// SPDX-License-Identifier: GPL-2.0+ /* * Procedures for maintaining information about logical memory blocks. * * Peter Bergner, IBM Corp. June 2001. * Copyright (C) 2001 Peter Bergner. */ #include #include #include #include #include #include #include DECLARE_GLOBAL_DATA_PTR; #define LMB_ALLOC_ANYWHERE 0 static void lmb_dump_region(struct lmb_region *rgn, char *name) { unsigned long long base, size, end; enum lmb_flags flags; int i; printf(" %s.cnt = 0x%lx\n", name, rgn->cnt); for (i = 0; i < rgn->cnt; i++) { base = rgn->region[i].base; size = rgn->region[i].size; end = base + size - 1; flags = rgn->region[i].flags; printf(" %s[%d]\t[0x%llx-0x%llx], 0x%08llx bytes flags: %x\n", name, i, base, end, size, flags); } } void lmb_dump_all_force(struct lmb *lmb) { printf("lmb_dump_all:\n"); lmb_dump_region(&lmb->memory, "memory"); lmb_dump_region(&lmb->reserved, "reserved"); } void lmb_dump_all(struct lmb *lmb) { #ifdef DEBUG lmb_dump_all_force(lmb); #endif } static long lmb_addrs_overlap(phys_addr_t base1, phys_size_t size1, phys_addr_t base2, phys_size_t size2) { const phys_addr_t base1_end = base1 + size1 - 1; const phys_addr_t base2_end = base2 + size2 - 1; return ((base1 <= base2_end) && (base2 <= base1_end)); } static long lmb_addrs_adjacent(phys_addr_t base1, phys_size_t size1, phys_addr_t base2, phys_size_t size2) { if (base2 == base1 + size1) return 1; else if (base1 == base2 + size2) return -1; return 0; } static long lmb_regions_adjacent(struct lmb_region *rgn, unsigned long r1, unsigned long r2) { phys_addr_t base1 = rgn->region[r1].base; phys_size_t size1 = rgn->region[r1].size; phys_addr_t base2 = rgn->region[r2].base; phys_size_t size2 = rgn->region[r2].size; return lmb_addrs_adjacent(base1, size1, base2, size2); } static void lmb_remove_region(struct lmb_region *rgn, unsigned long r) { unsigned long i; for (i = r; i < rgn->cnt - 1; i++) { rgn->region[i].base = rgn->region[i + 1].base; rgn->region[i].size = rgn->region[i + 1].size; rgn->region[i].flags = rgn->region[i + 1].flags; } rgn->cnt--; } /* Assumption: base addr of region 1 < base addr of region 2 */ static void lmb_coalesce_regions(struct lmb_region *rgn, unsigned long r1, unsigned long r2) { rgn->region[r1].size += rgn->region[r2].size; lmb_remove_region(rgn, r2); } void lmb_init(struct lmb *lmb) { #if IS_ENABLED(CONFIG_LMB_USE_MAX_REGIONS) lmb->memory.max = CONFIG_LMB_MAX_REGIONS; lmb->reserved.max = CONFIG_LMB_MAX_REGIONS; #elif defined(CONFIG_LMB_MEMORY_REGIONS) lmb->memory.max = CONFIG_LMB_MEMORY_REGIONS; lmb->reserved.max = CONFIG_LMB_RESERVED_REGIONS; lmb->memory.region = lmb->memory_regions; lmb->reserved.region = lmb->reserved_regions; #endif lmb->memory.cnt = 0; lmb->reserved.cnt = 0; } void arch_lmb_reserve_generic(struct lmb *lmb, ulong sp, ulong end, ulong align) { ulong bank_end; int bank; /* * Reserve memory from aligned address below the bottom of U-Boot stack * until end of U-Boot area using LMB to prevent U-Boot from overwriting * that memory. */ debug("## Current stack ends at 0x%08lx ", sp); /* adjust sp by 4K to be safe */ sp -= align; for (bank = 0; bank < CONFIG_NR_DRAM_BANKS; bank++) { if (!gd->bd->bi_dram[bank].size || sp < gd->bd->bi_dram[bank].start) continue; /* Watch out for RAM at end of address space! */ bank_end = gd->bd->bi_dram[bank].start + gd->bd->bi_dram[bank].size - 1; if (sp > bank_end) continue; if (bank_end > end) bank_end = end - 1; lmb_reserve(lmb, sp, bank_end - sp + 1); if (gd->flags & GD_FLG_SKIP_RELOC) lmb_reserve(lmb, (phys_addr_t)(uintptr_t)_start, gd->mon_len); break; } } static void lmb_reserve_common(struct lmb *lmb, void *fdt_blob) { arch_lmb_reserve(lmb); board_lmb_reserve(lmb); if (CONFIG_IS_ENABLED(OF_LIBFDT) && fdt_blob) boot_fdt_add_mem_rsv_regions(lmb, fdt_blob); } /* Initialize the struct, add memory and call arch/board reserve functions */ void lmb_init_and_reserve(struct lmb *lmb, struct bd_info *bd, void *fdt_blob) { int i; lmb_init(lmb); for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) { if (bd->bi_dram[i].size) { lmb_add(lmb, bd->bi_dram[i].start, bd->bi_dram[i].size); } } lmb_reserve_common(lmb, fdt_blob); } /* Initialize the struct, add memory and call arch/board reserve functions */ void lmb_init_and_reserve_range(struct lmb *lmb, phys_addr_t base, phys_size_t size, void *fdt_blob) { lmb_init(lmb); lmb_add(lmb, base, size); lmb_reserve_common(lmb, fdt_blob); } /* This routine called with relocation disabled. */ static long lmb_add_region_flags(struct lmb_region *rgn, phys_addr_t base, phys_size_t size, enum lmb_flags flags) { unsigned long coalesced = 0; long adjacent, i; if (rgn->cnt == 0) { rgn->region[0].base = base; rgn->region[0].size = size; rgn->region[0].flags = flags; rgn->cnt = 1; return 0; } /* First try and coalesce this LMB with another. */ for (i = 0; i < rgn->cnt; i++) { phys_addr_t rgnbase = rgn->region[i].base; phys_size_t rgnsize = rgn->region[i].size; phys_size_t rgnflags = rgn->region[i].flags; if (rgnbase == base && rgnsize == size) { if (flags == rgnflags) /* Already have this region, so we're done */ return 0; else return -1; /* regions with new flags */ } adjacent = lmb_addrs_adjacent(base, size, rgnbase, rgnsize); if (adjacent > 0) { if (flags != rgnflags) break; rgn->region[i].base -= size; rgn->region[i].size += size; coalesced++; break; } else if (adjacent < 0) { if (flags != rgnflags) break; rgn->region[i].size += size; coalesced++; break; } else if (lmb_addrs_overlap(base, size, rgnbase, rgnsize)) { /* regions overlap */ return -1; } } if ((i < rgn->cnt - 1) && lmb_regions_adjacent(rgn, i, i + 1)) { if (rgn->region[i].flags == rgn->region[i + 1].flags) { lmb_coalesce_regions(rgn, i, i + 1); coalesced++; } } if (coalesced) return coalesced; if (rgn->cnt >= rgn->max) return -1; /* Couldn't coalesce the LMB, so add it to the sorted table. */ for (i = rgn->cnt-1; i >= 0; i--) { if (base < rgn->region[i].base) { rgn->region[i + 1].base = rgn->region[i].base; rgn->region[i + 1].size = rgn->region[i].size; rgn->region[i + 1].flags = rgn->region[i].flags; } else { rgn->region[i + 1].base = base; rgn->region[i + 1].size = size; rgn->region[i + 1].flags = flags; break; } } if (base < rgn->region[0].base) { rgn->region[0].base = base; rgn->region[0].size = size; rgn->region[0].flags = flags; } rgn->cnt++; return 0; } static long lmb_add_region(struct lmb_region *rgn, phys_addr_t base, phys_size_t size) { return lmb_add_region_flags(rgn, base, size, LMB_NONE); } /* This routine may be called with relocation disabled. */ long lmb_add(struct lmb *lmb, phys_addr_t base, phys_size_t size) { struct lmb_region *_rgn = &(lmb->memory); return lmb_add_region(_rgn, base, size); } long lmb_free(struct lmb *lmb, phys_addr_t base, phys_size_t size) { struct lmb_region *rgn = &(lmb->reserved); phys_addr_t rgnbegin, rgnend; phys_addr_t end = base + size - 1; int i; rgnbegin = rgnend = 0; /* supress gcc warnings */ /* Find the region where (base, size) belongs to */ for (i = 0; i < rgn->cnt; i++) { rgnbegin = rgn->region[i].base; rgnend = rgnbegin + rgn->region[i].size - 1; if ((rgnbegin <= base) && (end <= rgnend)) break; } /* Didn't find the region */ if (i == rgn->cnt) return -1; /* Check to see if we are removing entire region */ if ((rgnbegin == base) && (rgnend == end)) { lmb_remove_region(rgn, i); return 0; } /* Check to see if region is matching at the front */ if (rgnbegin == base) { rgn->region[i].base = end + 1; rgn->region[i].size -= size; return 0; } /* Check to see if the region is matching at the end */ if (rgnend == end) { rgn->region[i].size -= size; return 0; } /* * We need to split the entry - adjust the current one to the * beginging of the hole and add the region after hole. */ rgn->region[i].size = base - rgn->region[i].base; return lmb_add_region_flags(rgn, end + 1, rgnend - end, rgn->region[i].flags); } long lmb_reserve_flags(struct lmb *lmb, phys_addr_t base, phys_size_t size, enum lmb_flags flags) { struct lmb_region *_rgn = &(lmb->reserved); return lmb_add_region_flags(_rgn, base, size, flags); } long lmb_reserve(struct lmb *lmb, phys_addr_t base, phys_size_t size) { return lmb_reserve_flags(lmb, base, size, LMB_NONE); } static long lmb_overlaps_region(struct lmb_region *rgn, phys_addr_t base, phys_size_t size) { unsigned long i; for (i = 0; i < rgn->cnt; i++) { phys_addr_t rgnbase = rgn->region[i].base; phys_size_t rgnsize = rgn->region[i].size; if (lmb_addrs_overlap(base, size, rgnbase, rgnsize)) break; } return (i < rgn->cnt) ? i : -1; } phys_addr_t lmb_alloc(struct lmb *lmb, phys_size_t size, ulong align) { return lmb_alloc_base(lmb, size, align, LMB_ALLOC_ANYWHERE); } phys_addr_t lmb_alloc_base(struct lmb *lmb, phys_size_t size, ulong align, phys_addr_t max_addr) { phys_addr_t alloc; alloc = __lmb_alloc_base(lmb, size, align, max_addr); if (alloc == 0) printf("ERROR: Failed to allocate 0x%lx bytes below 0x%lx.\n", (ulong)size, (ulong)max_addr); return alloc; } static phys_addr_t lmb_align_down(phys_addr_t addr, phys_size_t size) { return addr & ~(size - 1); } phys_addr_t __lmb_alloc_base(struct lmb *lmb, phys_size_t size, ulong align, phys_addr_t max_addr) { long i, rgn; phys_addr_t base = 0; phys_addr_t res_base; for (i = lmb->memory.cnt - 1; i >= 0; i--) { phys_addr_t lmbbase = lmb->memory.region[i].base; phys_size_t lmbsize = lmb->memory.region[i].size; if (lmbsize < size) continue; if (max_addr == LMB_ALLOC_ANYWHERE) base = lmb_align_down(lmbbase + lmbsize - size, align); else if (lmbbase < max_addr) { base = lmbbase + lmbsize; if (base < lmbbase) base = -1; base = min(base, max_addr); base = lmb_align_down(base - size, align); } else continue; while (base && lmbbase <= base) { rgn = lmb_overlaps_region(&lmb->reserved, base, size); if (rgn < 0) { /* This area isn't reserved, take it */ if (lmb_add_region(&lmb->reserved, base, size) < 0) return 0; return base; } res_base = lmb->reserved.region[rgn].base; if (res_base < size) break; base = lmb_align_down(res_base - size, align); } } return 0; } /* * Try to allocate a specific address range: must be in defined memory but not * reserved */ phys_addr_t lmb_alloc_addr(struct lmb *lmb, phys_addr_t base, phys_size_t size) { long rgn; /* Check if the requested address is in one of the memory regions */ rgn = lmb_overlaps_region(&lmb->memory, base, size); if (rgn >= 0) { /* * Check if the requested end address is in the same memory * region we found. */ if (lmb_addrs_overlap(lmb->memory.region[rgn].base, lmb->memory.region[rgn].size, base + size - 1, 1)) { /* ok, reserve the memory */ if (lmb_reserve(lmb, base, size) >= 0) return base; } } return 0; } /* Return number of bytes from a given address that are free */ phys_size_t lmb_get_free_size(struct lmb *lmb, phys_addr_t addr) { int i; long rgn; /* check if the requested address is in the memory regions */ rgn = lmb_overlaps_region(&lmb->memory, addr, 1); if (rgn >= 0) { for (i = 0; i < lmb->reserved.cnt; i++) { if (addr < lmb->reserved.region[i].base) { /* first reserved range > requested address */ return lmb->reserved.region[i].base - addr; } if (lmb->reserved.region[i].base + lmb->reserved.region[i].size > addr) { /* requested addr is in this reserved range */ return 0; } } /* if we come here: no reserved ranges above requested addr */ return lmb->memory.region[lmb->memory.cnt - 1].base + lmb->memory.region[lmb->memory.cnt - 1].size - addr; } return 0; } int lmb_is_reserved_flags(struct lmb *lmb, phys_addr_t addr, int flags) { int i; for (i = 0; i < lmb->reserved.cnt; i++) { phys_addr_t upper = lmb->reserved.region[i].base + lmb->reserved.region[i].size - 1; if ((addr >= lmb->reserved.region[i].base) && (addr <= upper)) return (lmb->reserved.region[i].flags & flags) == flags; } return 0; } int lmb_is_reserved(struct lmb *lmb, phys_addr_t addr) { return lmb_is_reserved_flags(lmb, addr, LMB_NONE); } __weak void board_lmb_reserve(struct lmb *lmb) { /* please define platform specific board_lmb_reserve() */ } __weak void arch_lmb_reserve(struct lmb *lmb) { /* please define platform specific arch_lmb_reserve() */ }