = (struct register_set_hdr_v1 *)cur; /* If delay is not specified, use the smallest possible value. */ if (e->type == IMAGE_CFG_DATA_DELAY) delay = e->regdata_delay; else delay = REGISTER_SET_HDR_OPT_DELAY_MS(0); /* * DATA_DELAY command is the last entry in the register set * header and BINARY command inserts new binary header. * Therefore BINARY command requires to finish register set * header if some DATA command was specified. And DATA_DELAY * command automatically finish register set header even when * there was no DATA command. */ if (e->type == IMAGE_CFG_DATA_DELAY || (e->type == IMAGE_CFG_BINARY && datai != 0)) finish_register_set_header_v1(&cur, &next_ext, register_set_hdr, &datai, delay); if (e->type == IMAGE_CFG_DATA) { register_set_hdr->data[datai].entry.address = cpu_to_le32(e->regdata.raddr); register_set_hdr->data[datai].entry.value = cpu_to_le32(e->regdata.rdata); datai++; } if (e->type == IMAGE_CFG_BINARY) { if (add_binary_header_v1(&cur, &next_ext, e, main_hdr)) return NULL; } } if (datai != 0) { /* Set delay to the smallest possible value. */ delay = REGISTER_SET_HDR_OPT_DELAY_MS(0); finish_register_set_header_v1(&cur, &next_ext, register_set_hdr, &datai, delay); } if (secure_hdr && add_secure_header_v1(params, ptr, payloadsz + headersz, headersz, image, secure_hdr)) return NULL; *imagesz = headersz; /* Fill the real header size without padding into the main header */ headersz = sizeof(*main_hdr); for_each_opt_hdr_v1 (ohdr, main_hdr) headersz += opt_hdr_v1_size(ohdr); main_hdr->headersz_lsb = cpu_to_le16(headersz & 0xFFFF); main_hdr->headersz_msb = (headersz & 0xFFFF0000) >> 16; /* Calculate and set the header checksum */ main_hdr->checksum = image_checksum8(main_hdr, headersz); return image; } static int recognize_keyword(char *keyword) { int kw_id; for (kw_id = 1; kw_id < IMAGE_CFG_COUNT; ++kw_id) if (!strcmp(keyword, id_strs[kw_id])) return kw_id; return 0; } static int image_create_config_parse_oneline(char *line, struct image_cfg_element *el) { char *keyword, *saveptr, *value1, *value2; char delimiters[] = " \t"; int keyword_id, ret, argi; char *unknown_msg = "Ignoring unknown line '%s'\n"; keyword = strtok_r(line, delimiters, &saveptr); keyword_id = recognize_keyword(keyword); if (!keyword_id) { fprintf(stderr, unknown_msg, line); return 0; } el->type = keyword_id; value1 = strtok_r(NULL, delimiters, &saveptr); if (!value1) { fprintf(stderr, "Parameter missing in line '%s'\n", line); return -1; } switch (keyword_id) { case IMAGE_CFG_VERSION: el->version = atoi(value1); break; case IMAGE_CFG_CPU: if (strcmp(value1, "FEROCEON") == 0) el->cpu_sheeva = 0; else if (strcmp(value1, "SHEEVA") == 0) el->cpu_sheeva = 1; else if (strcmp(value1, "A9") == 0) el->cpu_sheeva = 0; else { fprintf(stderr, "Invalid CPU %s\n", value1); return -1; } break; case IMAGE_CFG_BOOT_FROM: ret = image_boot_mode_id(value1); if (ret < 0) { fprintf(stderr, "Invalid boot media '%s'\n", value1); return -1; } el->bootfrom = ret; break; case IMAGE_CFG_NAND_BLKSZ: el->nandblksz = strtoul(value1, NULL, 16); break; case IMAGE_CFG_NAND_BADBLK_LOCATION: el->nandbadblklocation = strtoul(value1, NULL, 16); break; case IMAGE_CFG_NAND_ECC_MODE: ret = image_nand_ecc_mode_id(value1); if (ret < 0) { fprintf(stderr, "Invalid NAND ECC mode '%s'\n", value1); return -1; } el->nandeccmode = ret; break; case IMAGE_CFG_NAND_PAGESZ: el->nandpagesz = strtoul(value1, NULL, 16); break; case IMAGE_CFG_BINARY: argi = 0; el->binary.file = strdup(value1); while (1) { char *value = strtok_r(NULL, delimiters, &saveptr); char *endptr; if (!value) break; if (!strcmp(value, "LOAD_ADDRESS")) { value = strtok_r(NULL, delimiters, &saveptr); if (!value) { fprintf(stderr, "Missing address argument for BINARY LOAD_ADDRESS\n"); return -1; } el->binary.loadaddr = strtoul(value, &endptr, 16); if (*endptr) { fprintf(stderr, "Invalid argument '%s' for BINARY LOAD_ADDRESS\n", value); return -1; } value = strtok_r(NULL, delimiters, &saveptr); if (value) { fprintf(stderr, "Unexpected argument '%s' after BINARY LOAD_ADDRESS\n", value); return -1; } break; } el->binary.args[argi] = strtoul(value, &endptr, 16); if (*endptr) { fprintf(stderr, "Invalid argument '%s' for BINARY\n", value); return -1; } argi++; if (argi >= BINARY_MAX_ARGS) { fprintf(stderr, "Too many arguments for BINARY\n"); return -1; } } el->binary.nargs = argi; break; case IMAGE_CFG_DATA: value2 = strtok_r(NULL, delimiters, &saveptr); if (!value1 || !value2) { fprintf(stderr, "Invalid number of arguments for DATA\n"); return -1; } el->regdata.raddr = strtoul(value1, NULL, 16); el->regdata.rdata = strtoul(value2, NULL, 16); break; case IMAGE_CFG_DATA_DELAY: if (!strcmp(value1, "SDRAM_SETUP")) el->regdata_delay = REGISTER_SET_HDR_OPT_DELAY_SDRAM_SETUP; else el->regdata_delay = REGISTER_SET_HDR_OPT_DELAY_MS(strtoul(value1, NULL, 10)); if (el->regdata_delay > 255) { fprintf(stderr, "Maximal DATA_DELAY is 255\n"); return -1; } break; case IMAGE_CFG_BAUDRATE: el->baudrate = strtoul(value1, NULL, 10); break; case IMAGE_CFG_UART_PORT: el->uart_port = strtoul(value1, NULL, 16); break; case IMAGE_CFG_UART_MPP: el->uart_mpp = strtoul(value1, NULL, 16); break; case IMAGE_CFG_DEBUG: el->debug = strtoul(value1, NULL, 10); break; case IMAGE_CFG_KAK: el->key_name = strdup(value1); break; case IMAGE_CFG_CSK: el->key_name = strdup(value1); break; case IMAGE_CFG_CSK_INDEX: el->csk_idx = strtol(value1, NULL, 0); break; case IMAGE_CFG_JTAG_DELAY: el->jtag_delay = strtoul(value1, NULL, 0); break; case IMAGE_CFG_BOX_ID: el->boxid = strtoul(value1, NULL, 0); break; case IMAGE_CFG_FLASH_ID: el->flashid = strtoul(value1, NULL, 0); break; case IMAGE_CFG_SEC_SPECIALIZED_IMG: el->sec_specialized_img = true; break; case IMAGE_CFG_SEC_COMMON_IMG: el->sec_specialized_img = false; break; case IMAGE_CFG_SEC_BOOT_DEV: el->sec_boot_dev = strtoul(value1, NULL, 0); break; case IMAGE_CFG_SEC_FUSE_DUMP: el->name = strdup(value1); break; default: fprintf(stderr, unknown_msg, line); } return 0; } /* * Parse the configuration file 'fcfg' into the array of configuration * elements 'image_cfg', and return the number of configuration * elements in 'cfgn'. */ static int image_create_config_parse(FILE *fcfg) { int ret; int cfgi = 0; /* Parse the configuration file */ while (!feof(fcfg)) { char *line; char buf[256]; /* Read the current line */ memset(buf, 0, sizeof(buf)); line = fgets(buf, sizeof(buf), fcfg); if (!line) break; /* Ignore useless lines */ if (line[0] == '\n' || line[0] == '#') continue; /* Strip final newline */ if (line[strlen(line) - 1] == '\n') line[strlen(line) - 1] = 0; /* Parse the current line */ ret = image_create_config_parse_oneline(line, &image_cfg[cfgi]); if (ret) return ret; cfgi++; if (cfgi >= IMAGE_CFG_ELEMENT_MAX) { fprintf(stderr, "Too many configuration elements in .cfg file\n"); return -1; } } cfgn = cfgi; return 0; } static int image_get_version(void) { struct image_cfg_element *e; e = image_find_option(IMAGE_CFG_VERSION); if (!e) return -1; return e->version; } static void kwbimage_set_header(void *ptr, struct stat *sbuf, int ifd, struct image_tool_params *params) { FILE *fcfg; void *image = NULL; int version; size_t headersz = 0; size_t datasz; uint32_t checksum; struct stat s; int ret; /* * Do not use sbuf->st_size as it contains size with padding. * We need original image data size, so stat original file. */ if (stat(params->datafile, &s)) { fprintf(stderr, "Could not stat data file %s: %s\n", params->datafile, strerror(errno)); exit(EXIT_FAILURE); } datasz = ALIGN(s.st_size, 4); fcfg = fopen(params->imagename, "r"); if (!fcfg) { fprintf(stderr, "Could not open input file %s\n", params->imagename); exit(EXIT_FAILURE); } image_cfg = malloc(IMAGE_CFG_ELEMENT_MAX * sizeof(struct image_cfg_element)); if (!image_cfg) { fprintf(stderr, "Cannot allocate memory\n"); fclose(fcfg); exit(EXIT_FAILURE); } memset(image_cfg, 0, IMAGE_CFG_ELEMENT_MAX * sizeof(struct image_cfg_element)); rewind(fcfg); ret = image_create_config_parse(fcfg); fclose(fcfg); if (ret) { free(image_cfg); exit(EXIT_FAILURE); } version = image_get_version(); switch (version) { /* * Fallback to version 0 if no version is provided in the * cfg file */ case -1: case 0: image = image_create_v0(&headersz, params, datasz + 4); break; case 1: image = image_create_v1(&headersz, params, ptr, datasz + 4); break; default: fprintf(stderr, "Unsupported version %d\n", version); free(image_cfg); exit(EXIT_FAILURE); } if (!image) { fprintf(stderr, "Could not create image\n"); free(image_cfg); exit(EXIT_FAILURE); } free(image_cfg); /* Build and add image data checksum */ checksum = cpu_to_le32(image_checksum32((uint8_t *)ptr + headersz, datasz)); memcpy((uint8_t *)ptr + headersz + datasz, &checksum, sizeof(uint32_t)); /* Finally copy the header into the image area */ memcpy(ptr, image, headersz); free(image); } static void kwbimage_print_header(const void *ptr) { struct main_hdr_v0 *mhdr = (struct main_hdr_v0 *)ptr; struct bin_hdr_v0 *bhdr; struct opt_hdr_v1 *ohdr; printf("Image Type: MVEBU Boot from %s Image\n", image_boot_mode_name(mhdr->blockid)); printf("Image version:%d\n", kwbimage_version(ptr)); for_each_opt_hdr_v1 (ohdr, mhdr) { if (ohdr->headertype == OPT_HDR_V1_BINARY_TYPE) { printf("BIN Img Size: "); genimg_print_size(opt_hdr_v1_size(ohdr) - 12 - 4 * ohdr->data[0]); printf("BIN Img Offs: %08x\n", (unsigned)((uint8_t *)ohdr - (uint8_t *)mhdr) + 8 + 4 * ohdr->data[0]); } } for_each_bin_hdr_v0(bhdr, mhdr) { printf("BIN Img Size: "); genimg_print_size(le32_to_cpu(bhdr->size)); printf("BIN Img Addr: %08x\n", le32_to_cpu(bhdr->destaddr)); printf("BIN Img Entr: %08x\n", le32_to_cpu(bhdr->execaddr)); } printf("Data Size: "); genimg_print_size(mhdr->blocksize - sizeof(uint32_t)); printf("Load Address: %08x\n", mhdr->destaddr); printf("Entry Point: %08x\n", mhdr->execaddr); } static int kwbimage_check_image_types(uint8_t type) { if (type == IH_TYPE_KWBIMAGE) return EXIT_SUCCESS; return EXIT_FAILURE; } static int kwbimage_verify_header(unsigned char *ptr, int image_size, struct image_tool_params *params) { size_t header_size = kwbheader_size(ptr); uint8_t blockid; uint32_t offset; uint32_t size; uint8_t csum; if (header_size > image_size) return -FDT_ERR_BADSTRUCTURE; if (!main_hdr_checksum_ok(ptr)) return -FDT_ERR_BADSTRUCTURE; /* Only version 0 extended header has checksum */ if (kwbimage_version(ptr) == 0) { struct main_hdr_v0 *mhdr = (struct main_hdr_v0 *)ptr; struct ext_hdr_v0 *ext_hdr; struct bin_hdr_v0 *bhdr; for_each_ext_hdr_v0(ext_hdr, ptr) { csum = image_checksum8(ext_hdr, sizeof(*ext_hdr) - 1); if (csum != ext_hdr->checksum) return -FDT_ERR_BADSTRUCTURE; } for_each_bin_hdr_v0(bhdr, ptr) { csum = image_checksum8(bhdr, (uint8_t *)&bhdr->checksum - (uint8_t *)bhdr - 1); if (csum != bhdr->checksum) return -FDT_ERR_BADSTRUCTURE; if (bhdr->offset > sizeof(*bhdr) || bhdr->offset % 4 != 0) return -FDT_ERR_BADSTRUCTURE; if (bhdr->offset + bhdr->size + 4 > sizeof(*bhdr) || bhdr->size % 4 != 0) return -FDT_ERR_BADSTRUCTURE; if (image_checksum32((uint8_t *)bhdr + bhdr->offset, bhdr->size) != *(uint32_t *)((uint8_t *)bhdr + bhdr->offset + bhdr->size)) return -FDT_ERR_BADSTRUCTURE; } blockid = mhdr->blockid; offset = le32_to_cpu(mhdr->srcaddr); size = le32_to_cpu(mhdr->blocksize); } else if (kwbimage_version(ptr) == 1) { struct main_hdr_v1 *mhdr = (struct main_hdr_v1 *)ptr; const uint8_t *mhdr_end; struct opt_hdr_v1 *ohdr; mhdr_end = (uint8_t *)mhdr + header_size; for_each_opt_hdr_v1 (ohdr, ptr) if (!opt_hdr_v1_valid_size(ohdr, mhdr_end)) return -FDT_ERR_BADSTRUCTURE; blockid = mhdr->blockid; offset = le32_to_cpu(mhdr->srcaddr); size = le32_to_cpu(mhdr->blocksize); } else { return -FDT_ERR_BADSTRUCTURE; } /* * For SATA srcaddr is specified in number of sectors. * The main header is must be stored at sector number 1. * This expects that sector size is 512 bytes and recalculates * data offset to bytes relative to the main header. */ if (blockid == IBR_HDR_SATA_ID) { if (offset < 1) return -FDT_ERR_BADSTRUCTURE; offset -= 1; offset *= 512; } /* * For SDIO srcaddr is specified in number of sectors. * This expects that sector size is 512 bytes and recalculates * data offset to bytes. */ if (blockid == IBR_HDR_SDIO_ID) offset *= 512; /* * For PCIe srcaddr is always set to 0xFFFFFFFF. * This expects that data starts after all headers. */ if (blockid == IBR_HDR_PEX_ID && offset == 0xFFFFFFFF) offset = header_size; if (offset > image_size || offset % 4 != 0) return -FDT_ERR_BADSTRUCTURE; if (size < 4 || offset + size > image_size || size % 4 != 0) return -FDT_ERR_BADSTRUCTURE; if (image_checksum32(ptr + offset, size - 4) != *(uint32_t *)(ptr + offset + size - 4)) return -FDT_ERR_BADSTRUCTURE; return 0; } static int kwbimage_generate(struct image_tool_params *params, struct image_type_params *tparams) { FILE *fcfg; struct stat s; int alloc_len; int bootfrom; int version; void *hdr; int ret; fcfg = fopen(params->imagename, "r"); if (!fcfg) { fprintf(stderr, "Could not open input file %s\n", params->imagename); exit(EXIT_FAILURE); } if (stat(params->datafile, &s)) { fprintf(stderr, "Could not stat data file %s: %s\n", params->datafile, strerror(errno)); exit(EXIT_FAILURE); } image_cfg = malloc(IMAGE_CFG_ELEMENT_MAX * sizeof(struct image_cfg_element)); if (!image_cfg) { fprintf(stderr, "Cannot allocate memory\n"); fclose(fcfg); exit(EXIT_FAILURE); } memset(image_cfg, 0, IMAGE_CFG_ELEMENT_MAX * sizeof(struct image_cfg_element)); rewind(fcfg); ret = image_create_config_parse(fcfg); fclose(fcfg); if (ret) { free(image_cfg); exit(EXIT_FAILURE); } bootfrom = image_get_bootfrom(); version = image_get_version(); switch (version) { /* * Fallback to version 0 if no version is provided in the * cfg file */ case -1: case 0: alloc_len = image_headersz_v0(NULL); break; case 1: alloc_len = image_headersz_v1(NULL); if (!alloc_len) { free(image_cfg); exit(EXIT_FAILURE); } if (alloc_len > 192*1024) { fprintf(stderr, "Header is too big (%u bytes), maximal kwbimage header size is %u bytes\n", alloc_len, 192*1024); free(image_cfg); exit(EXIT_FAILURE); } break; default: fprintf(stderr, "Unsupported version %d\n", version); free(image_cfg); exit(EXIT_FAILURE); } free(image_cfg); hdr = malloc(alloc_len); if (!hdr) { fprintf(stderr, "%s: malloc return failure: %s\n", params->cmdname, strerror(errno)); exit(EXIT_FAILURE); } memset(hdr, 0, alloc_len); tparams->header_size = alloc_len; tparams->hdr = hdr; /* * The resulting image needs to be 4-byte aligned. At least * the Marvell hdrparser tool complains if its unaligned. * After the image data is stored 4-byte checksum. * Final UART image must be aligned to 128 bytes. * Final SPI and NAND images must be aligned to 256 bytes. * Final SATA and SDIO images must be aligned to 512 bytes. */ if (bootfrom == IBR_HDR_SPI_ID || bootfrom == IBR_HDR_NAND_ID) return 4 + (256 - (alloc_len + s.st_size + 4) % 256) % 256; else if (bootfrom == IBR_HDR_SATA_ID || bootfrom == IBR_HDR_SDIO_ID) return 4 + (512 - (alloc_len + s.st_size + 4) % 512) % 512; else if (bootfrom == IBR_HDR_UART_ID) return 4 + (128 - (alloc_len + s.st_size + 4) % 128) % 128; else return 4 + (4 - s.st_size % 4) % 4; } static int kwbimage_generate_config(void *ptr, struct image_tool_params *params) { struct main_hdr_v0 *mhdr0 = (struct main_hdr_v0 *)ptr; struct main_hdr_v1 *mhdr = (struct main_hdr_v1 *)ptr; size_t header_size = kwbheader_size(ptr); struct register_set_hdr_v1 *regset_hdr; struct ext_hdr_v0_reg *regdata; struct ext_hdr_v0 *ehdr0; struct bin_hdr_v0 *bhdr0; struct opt_hdr_v1 *ohdr; int params_count; unsigned offset; int is_v0_ext; int cur_idx; int version; FILE *f; int i; f = fopen(params->outfile, "w"); if (!f) { fprintf(stderr, "Can't open \"%s\": %s\n", params->outfile, strerror(errno)); return -1; } version = kwbimage_version(ptr); is_v0_ext = 0; if (version == 0) { if (mhdr0->ext > 1 || mhdr0->bin || ((ehdr0 = ext_hdr_v0_first(ptr)) && (ehdr0->match_addr || ehdr0->match_mask || ehdr0->match_value))) is_v0_ext = 1; } if (version != 0) fprintf(f, "VERSION %d\n", version); fprintf(f, "BOOT_FROM %s\n", image_boot_mode_name(mhdr->blockid) ?: ""); if (version == 0 && mhdr->blockid == IBR_HDR_NAND_ID) fprintf(f, "NAND_ECC_MODE %s\n", image_nand_ecc_mode_name(mhdr0->nandeccmode)); if (mhdr->blockid == IBR_HDR_NAND_ID) fprintf(f, "NAND_PAGE_SIZE 0x%x\n", (unsigned)mhdr->nandpagesize); if (version != 0 && mhdr->blockid == IBR_HDR_NAND_ID) fprintf(f, "NAND_BLKSZ 0x%x\n", (unsigned)mhdr->nandblocksize); if (mhdr->blockid == IBR_HDR_NAND_ID && (mhdr->nandbadblklocation != 0 || is_v0_ext)) fprintf(f, "NAND_BADBLK_LOCATION 0x%x\n", (unsigned)mhdr->nandbadblklocation); if (version == 0 && mhdr->blockid == IBR_HDR_SATA_ID) fprintf(f, "SATA_PIO_MODE %u\n", (unsigned)mhdr0->satapiomode); /* * Addresses and sizes which are specified by mkimage command line * arguments and not in kwbimage config file */ if (version != 0) fprintf(f, "#HEADER_SIZE 0x%x\n", ((unsigned)mhdr->headersz_msb << 8) | le16_to_cpu(mhdr->headersz_lsb)); fprintf(f, "#SRC_ADDRESS 0x%x\n", le32_to_cpu(mhdr->srcaddr)); fprintf(f, "#BLOCK_SIZE 0x%x\n", le32_to_cpu(mhdr->blocksize)); fprintf(f, "#DEST_ADDRESS 0x%08x\n", le32_to_cpu(mhdr->destaddr)); fprintf(f, "#EXEC_ADDRESS 0x%08x\n", le32_to_cpu(mhdr->execaddr)); if (version != 0) { if (options_to_baudrate(mhdr->options)) fprintf(f, "BAUDRATE %u\n", options_to_baudrate(mhdr->options)); if (options_to_baudrate(mhdr->options) || ((mhdr->options >> 3) & 0x3) || ((mhdr->options >> 5) & 0x7)) { fprintf(f, "UART_PORT %u\n", (unsigned)((mhdr->options >> 3) & 0x3)); fprintf(f, "UART_MPP 0x%x\n", (unsigned)((mhdr->options >> 5) & 0x7)); } if (mhdr->flags & 0x1) fprintf(f, "DEBUG 1\n"); } cur_idx = 1; for_each_opt_hdr_v1(ohdr, ptr) { if (ohdr->headertype == OPT_HDR_V1_SECURE_TYPE) { fprintf(f, "#SECURE_HEADER\n"); } else if (ohdr->headertype == OPT_HDR_V1_BINARY_TYPE) { fprintf(f, "BINARY binary%d.bin", cur_idx); for (i = 0; i < ohdr->data[0]; i++) fprintf(f, " 0x%x", le32_to_cpu(((uint32_t *)ohdr->data)[i + 1])); offset = (unsigned)((uint8_t *)ohdr - (uint8_t *)mhdr) + 8 + 4 * ohdr->data[0]; fprintf(f, " LOAD_ADDRESS 0x%08x\n", 0x40000000 + offset); fprintf(f, " # for CPU SHEEVA: LOAD_ADDRESS 0x%08x\n", 0x40004000 + offset); cur_idx++; } else if (ohdr->headertype == OPT_HDR_V1_REGISTER_TYPE) { regset_hdr = (struct register_set_hdr_v1 *)ohdr; for (i = 0; i < opt_hdr_v1_size(ohdr) - sizeof(struct opt_hdr_v1) - sizeof(regset_hdr->data[0].last_entry); i++) fprintf(f, "DATA 0x%08x 0x%08x\n", le32_to_cpu(regset_hdr->data[i].entry.address), le32_to_cpu(regset_hdr->data[i].entry.value)); if (opt_hdr_v1_size(ohdr) - sizeof(struct opt_hdr_v1) >= sizeof(regset_hdr->data[0].last_entry)) { if (regset_hdr->data[0].last_entry.delay) fprintf(f, "DATA_DELAY %u\n", (unsigned)regset_hdr->data[0].last_entry.delay); else fprintf(f, "DATA_DELAY SDRAM_SETUP\n"); } } } if (version == 0 && !is_v0_ext && le16_to_cpu(mhdr0->ddrinitdelay)) fprintf(f, "DDR_INIT_DELAY %u\n", (unsigned)le16_to_cpu(mhdr0->ddrinitdelay)); for_each_ext_hdr_v0(ehdr0, ptr) { if (is_v0_ext) { fprintf(f, "\nMATCH ADDRESS 0x%08x MASK 0x%08x VALUE 0x%08x\n", le32_to_cpu(ehdr0->match_addr), le32_to_cpu(ehdr0->match_mask), le32_to_cpu(ehdr0->match_value)); if (ehdr0->rsvd1[0] || ehdr0->rsvd1[1] || ehdr0->rsvd1[2] || ehdr0->rsvd1[3] || ehdr0->rsvd1[4] || ehdr0->rsvd1[5] || ehdr0->rsvd1[6] || ehdr0->rsvd1[7]) fprintf(f, "#DDR_RSVD1 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x\n", ehdr0->rsvd1[0], ehdr0->rsvd1[1], ehdr0->rsvd1[2], ehdr0->rsvd1[3], ehdr0->rsvd1[4], ehdr0->rsvd1[5], ehdr0->rsvd1[6], ehdr0->rsvd1[7]); if (ehdr0->rsvd2[0] || ehdr0->rsvd2[1] || ehdr0->rsvd2[2] || ehdr0->rsvd2[3] || ehdr0->rsvd2[4] || ehdr0->rsvd2[5] || ehdr0->rsvd2[6]) fprintf(f, "#DDR_RSVD2 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x\n", ehdr0->rsvd2[0], ehdr0->rsvd2[1], ehdr0->rsvd2[2], ehdr0->rsvd2[3], ehdr0->rsvd2[4], ehdr0->rsvd2[5], ehdr0->rsvd2[6]); if (ehdr0->ddrwritetype) fprintf(f, "DDR_WRITE_TYPE %u\n", (unsigned)ehdr0->ddrwritetype); if (ehdr0->ddrresetmpp) fprintf(f, "DDR_RESET_MPP 0x%x\n", (unsigned)ehdr0->ddrresetmpp); if (ehdr0->ddrclkenmpp) fprintf(f, "DDR_CLKEN_MPP 0x%x\n", (unsigned)ehdr0->ddrclkenmpp); if (ehdr0->ddrinitdelay) fprintf(f, "DDR_INIT_DELAY %u\n", (unsigned)ehdr0->ddrinitdelay); } if (ehdr0->offset) { for (regdata = (struct ext_hdr_v0_reg *)((uint8_t *)ptr + ehdr0->offset); (uint8_t *)regdata < (uint8_t *)ptr + header_size && (regdata->raddr || regdata->rdata); regdata++) fprintf(f, "DATA 0x%08x 0x%08x\n", le32_to_cpu(regdata->raddr), le32_to_cpu(regdata->rdata)); if ((uint8_t *)regdata != (uint8_t *)ptr + ehdr0->offset) fprintf(f, "DATA 0x0 0x0\n"); } if (le32_to_cpu(ehdr0->enddelay)) fprintf(f, "DATA_DELAY %u\n", le32_to_cpu(ehdr0->enddelay)); else if (is_v0_ext) fprintf(f, "DATA_DELAY SDRAM_SETUP\n"); } cur_idx = 1; for_each_bin_hdr_v0(bhdr0, ptr) { fprintf(f, "\nMATCH ADDRESS 0x%08x MASK 0x%08x VALUE 0x%08x\n", le32_to_cpu(bhdr0->match_addr), le32_to_cpu(bhdr0->match_mask), le32_to_cpu(bhdr0->match_value)); fprintf(f, "BINARY binary%d.bin", cur_idx); params_count = fls4(bhdr0->params_flags & 0xF); for (i = 0; i < params_count; i++) fprintf(f, " 0x%x", (bhdr0->params[i] & (1 << i)) ? bhdr0->params[i] : 0); fprintf(f, " LOAD_ADDRESS 0x%08x", le32_to_cpu(bhdr0->destaddr)); fprintf(f, " EXEC_ADDRESS 0x%08x", le32_to_cpu(bhdr0->execaddr)); fprintf(f, "\n"); fprintf(f, "#BINARY_OFFSET 0x%x\n", le32_to_cpu(bhdr0->offset)); fprintf(f, "#BINARY_SIZE 0x%x\n", le32_to_cpu(bhdr0->size)); if (bhdr0->rsvd1) fprintf(f, "#BINARY_RSVD1 0x%x\n", (unsigned)bhdr0->rsvd1); if (bhdr0->rsvd2) fprintf(f, "#BINARY_RSVD2 0x%x\n", (unsigned)bhdr0->rsvd2); cur_idx++; } /* Undocumented reserved fields */ if (version == 0 && (mhdr0->rsvd1[0] || mhdr0->rsvd1[1] || mhdr0->rsvd1[2])) fprintf(f, "#RSVD1 0x%x 0x%x 0x%x\n", (unsigned)mhdr0->rsvd1[0], (unsigned)mhdr0->rsvd1[1], (unsigned)mhdr0->rsvd1[2]); if (version == 0 && le16_to_cpu(mhdr0->rsvd2)) fprintf(f, "#RSVD2 0x%x\n", (unsigned)le16_to_cpu(mhdr0->rsvd2)); if (version != 0 && mhdr->reserved4) fprintf(f, "#RESERVED4 0x%x\n", (unsigned)mhdr->reserved4); if (version != 0 && mhdr->reserved5) fprintf(f, "#RESERVED5 0x%x\n", (unsigned)le16_to_cpu(mhdr->reserved5)); fclose(f); return 0; } static int kwbimage_extract_subimage(void *ptr, struct image_tool_params *params) { struct main_hdr_v1 *mhdr = (struct main_hdr_v1 *)ptr; size_t header_size = kwbheader_size(ptr); struct bin_hdr_v0 *bhdr; struct opt_hdr_v1 *ohdr; int idx = params->pflag; int cur_idx; uint32_t offset; ulong image; ulong size; /* Generate kwbimage config file when '-p -1' is specified */ if (idx == -1) return kwbimage_generate_config(ptr, params); image = 0; size = 0; if (idx == 0) { /* Extract data image when -p is not specified or when '-p 0' is specified */ offset = le32_to_cpu(mhdr->srcaddr); if (mhdr->blockid == IBR_HDR_SATA_ID) { offset -= 1; offset *= 512; } if (mhdr->blockid == IBR_HDR_SDIO_ID) offset *= 512; if (mhdr->blockid == IBR_HDR_PEX_ID && offset == 0xFFFFFFFF) offset = header_size; image = (ulong)((uint8_t *)ptr + offset); size = le32_to_cpu(mhdr->blocksize) - 4; } else { /* Extract N-th binary header executabe image when other '-p N' is specified */ cur_idx = 1; for_each_opt_hdr_v1(ohdr, ptr) { if (ohdr->headertype != OPT_HDR_V1_BINARY_TYPE) continue; if (idx == cur_idx) { image = (ulong)&ohdr->data[4 + 4 * ohdr->data[0]]; size = opt_hdr_v1_size(ohdr) - 12 - 4 * ohdr->data[0]; break; } ++cur_idx; } for_each_bin_hdr_v0(bhdr, ptr) { if (idx == cur_idx) { image = (ulong)bhdr + bhdr->offset; size = bhdr->size; break; } ++cur_idx; } if (!image) { fprintf(stderr, "Argument -p %d is invalid\n", idx); fprintf(stderr, "Available subimages:\n"); fprintf(stderr, " -p -1 - kwbimage config file\n"); fprintf(stderr, " -p 0 - data image\n"); if (cur_idx - 1 > 0) fprintf(stderr, " -p N - Nth binary header image (totally: %d)\n", cur_idx - 1); return -1; } } return imagetool_save_subimage(params->outfile, image, size); } /* * Report Error if xflag is set in addition to default */ static int kwbimage_check_params(struct image_tool_params *params) { if (!params->lflag && !params->iflag && !params->pflag && (!params->imagename || !strlen(params->imagename))) { char *msg = "Configuration file for kwbimage creation omitted"; fprintf(stderr, "Error:%s - %s\n", params->cmdname, msg); return 1; } return (params->dflag && (params->fflag || params->lflag)) || (params->fflag && (params->dflag || params->lflag)) || (params->lflag && (params->dflag || params->fflag)) || (params->xflag); } /* * kwbimage type parameters definition */ U_BOOT_IMAGE_TYPE( kwbimage, "Marvell MVEBU Boot Image support", 0, NULL, kwbimage_check_params, kwbimage_verify_header, kwbimage_print_header, kwbimage_set_header, kwbimage_extract_subimage, kwbimage_check_image_types, NULL, kwbimage_generate );