/* * rk816 battery driver * * Copyright (C) 2017 Rockchip Electronics Co., Ltd * Author: chenjh * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "rk816_battery.h" static int dbg_enable = 0; module_param_named(dbg_level, dbg_enable, int, 0644); #define DBG(args...) \ do { \ if (dbg_enable) { \ pr_info(args); \ } \ } while (0) #define BAT_INFO(fmt, args...) pr_info("rk816-bat: "fmt, ##args) /* default param */ #define DEFAULT_BAT_RES 135 #define DEFAULT_SLP_ENTER_CUR 300 #define DEFAULT_SLP_EXIT_CUR 300 #define DEFAULT_SLP_FILTER_CUR 100 #define DEFAULT_PWROFF_VOL_THRESD 3400 #define DEFAULT_MONITOR_SEC 5 #define DEFAULT_ALGR_VOL_THRESD1 3850 #define DEFAULT_ALGR_VOL_THRESD2 3950 #define DEFAULT_CHRG_VOL_SEL CHRG_VOL4200MV #define DEFAULT_CHRG_CUR_SEL CHRG_CUR1400MA #define DEFAULT_CHRG_CUR_INPUT INPUT_CUR2000MA #define DEFAULT_POFFSET 42 #define DEFAULT_MAX_SOC_OFFSET 60 #define DEFAULT_FB_TEMP TEMP_115C #define DEFAULT_ENERGY_MODE 0 #define DEFAULT_ZERO_RESERVE_DSOC 10 #define DEFAULT_SAMPLE_RES 20 /*MODE_VIRTUAL params*/ #define VIRTUAL_CURRENT 1000 #define VIRTUAL_VOLTAGE 3888 #define VIRTUAL_SOC 66 #define VIRTUAL_STATUS POWER_SUPPLY_STATUS_CHARGING #define VIRTUAL_PRESET 1 #define VIRTUAL_AC_ONLINE 1 #define VIRTUAL_USB_ONLINE 0 #define VIRTUAL_TEMPERATURE 188 /* dsoc calib param */ #define FINISH_CHRG_CUR1 1000 #define FINISH_CHRG_CUR2 1500 #define FINISH_MAX_SOC_DELAY 20 #define TERM_CHRG_DSOC 88 #define TERM_CHRG_CURR 600 #define TERM_CHRG_K 650 #define SIMULATE_CHRG_INTV 8 #define SIMULATE_CHRG_CURR 400 #define SIMULATE_CHRG_K 1500 #define FULL_CHRG_K 400 /* zero algorithm */ #define PWROFF_THRESD 3400 #define MIN_ZERO_DSOC_ACCURACY 10 /*0.01%*/ #define MIN_ZERO_OVERCNT 100 #define MIN_ACCURACY 1 #define DEF_PWRPATH_RES 50 #define WAIT_DSOC_DROP_SEC 15 #define WAIT_SHTD_DROP_SEC 30 #define MIN_ZERO_GAP_XSOC1 10 #define MIN_ZERO_GAP_XSOC2 5 #define MIN_ZERO_GAP_XSOC3 3 #define MIN_ZERO_GAP_CALIB 5 #define ADC_CALIB_THRESHOLD 4 #define ADC_CALIB_LMT_MIN 3 #define ADC_CALIB_CNT 5 /* TS detect battery temperature */ #define ADC_CUR_MSK 0x03 #define ADC_CUR_20UA 0x00 #define ADC_CUR_40UA 0x01 #define ADC_CUR_60UA 0x02 #define ADC_CUR_80UA 0x03 #define NTC_CALC_FACTOR_80UA 80 #define NTC_CALC_FACTOR_60UA 60 #define NTC_CALC_FACTOR_40UA 40 #define NTC_CALC_FACTOR_20UA 20 #define NTC_80UA_MAX_MEASURE 27500 #define NTC_60UA_MAX_MEASURE 36666 #define NTC_40UA_MAX_MEASURE 55000 #define NTC_20UA_MAX_MEASURE 110000 /* time */ #define POWER_ON_SEC_BASE 1 #define MINUTE(x) ((x) * 60) /* sleep */ #define SLP_CURR_MAX 40 #define SLP_CURR_MIN 6 #define DISCHRG_TIME_STEP1 MINUTE(10) #define DISCHRG_TIME_STEP2 MINUTE(60) #define SLP_DSOC_VOL_THRESD 3600 #define REBOOT_PERIOD_SEC 180 #define REBOOT_MAX_CNT 80 #define ZERO_LOAD_LVL1 1400 #define ZERO_LOAD_LVL2 600 /* fcc */ #define MIN_FCC 500 /* DC ADC */ #define DC_ADC_TRIGGER 150 #define TEMP_RECORD_NUM 30 static const char *bat_status[] = { "charge off", "dead charge", "trickle charge", "cc cv", "finish", "usb over vol", "bat temp error", "timer error", }; struct rk816_battery { struct platform_device *pdev; struct rk808 *rk816; struct regmap *regmap; struct device *dev; struct power_supply *bat; struct power_supply *usb; struct power_supply *ac; struct battery_platform_data *pdata; struct workqueue_struct *bat_monitor_wq; struct workqueue_struct *usb_charger_wq; struct delayed_work bat_delay_work; struct delayed_work dc_delay_work; struct delayed_work calib_delay_work; struct wake_lock wake_lock; struct notifier_block fb_nb; struct timer_list caltimer; time_t rtc_base; struct iio_channel *iio_chan; struct notifier_block cable_cg_nb; struct notifier_block cable_host_nb; struct notifier_block cable_discnt_nb; struct delayed_work usb_work; struct delayed_work host_work; struct delayed_work discnt_work; struct extcon_dev *cable_edev; int bat_res; int chrg_status; int res_fac; int over_20mR; bool is_initialized; bool bat_first_power_on; u8 ac_in; u8 usb_in; u8 otg_in; /* OTG device attached status */ u8 otg_pmic5v; /* OTG device power supply from PMIC */ u8 dc_in; u8 prop_status; int cvtlmt_irq; int current_avg; int current_relax; int voltage_avg; int voltage_ocv; int voltage_relax; int voltage_k;/* VCALIB0 VCALIB1 */ int voltage_b; int remain_cap; int design_cap; int nac; int fcc; int lock_fcc; int qmax; int dsoc; int rsoc; int poffset; int fake_offline; int age_ocv_soc; bool age_allow_update; int age_level; int age_ocv_cap; int age_voltage; int age_adjust_cap; unsigned long age_keep_sec; int zero_timeout_cnt; int zero_remain_cap; int zero_dsoc; int zero_linek; u64 zero_drop_sec; u64 shtd_drop_sec; int sm_remain_cap; int sm_linek; int sm_chrg_dsoc; int sm_dischrg_dsoc; int algo_rest_val; int algo_rest_mode; int sleep_sum_cap; int sleep_remain_cap; unsigned long sleep_dischrg_sec; unsigned long sleep_sum_sec; bool sleep_chrg_online; u8 sleep_chrg_status; bool adc_allow_update; int fb_blank; bool s2r; /*suspend to resume*/ u32 work_mode; int temperature; int chrg_cur_lp_input; int chrg_vol_sel; int chrg_cur_input; int chrg_cur_sel; u32 monitor_ms; u32 pwroff_min; u32 adc_calib_cnt; unsigned long chrg_finish_base; unsigned long boot_base; unsigned long flat_match_sec; unsigned long plug_in_base; unsigned long plug_out_base; u8 halt_cnt; bool is_halt; bool is_max_soc_offset; bool is_sw_reset; bool is_ocv_calib; bool is_first_on; bool is_force_calib; int last_dsoc; u8 cvtlmt_int_event; u8 slp_dcdc_en_reg; int ocv_pre_dsoc; int ocv_new_dsoc; int max_pre_dsoc; int max_new_dsoc; int force_pre_dsoc; int force_new_dsoc; int dbg_cap_low0; int dbg_pwr_dsoc; int dbg_pwr_rsoc; int dbg_pwr_vol; int dbg_chrg_min[10]; int dbg_meet_soc; int dbg_calc_dsoc; int dbg_calc_rsoc; bool is_charging; unsigned long charge_count; int current_max; int voltage_max; }; struct led_ops { void (*led_init)(struct rk816_battery *di); void (*led_charging)(struct rk816_battery *di); void (*led_discharging)(struct rk816_battery *di); void (*led_charging_full)(struct rk816_battery *di); }; static struct led_ops *rk816_led_ops; #define DIV(x) ((x) ? (x) : 1) /* 'res_fac' has been *10, so we need divide 10 */ #define RES_FAC_MUX(value, res_fac) ((value) * res_fac / 10) /* 'res_fac' has been *10, so we need 'value * 10' before divide 'res_fac' */ #define RES_FAC_DIV(value, res_fac) ((value) * 10 / res_fac) static u64 get_boot_sec(void) { struct timespec ts; get_monotonic_boottime(&ts); return ts.tv_sec; } static unsigned long base2sec(unsigned long x) { if (x) return (get_boot_sec() > x) ? (get_boot_sec() - x) : 0; else return 0; } static unsigned long base2min(unsigned long x) { return base2sec(x) / 60; } static u32 interpolate(int value, u32 *table, int size) { u8 i; u16 d; for (i = 0; i < size; i++) { if (value < table[i]) break; } if ((i > 0) && (i < size)) { d = (value - table[i - 1]) * (MAX_INTERPOLATE / (size - 1)); d /= table[i] - table[i - 1]; d = d + (i - 1) * (MAX_INTERPOLATE / (size - 1)); } else { d = i * ((MAX_INTERPOLATE + size / 2) / size); } if (d > 1000) d = 1000; return d; } /* (a*b)/c */ static int32_t ab_div_c(u32 a, u32 b, u32 c) { bool sign; u32 ans = MAX_INT; int32_t tmp; sign = ((((a ^ b) ^ c) & 0x80000000) != 0); if (c != 0) { if (sign) c = -c; tmp = (a * b + (c >> 1)) / c; if (tmp < MAX_INT) ans = tmp; } if (sign) ans = -ans; return ans; } static int rk816_bat_read(struct rk816_battery *di, u8 reg) { int ret, val; ret = regmap_read(di->regmap, reg, &val); if (ret) dev_err(di->dev, "read reg:0x%x failed\n", reg); return val; } static int rk816_bat_write(struct rk816_battery *di, u8 reg, u8 buf) { int ret; ret = regmap_write(di->regmap, reg, buf); if (ret) dev_err(di->dev, "i2c write reg: 0x%2x error\n", reg); return ret; } static int rk816_bat_set_bits(struct rk816_battery *di, u8 reg, u8 mask, u8 buf) { int ret; ret = regmap_update_bits(di->regmap, reg, mask, buf); if (ret) dev_err(di->dev, "write reg:0x%x failed\n", reg); return ret; } static int rk816_bat_clear_bits(struct rk816_battery *di, u8 reg, u8 mask) { int ret; ret = regmap_update_bits(di->regmap, reg, mask, 0); if (ret) dev_err(di->dev, "clr reg:0x%02x failed\n", reg); return ret; } static void rk816_bat_dump_regs(struct rk816_battery *di, u8 start, u8 end) { int i; if (!dbg_enable) return; DBG("dump regs from: 0x%x-->0x%x\n", start, end); for (i = start; i < end; i++) DBG("0x%x: 0x%0x\n", i, rk816_bat_read(di, i)); } static bool rk816_bat_chrg_online(struct rk816_battery *di) { return (di->usb_in || di->ac_in || di->dc_in) ? true : false; } static int rk816_bat_get_coulomb_cap(struct rk816_battery *di) { int cap, val = 0; val |= rk816_bat_read(di, RK816_GASCNT_REG3) << 24; val |= rk816_bat_read(di, RK816_GASCNT_REG2) << 16; val |= rk816_bat_read(di, RK816_GASCNT_REG1) << 8; val |= rk816_bat_read(di, RK816_GASCNT_REG0) << 0; if (!di->over_20mR) cap = RES_FAC_MUX(val / 2390, di->res_fac); else cap = RES_FAC_DIV(val / 2390, di->res_fac); return cap; } static int rk816_bat_get_rsoc(struct rk816_battery *di) { int remain_cap; remain_cap = rk816_bat_get_coulomb_cap(di); return (remain_cap + di->fcc / 200) * 100 / DIV(di->fcc); } static ssize_t bat_info_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int ret; char cmd = 0; struct rk816_battery *di = dev_get_drvdata(dev); ret = sscanf(buf, "%c", &cmd); if (ret != 1) { dev_err(di->dev, "error! cmd require only one args\n"); return count; } if (cmd == 'n') rk816_bat_set_bits(di, RK816_MISC_MARK_REG, FG_RESET_NOW, FG_RESET_NOW); else if (cmd == 'm') rk816_bat_set_bits(di, RK816_MISC_MARK_REG, FG_RESET_LATE, FG_RESET_LATE); else if (cmd == 'c') rk816_bat_clear_bits(di, RK816_MISC_MARK_REG, FG_RESET_LATE | FG_RESET_NOW); else if (cmd == 'r') BAT_INFO("0x%2x\n", rk816_bat_read(di, RK816_MISC_MARK_REG)); else BAT_INFO("command error\n"); return count; } static struct device_attribute rk816_bat_attr[] = { __ATTR(bat, 0664, NULL, bat_info_store), }; static void rk816_bat_enable_input_current(struct rk816_battery *di) { u8 buf; buf = rk816_bat_read(di, RK816_BAT_CTRL_REG); buf |= USB_SYS_EN; rk816_bat_write(di, RK816_BAT_CTRL_REG, buf); } static void rk816_bat_disable_input_current(struct rk816_battery *di) { u8 buf; buf = rk816_bat_read(di, RK816_BAT_CTRL_REG); buf &= ~USB_SYS_EN; rk816_bat_write(di, RK816_BAT_CTRL_REG, buf); } static int rk816_bat_is_input_enabled(struct rk816_battery *di) { u8 buf; buf = rk816_bat_read(di, RK816_BAT_CTRL_REG); return !!(buf & USB_SYS_EN); } static void rk816_bat_enable_gauge(struct rk816_battery *di) { u8 buf; buf = rk816_bat_read(di, RK816_TS_CTRL_REG); buf |= GG_EN; rk816_bat_write(di, RK816_TS_CTRL_REG, buf); } static void rk816_bat_save_age_level(struct rk816_battery *di, u8 level) { rk816_bat_write(di, RK816_UPDATE_LEVE_REG, level); } static u8 rk816_bat_get_age_level(struct rk816_battery *di) { return rk816_bat_read(di, RK816_UPDATE_LEVE_REG); } static int rk816_bat_get_vcalib0(struct rk816_battery *di) { int val = 0; val |= rk816_bat_read(di, RK816_VCALIB0_REGL) << 0; val |= rk816_bat_read(di, RK816_VCALIB0_REGH) << 8; DBG("<%s>. voffset0: 0x%x\n", __func__, val); return val; } static int rk816_bat_get_vcalib1(struct rk816_battery *di) { int val = 0; val |= rk816_bat_read(di, RK816_VCALIB1_REGL) << 0; val |= rk816_bat_read(di, RK816_VCALIB1_REGH) << 8; DBG("<%s>. voffset1: 0x%x\n", __func__, val); return val; } static int rk816_bat_get_ioffset(struct rk816_battery *di) { int val = 0; val |= rk816_bat_read(di, RK816_IOFFSET_REGL) << 0; val |= rk816_bat_read(di, RK816_IOFFSET_REGH) << 8; DBG("<%s>. ioffset: 0x%x\n", __func__, val); return val; } static int rk816_bat_get_coffset(struct rk816_battery *di) { int val = 0; val |= rk816_bat_read(di, RK816_CAL_OFFSET_REGL) << 0; val |= rk816_bat_read(di, RK816_CAL_OFFSET_REGH) << 8; DBG("<%s>. coffset: 0x%x\n", __func__, val); return val; } static void rk816_bat_set_coffset(struct rk816_battery *di, int val) { u8 buf; buf = (val >> 8) & 0xff; rk816_bat_write(di, RK816_CAL_OFFSET_REGH, buf); buf = (val >> 0) & 0xff; rk816_bat_write(di, RK816_CAL_OFFSET_REGL, buf); DBG("<%s>. coffset: 0x%x\n", __func__, val); } static void rk816_bat_init_voltage_kb(struct rk816_battery *di) { int vcalib0, vcalib1; vcalib0 = rk816_bat_get_vcalib0(di); vcalib1 = rk816_bat_get_vcalib1(di); di->voltage_k = (4200 - 3000) * 1000 / DIV(vcalib1 - vcalib0); di->voltage_b = 4200 - (di->voltage_k * vcalib1) / 1000; DBG("voltage_k=%d(*1000),voltage_b=%d\n", di->voltage_k, di->voltage_b); } static int rk816_bat_get_ocv_voltage(struct rk816_battery *di) { int vol, val = 0; val |= rk816_bat_read(di, RK816_BAT_OCV_REGL) << 0; val |= rk816_bat_read(di, RK816_BAT_OCV_REGH) << 8; vol = di->voltage_k * val / 1000 + di->voltage_b; return (vol * 1100 / 1000); } static int rk816_bat_get_avg_voltage(struct rk816_battery *di) { int vol, val = 0; val |= rk816_bat_read(di, RK816_BAT_VOL_REGL) << 0; val |= rk816_bat_read(di, RK816_BAT_VOL_REGH) << 8; vol = di->voltage_k * val / 1000 + di->voltage_b; return (vol * 1100 / 1000); } static int rk816_bat_get_usb_voltage(struct rk816_battery *di) { int vol, val = 0; val |= rk816_bat_read(di, RK816_USB_ADC_REGL) << 0; val |= rk816_bat_read(di, RK816_USB_ADC_REGH) << 8; vol = di->voltage_k * val / 1000 + di->voltage_b; return (vol * 1400 / 1100); } static bool is_rk816_bat_relax_mode(struct rk816_battery *di) { u8 status; status = rk816_bat_read(di, RK816_GGSTS_REG); if (!(status & RELAX_VOL1_UPD) || !(status & RELAX_VOL2_UPD)) return false; else return true; } static u16 rk816_bat_get_relax_vol1(struct rk816_battery *di) { u16 vol, val = 0; val |= rk816_bat_read(di, RK816_RELAX_VOL1_REGL) << 0; val |= rk816_bat_read(di, RK816_RELAX_VOL1_REGH) << 8; vol = di->voltage_k * val / 1000 + di->voltage_b; return (vol * 1100 / 1000); } static u16 rk816_bat_get_relax_vol2(struct rk816_battery *di) { u16 vol, val = 0; val |= rk816_bat_read(di, RK816_RELAX_VOL2_REGL) << 0; val |= rk816_bat_read(di, RK816_RELAX_VOL2_REGH) << 8; vol = di->voltage_k * val / 1000 + di->voltage_b; return (vol * 1100 / 1000); } static u16 rk816_bat_get_relax_voltage(struct rk816_battery *di) { u16 relax_vol1, relax_vol2; if (!is_rk816_bat_relax_mode(di)) return 0; relax_vol1 = rk816_bat_get_relax_vol1(di); relax_vol2 = rk816_bat_get_relax_vol2(di); return relax_vol1 > relax_vol2 ? relax_vol1 : relax_vol2; } static int rk816_bat_get_avg_current(struct rk816_battery *di) { int cur, val = 0; val |= rk816_bat_read(di, RK816_BAT_CUR_AVG_REGL) << 0; val |= rk816_bat_read(di, RK816_BAT_CUR_AVG_REGH) << 8; if (val & 0x800) val -= 4096; if (!di->over_20mR) cur = RES_FAC_MUX(val * 1506, di->res_fac) / 1000; else cur = RES_FAC_DIV(val * 1506, di->res_fac) / 1000; return cur; } static int rk816_bat_get_relax_cur1(struct rk816_battery *di) { int val = 0; val |= rk816_bat_read(di, RK816_RELAX_CUR1_REGL) << 0; val |= rk816_bat_read(di, RK816_RELAX_CUR1_REGH) << 8; if (val & 0x800) val -= 4096; return (val * 1506 / 1000); } static int rk816_bat_get_relax_cur2(struct rk816_battery *di) { int val = 0; val |= rk816_bat_read(di, RK816_RELAX_CUR2_REGL) << 0; val |= rk816_bat_read(di, RK816_RELAX_CUR2_REGH) << 8; if (val & 0x800) val -= 4096; return (val * 1506 / 1000); } static int rk816_bat_get_relax_current(struct rk816_battery *di) { int relax_cur1, relax_cur2; if (!is_rk816_bat_relax_mode(di)) return 0; relax_cur1 = rk816_bat_get_relax_cur1(di); relax_cur2 = rk816_bat_get_relax_cur2(di); return (relax_cur1 < relax_cur2) ? relax_cur1 : relax_cur2; } static int rk816_bat_vol_to_ocvsoc(struct rk816_battery *di, int voltage) { u32 *ocv_table, temp; int ocv_size, ocv_soc; ocv_table = di->pdata->ocv_table; ocv_size = di->pdata->ocv_size; temp = interpolate(voltage, ocv_table, ocv_size); ocv_soc = ab_div_c(temp, MAX_PERCENTAGE, MAX_INTERPOLATE); return ocv_soc; } static int rk816_bat_vol_to_ocvcap(struct rk816_battery *di, int voltage) { u32 *ocv_table, temp; int ocv_size, cap; ocv_table = di->pdata->ocv_table; ocv_size = di->pdata->ocv_size; temp = interpolate(voltage, ocv_table, ocv_size); cap = ab_div_c(temp, di->fcc, MAX_INTERPOLATE); return cap; } static int rk816_bat_vol_to_zerosoc(struct rk816_battery *di, int voltage) { u32 *ocv_table, temp; int ocv_size, ocv_soc; ocv_table = di->pdata->zero_table; ocv_size = di->pdata->ocv_size; temp = interpolate(voltage, ocv_table, ocv_size); ocv_soc = ab_div_c(temp, MAX_PERCENTAGE, MAX_INTERPOLATE); return ocv_soc; } static int rk816_bat_vol_to_zerocap(struct rk816_battery *di, int voltage) { u32 *ocv_table, temp; int ocv_size, cap; ocv_table = di->pdata->zero_table; ocv_size = di->pdata->ocv_size; temp = interpolate(voltage, ocv_table, ocv_size); cap = ab_div_c(temp, di->fcc, MAX_INTERPOLATE); return cap; } static int rk816_bat_get_iadc(struct rk816_battery *di) { int val = 0; val |= rk816_bat_read(di, RK816_BAT_CUR_AVG_REGL) << 0; val |= rk816_bat_read(di, RK816_BAT_CUR_AVG_REGH) << 8; if (val > 2047) val -= 4096; return val; } static bool is_rk816_bat_st_cvtlim(struct rk816_battery *di) { return (rk816_bat_read(di, RK816_INT_STS_REG1) & 0x80) ? true : false; } static bool rk816_bat_adc_calib(struct rk816_battery *di) { int i, ioffset, coffset, adc, save_coffset; if ((di->chrg_status != CHARGE_FINISH) || (di->adc_calib_cnt > ADC_CALIB_CNT) || (base2min(di->boot_base) < ADC_CALIB_LMT_MIN) || (abs(di->current_avg) < ADC_CALIB_THRESHOLD) || (is_rk816_bat_st_cvtlim(di))) return false; di->adc_calib_cnt++; save_coffset = rk816_bat_get_coffset(di); for (i = 0; i < 5; i++) { if (!rk816_bat_chrg_online(di)) { rk816_bat_set_coffset(di, save_coffset); BAT_INFO("quit, charger plugout when calib adc\n"); return false; } /* check status and int cvtlmt */ if (is_rk816_bat_st_cvtlim(di)) { rk816_bat_set_coffset(di, save_coffset); BAT_INFO("1 cvtlmt(st) when calib adc\n"); return false; } enable_irq(di->cvtlmt_irq); msleep(2000); disable_irq(di->cvtlmt_irq); if (di->cvtlmt_int_event) { di->cvtlmt_int_event = 0; rk816_bat_set_coffset(di, save_coffset); BAT_INFO("1 cvtlmt(int) when calib adc\n"); return false; } /* it's ok to update coffset */ adc = rk816_bat_get_iadc(di); coffset = rk816_bat_get_coffset(di); rk816_bat_set_coffset(di, coffset + adc); /* check status and int cvtlmt again */ if (is_rk816_bat_st_cvtlim(di)) { rk816_bat_set_coffset(di, save_coffset); BAT_INFO("2 cvtlmt(st) when calib adc\n"); return false; } enable_irq(di->cvtlmt_irq); msleep(2000); disable_irq(di->cvtlmt_irq); if (di->cvtlmt_int_event) { di->cvtlmt_int_event = 0; rk816_bat_set_coffset(di, save_coffset); BAT_INFO("2 cvtlmt(int) when calib adc\n"); return false; } /* it's ok to check calib adc result */ adc = rk816_bat_get_iadc(di); if (abs(adc) < ADC_CALIB_THRESHOLD) { coffset = rk816_bat_get_coffset(di); ioffset = rk816_bat_get_ioffset(di); di->poffset = coffset - ioffset; rk816_bat_write(di, RK816_PCB_IOFFSET_REG, di->poffset); BAT_INFO("new offset:c=0x%x, i=0x%x, p=0x%x\n", coffset, ioffset, di->poffset); return true; } else { BAT_INFO("coffset calib again %d.., max_cnt=%d\n", i, di->adc_calib_cnt); rk816_bat_set_coffset(di, coffset); } } rk816_bat_set_coffset(di, save_coffset); return false; } static void rk816_bat_set_ioffset_sample(struct rk816_battery *di) { u8 ggcon; ggcon = rk816_bat_read(di, RK816_GGCON_REG); ggcon &= ~ADC_CAL_MIN_MSK; ggcon |= ADC_CAL_8MIN; rk816_bat_write(di, RK816_GGCON_REG, ggcon); } static void rk816_bat_set_ocv_sample(struct rk816_battery *di) { u8 ggcon; ggcon = rk816_bat_read(di, RK816_GGCON_REG); ggcon &= ~OCV_SAMP_MIN_MSK; ggcon |= OCV_SAMP_8MIN; rk816_bat_write(di, RK816_GGCON_REG, ggcon); } static void rk816_bat_restart_relax(struct rk816_battery *di) { u8 ggsts; ggsts = rk816_bat_read(di, RK816_GGSTS_REG); ggsts &= ~RELAX_VOL12_UPD_MSK; rk816_bat_write(di, RK816_GGSTS_REG, ggsts); } static void rk816_bat_set_relax_sample(struct rk816_battery *di) { u8 buf; int enter_thres, exit_thres, filter_thres; struct battery_platform_data *pdata = di->pdata; filter_thres = pdata->sleep_filter_current * 1000 / 1506; if (!di->over_20mR) { enter_thres = RES_FAC_DIV(pdata->sleep_enter_current * 1000, di->res_fac) / 1506; exit_thres = RES_FAC_DIV(pdata->sleep_exit_current * 1000, di->res_fac) / 1506; } else { enter_thres = RES_FAC_MUX(pdata->sleep_enter_current * 1000, di->res_fac) / 1506; exit_thres = RES_FAC_MUX(pdata->sleep_exit_current * 1000, di->res_fac) / 1506; } /* set relax enter and exit threshold */ buf = enter_thres & 0xff; rk816_bat_write(di, RK816_RELAX_ENTRY_THRES_REGL, buf); buf = (enter_thres >> 8) & 0xff; rk816_bat_write(di, RK816_RELAX_ENTRY_THRES_REGH, buf); buf = exit_thres & 0xff; rk816_bat_write(di, RK816_RELAX_EXIT_THRES_REGL, buf); buf = (exit_thres >> 8) & 0xff; rk816_bat_write(di, RK816_RELAX_EXIT_THRES_REGH, buf); /* set sample current threshold */ buf = filter_thres & 0xff; rk816_bat_write(di, RK816_SLEEP_CON_SAMP_CUR_REG, buf); /* reset relax update state */ rk816_bat_restart_relax(di); DBG("<%s>. sleep_enter_current = %d, sleep_exit_current = %d\n", __func__, pdata->sleep_enter_current, pdata->sleep_exit_current); } /* high load: current < 0 with charger in. * System will not shutdown while dsoc=0% with charging state(ac_in), * which will cause over discharge, so oppose status before report states. */ static void rk816_bat_lowpwr_check(struct rk816_battery *di) { static u64 time; int pwr_off_thresd = di->pdata->pwroff_vol; if (di->current_avg < 0 && di->voltage_avg < pwr_off_thresd) { if (!time) time = get_boot_sec(); if ((base2sec(time) > MINUTE(1)) || (di->voltage_avg <= pwr_off_thresd - 50)) { di->fake_offline = 1; if (di->voltage_avg <= pwr_off_thresd - 50) di->dsoc--; BAT_INFO("low power, soc=%d, current=%d\n", di->dsoc, di->current_avg); } } else { time = 0; di->fake_offline = 0; } DBG("<%s>. t=%lu, dsoc=%d, current=%d, fake_offline=%d\n", __func__, base2sec(time), di->dsoc, di->current_avg, di->fake_offline); } static bool is_rk816_bat_exist(struct rk816_battery *di) { return (rk816_bat_read(di, RK816_SUP_STS_REG) & BAT_EXS) ? true : false; } static bool is_rk816_bat_first_pwron(struct rk816_battery *di) { u8 buf; buf = rk816_bat_read(di, RK816_GGSTS_REG); if (buf & BAT_CON) { buf &= ~BAT_CON; rk816_bat_write(di, RK816_GGSTS_REG, buf); return true; } return false; } static u8 rk816_bat_get_pwroff_min(struct rk816_battery *di) { u8 now_min, last_min; now_min = rk816_bat_read(di, RK816_NON_ACT_TIMER_CNT_REG); last_min = rk816_bat_read(di, RK816_NON_ACT_TIMER_CNT_REG_SAVE); rk816_bat_write(di, RK816_NON_ACT_TIMER_CNT_REG_SAVE, now_min); return (now_min != last_min) ? now_min : 0; } static u8 is_rk816_bat_initialized(struct rk816_battery *di) { u8 val = rk816_bat_read(di, RK816_MISC_MARK_REG); if (val & FG_INIT) { val &= ~FG_INIT; rk816_bat_write(di, RK816_MISC_MARK_REG, val); return true; } else { return false; } } static bool is_rk816_bat_ocv_valid(struct rk816_battery *di) { return (!di->is_initialized && di->pwroff_min >= 30) ? true : false; } static void rk816_bat_init_age_algorithm(struct rk816_battery *di) { int age_level, ocv_soc, ocv_cap, ocv_vol; if (di->bat_first_power_on || is_rk816_bat_ocv_valid(di)) { DBG("<%s> enter.\n", __func__); ocv_vol = rk816_bat_get_ocv_voltage(di); ocv_soc = rk816_bat_vol_to_ocvsoc(di, ocv_vol); ocv_cap = rk816_bat_vol_to_ocvcap(di, ocv_vol); if (ocv_soc < 20) { di->age_voltage = ocv_vol; di->age_ocv_cap = ocv_cap; di->age_ocv_soc = ocv_soc; di->age_adjust_cap = 0; if (ocv_soc <= 0) di->age_level = 100; else if (ocv_soc < 5) di->age_level = 95; else if (ocv_soc < 10) di->age_level = 90; else di->age_level = 80; age_level = rk816_bat_get_age_level(di); if (age_level > di->age_level) { di->age_allow_update = false; age_level -= 5; if (age_level <= 80) age_level = 80; rk816_bat_save_age_level(di, age_level); } else { di->age_allow_update = true; di->age_keep_sec = get_boot_sec(); } BAT_INFO("init_age_algorithm: age_vol:%d, age_ocv_cap:%d, age_ocv_soc:%d, old_age_level:%d, age_allow_update:%d, new_age_level:%d\n", di->age_voltage, di->age_ocv_cap, ocv_soc, age_level, di->age_allow_update, di->age_level); } } } static enum power_supply_property rk816_bat_props[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_HEALTH, POWER_SUPPLY_PROP_CAPACITY, POWER_SUPPLY_PROP_TEMP, POWER_SUPPLY_PROP_CHARGE_COUNTER, POWER_SUPPLY_PROP_CHARGE_FULL, }; static int rk816_bat_ac_set_property(struct power_supply *psy, enum power_supply_property psp, const union power_supply_propval *val) { struct rk816_battery *di = power_supply_get_drvdata(psy); switch (psp) { case POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT: if (val->intval) rk816_bat_enable_input_current(di); else rk816_bat_disable_input_current(di); break; default: return -EINVAL; } return 0; } static int rk816_bat_usb_set_property(struct power_supply *psy, enum power_supply_property psp, const union power_supply_propval *val) { struct rk816_battery *di = power_supply_get_drvdata(psy); switch (psp) { case POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT: if (val->intval) rk816_bat_enable_input_current(di); else rk816_bat_disable_input_current(di); break; default: return -EINVAL; } return 0; } static int rk816_battery_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct rk816_battery *di = power_supply_get_drvdata(psy); switch (psp) { case POWER_SUPPLY_PROP_CURRENT_NOW: val->intval = di->current_avg * 1000;/*uA*/ if (di->pdata->bat_mode == MODE_VIRTUAL) val->intval = VIRTUAL_CURRENT * 1000; break; case POWER_SUPPLY_PROP_VOLTAGE_NOW: val->intval = di->voltage_avg * 1000;/*uV*/ if (di->pdata->bat_mode == MODE_VIRTUAL) val->intval = VIRTUAL_VOLTAGE * 1000; break; case POWER_SUPPLY_PROP_PRESENT: val->intval = is_rk816_bat_exist(di); if (di->pdata->bat_mode == MODE_VIRTUAL) val->intval = VIRTUAL_PRESET; break; case POWER_SUPPLY_PROP_CAPACITY: val->intval = di->dsoc; if (di->pdata->bat_mode == MODE_VIRTUAL) val->intval = VIRTUAL_SOC; DBG("<%s>. report dsoc: %d\n", __func__, val->intval); break; case POWER_SUPPLY_PROP_HEALTH: val->intval = POWER_SUPPLY_HEALTH_GOOD; break; case POWER_SUPPLY_PROP_STATUS: val->intval = di->prop_status; if (di->pdata->bat_mode == MODE_VIRTUAL) val->intval = VIRTUAL_STATUS; if (!rk816_bat_is_input_enabled(di)) val->intval = POWER_SUPPLY_STATUS_DISCHARGING; break; case POWER_SUPPLY_PROP_TEMP: val->intval = di->temperature; if (di->pdata->bat_mode == MODE_VIRTUAL) val->intval = VIRTUAL_TEMPERATURE; break; case POWER_SUPPLY_PROP_CHARGE_COUNTER: val->intval = di->charge_count; break; case POWER_SUPPLY_PROP_CHARGE_FULL: val->intval = di->pdata->design_capacity * 1000;/* uAh */ break; default: return -EINVAL; } return 0; } static enum power_supply_property rk816_ac_props[] = { POWER_SUPPLY_PROP_ONLINE, POWER_SUPPLY_PROP_VOLTAGE_MAX, POWER_SUPPLY_PROP_CURRENT_MAX, POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT, }; static enum power_supply_property rk816_usb_props[] = { POWER_SUPPLY_PROP_ONLINE, POWER_SUPPLY_PROP_VOLTAGE_MAX, POWER_SUPPLY_PROP_CURRENT_MAX, POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT, }; static int rk816_bat_ac_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { int ret = 0; struct rk816_battery *di = power_supply_get_drvdata(psy); switch (psp) { case POWER_SUPPLY_PROP_ONLINE: if (di->pdata->bat_mode == MODE_VIRTUAL) val->intval = VIRTUAL_AC_ONLINE; else if (di->fake_offline) val->intval = 0; else val->intval = di->ac_in | di->dc_in; break; case POWER_SUPPLY_PROP_VOLTAGE_MAX: val->intval = di->voltage_max; break; case POWER_SUPPLY_PROP_CURRENT_MAX: val->intval = di->current_max; break; case POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT: val->intval = rk816_bat_is_input_enabled(di); break; default: ret = -EINVAL; break; } return ret; } static int rk816_bat_usb_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { int ret = 0; struct rk816_battery *di = power_supply_get_drvdata(psy); switch (psp) { case POWER_SUPPLY_PROP_ONLINE: if (di->pdata->bat_mode == MODE_VIRTUAL) val->intval = VIRTUAL_USB_ONLINE; else if (di->fake_offline) val->intval = 0; else val->intval = di->usb_in; break; case POWER_SUPPLY_PROP_VOLTAGE_MAX: val->intval = di->voltage_max; break; case POWER_SUPPLY_PROP_CURRENT_MAX: val->intval = di->current_max; break; case POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT: val->intval = rk816_bat_is_input_enabled(di); break; default: ret = -EINVAL; break; } return ret; } static int rk816_bat_writable_property(struct power_supply *psy, enum power_supply_property psp) { switch (psp) { case POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT: return 1; default: return 0; } return 0; } static const struct power_supply_desc rk816_bat_desc = { .name = "battery", .type = POWER_SUPPLY_TYPE_BATTERY, .properties = rk816_bat_props, .num_properties = ARRAY_SIZE(rk816_bat_props), .get_property = rk816_battery_get_property, }; static const struct power_supply_desc rk816_ac_desc = { .name = "ac", .type = POWER_SUPPLY_TYPE_MAINS, .properties = rk816_ac_props, .num_properties = ARRAY_SIZE(rk816_ac_props), .get_property = rk816_bat_ac_get_property, .set_property = rk816_bat_ac_set_property, .property_is_writeable = rk816_bat_writable_property, }; static const struct power_supply_desc rk816_usb_desc = { .name = "usb", .type = POWER_SUPPLY_TYPE_USB, .properties = rk816_usb_props, .num_properties = ARRAY_SIZE(rk816_usb_props), .get_property = rk816_bat_usb_get_property, .set_property = rk816_bat_usb_set_property, .property_is_writeable = rk816_bat_writable_property, }; static int rk816_bat_init_power_supply(struct rk816_battery *di) { struct power_supply_config psy_cfg = { .drv_data = di, }; di->bat = devm_power_supply_register(di->dev, &rk816_bat_desc, &psy_cfg); if (IS_ERR(di->bat)) { dev_err(di->dev, "register bat power supply fail\n"); return PTR_ERR(di->bat); } di->ac = devm_power_supply_register(di->dev, &rk816_ac_desc, &psy_cfg); if (IS_ERR(di->ac)) { dev_err(di->dev, "register ac power supply fail\n"); return PTR_ERR(di->ac); } di->usb = devm_power_supply_register(di->dev, &rk816_usb_desc, &psy_cfg); if (IS_ERR(di->usb)) { dev_err(di->dev, "register usb power supply fail\n"); return PTR_ERR(di->usb); } return 0; } static void rk816_bat_save_cap(struct rk816_battery *di, int capacity) { u8 buf; static u32 old_cap; if (capacity >= di->qmax) capacity = di->qmax; if (capacity <= 0) capacity = 0; if (old_cap == capacity) return; old_cap = capacity; buf = (capacity >> 24) & 0xff; rk816_bat_write(di, RK816_REMAIN_CAP_REG3, buf); buf = (capacity >> 16) & 0xff; rk816_bat_write(di, RK816_REMAIN_CAP_REG2, buf); buf = (capacity >> 8) & 0xff; rk816_bat_write(di, RK816_REMAIN_CAP_REG1, buf); buf = (capacity >> 0) & 0xff; rk816_bat_write(di, RK816_REMAIN_CAP_REG0, buf); } static int rk816_bat_get_prev_cap(struct rk816_battery *di) { int val = 0; val |= rk816_bat_read(di, RK816_REMAIN_CAP_REG3) << 24; val |= rk816_bat_read(di, RK816_REMAIN_CAP_REG2) << 16; val |= rk816_bat_read(di, RK816_REMAIN_CAP_REG1) << 8; val |= rk816_bat_read(di, RK816_REMAIN_CAP_REG0) << 0; return val; } static void rk816_bat_save_fcc(struct rk816_battery *di, u32 fcc) { u8 buf; buf = (fcc >> 24) & 0xff; rk816_bat_write(di, RK816_NEW_FCC_REG3, buf); buf = (fcc >> 16) & 0xff; rk816_bat_write(di, RK816_NEW_FCC_REG2, buf); buf = (fcc >> 8) & 0xff; rk816_bat_write(di, RK816_NEW_FCC_REG1, buf); buf = (fcc >> 0) & 0xff; rk816_bat_write(di, RK816_NEW_FCC_REG0, buf); BAT_INFO("save fcc: %d\n", fcc); } static int rk816_bat_get_fcc(struct rk816_battery *di) { u32 fcc = 0; fcc |= rk816_bat_read(di, RK816_NEW_FCC_REG3) << 24; fcc |= rk816_bat_read(di, RK816_NEW_FCC_REG2) << 16; fcc |= rk816_bat_read(di, RK816_NEW_FCC_REG1) << 8; fcc |= rk816_bat_read(di, RK816_NEW_FCC_REG0) << 0; if (fcc < MIN_FCC) { BAT_INFO("invalid fcc(%d), use design cap", fcc); fcc = di->pdata->design_capacity; rk816_bat_save_fcc(di, fcc); } else if (fcc > di->pdata->design_qmax) { BAT_INFO("invalid fcc(%d), use qmax", fcc); fcc = di->pdata->design_qmax; rk816_bat_save_fcc(di, fcc); } return fcc; } static int rk816_bat_get_lock_fcc(struct rk816_battery *di) { u8 reg; int fcc, val = 0; /* check lock flag, 1: yes, 0: no */ reg = rk816_bat_read(di, RK816_GGSTS_REG); if ((reg & FCC_LOCK) == 0) return 0; val |= rk816_bat_read(di, RK816_FCC_GASCNT_REG3) << 24; val |= rk816_bat_read(di, RK816_FCC_GASCNT_REG2) << 16; val |= rk816_bat_read(di, RK816_FCC_GASCNT_REG1) << 8; val |= rk816_bat_read(di, RK816_FCC_GASCNT_REG0) << 0; fcc = val / 2390; /* clear lock flag */ reg &= ~FCC_LOCK; rk816_bat_write(di, RK816_GGSTS_REG, reg); BAT_INFO("lock fcc = %d\n", fcc); return fcc; } static void rk816_bat_save_dsoc(struct rk816_battery *di, u8 save_soc) { static int last_soc = -1; if (last_soc != save_soc) { rk816_bat_write(di, RK816_SOC_REG, save_soc); last_soc = save_soc; } } static int rk816_bat_get_prev_dsoc(struct rk816_battery *di) { return rk816_bat_read(di, RK816_SOC_REG); } static void rk816_bat_save_reboot_cnt(struct rk816_battery *di, u8 save_cnt) { rk816_bat_write(di, RK816_REBOOT_CNT_REG, save_cnt); } static void rk816_bat_init_leds(struct rk816_battery *di) { if (rk816_led_ops && rk816_led_ops->led_init) { rk816_led_ops->led_init(di); BAT_INFO("leds initialized\n"); } } static void rk816_bat_update_leds(struct rk816_battery *di, int prop) { static int old_prop = -1; if (prop == old_prop) return; old_prop = prop; switch (prop) { case POWER_SUPPLY_STATUS_FULL: if (rk816_led_ops && rk816_led_ops->led_charging_full) { rk816_led_ops->led_charging_full(di); BAT_INFO("charging full led on\n"); } break; case POWER_SUPPLY_STATUS_CHARGING: if (rk816_led_ops && rk816_led_ops->led_charging) { rk816_led_ops->led_charging(di); BAT_INFO("charging led on\n"); } break; case POWER_SUPPLY_STATUS_DISCHARGING: if (rk816_led_ops && rk816_led_ops->led_discharging) { rk816_led_ops->led_discharging(di); BAT_INFO("discharging led on\n"); } break; default: BAT_INFO("Unknown led update\n"); break; } } static void rk816_bat_set_current(struct rk816_battery *di, int charge_current) { u8 usb_ctrl; if (di->pdata->bat_mode == MODE_VIRTUAL) { BAT_INFO("virtual power test mode, set max input current\n"); charge_current = di->chrg_cur_input; } usb_ctrl = rk816_bat_read(di, RK816_USB_CTRL_REG); usb_ctrl &= ~INPUT_CUR_MSK; usb_ctrl |= (charge_current); rk816_bat_write(di, RK816_USB_CTRL_REG, usb_ctrl); } static void rk816_bat_set_chrg_param(struct rk816_battery *di, enum charger_t charger_type) { u8 buf, usb_ctrl, chrg_ctrl1; const char *charger_name[] = {"NONE", "NONE USB", "USB", "AC", "CDP1.5A", "DC", "NONE DC"}; switch (charger_type) { case USB_TYPE_UNKNOWN_CHARGER: di->usb_in = 0; di->ac_in = 0; di->dc_in = 0; di->prop_status = POWER_SUPPLY_STATUS_DISCHARGING; rk816_bat_set_current(di, INPUT_CUR450MA); power_supply_changed(di->bat); power_supply_changed(di->usb); power_supply_changed(di->ac); break; case USB_TYPE_NONE_CHARGER: di->usb_in = 0; di->ac_in = 0; if (di->dc_in == 0) { di->prop_status = POWER_SUPPLY_STATUS_DISCHARGING; rk816_bat_set_current(di, INPUT_CUR450MA); } power_supply_changed(di->usb); power_supply_changed(di->ac); break; case USB_TYPE_USB_CHARGER: di->usb_in = 1; di->ac_in = 0; di->prop_status = POWER_SUPPLY_STATUS_CHARGING; if (di->dc_in == 0) rk816_bat_set_current(di, INPUT_CUR450MA); power_supply_changed(di->usb); break; case USB_TYPE_CDP_CHARGER: di->usb_in = 1; di->ac_in = 0; di->prop_status = POWER_SUPPLY_STATUS_CHARGING; if (di->dc_in == 0) rk816_bat_set_current(di, INPUT_CUR1500MA); power_supply_changed(di->usb); break; case USB_TYPE_AC_CHARGER: di->ac_in = 1; di->usb_in = 0; di->prop_status = POWER_SUPPLY_STATUS_CHARGING; if (di->pdata->lp_input_current && di->dsoc >= di->pdata->lp_soc_min && di->dsoc <= di->pdata->lp_soc_max) rk816_bat_set_current(di, di->chrg_cur_lp_input); else rk816_bat_set_current(di, di->chrg_cur_input); power_supply_changed(di->ac); break; case DC_TYPE_DC_CHARGER: di->dc_in = 1; di->prop_status = POWER_SUPPLY_STATUS_CHARGING; if (di->pdata->lp_input_current && di->dsoc >= di->pdata->lp_soc_min && di->dsoc <= di->pdata->lp_soc_max) rk816_bat_set_current(di, di->chrg_cur_lp_input); else rk816_bat_set_current(di, di->chrg_cur_input); power_supply_changed(di->ac); break; case DC_TYPE_NONE_CHARGER: di->dc_in = 0; /* * check by pmic int avoid usb error notify: * when plug in dc, usb may error notify usb/ac plug in, * while dc plug out, the "ac/usb_in" still hold */ buf = rk816_bat_read(di, RK816_VB_MON_REG); if ((buf & PLUG_IN_STS) == 0) { di->ac_in = 0; di->usb_in = 0; di->prop_status = POWER_SUPPLY_STATUS_DISCHARGING; rk816_bat_set_current(di, INPUT_CUR450MA); } else if (di->usb_in) { rk816_bat_set_current(di, INPUT_CUR450MA); di->prop_status = POWER_SUPPLY_STATUS_CHARGING; } power_supply_changed(di->usb); power_supply_changed(di->ac); break; default: di->prop_status = POWER_SUPPLY_STATUS_DISCHARGING; break; } usb_ctrl = rk816_bat_read(di, RK816_USB_CTRL_REG); chrg_ctrl1 = rk816_bat_read(di, RK816_CHRG_CTRL_REG1); BAT_INFO("set charger type: %s, current: input=%d, chrg=%d\n", charger_name[charger_type], CHRG_CUR_INPUT[usb_ctrl & 0x0f], CHRG_CUR_SEL[chrg_ctrl1 & 0x0f]); if (di->dsoc == 100 && rk816_bat_chrg_online(di)) di->prop_status = POWER_SUPPLY_STATUS_FULL; rk816_bat_update_leds(di, di->prop_status); } static void rk816_bat_set_otg_in(struct rk816_battery *di, int online) { di->otg_in = online; } /* * -----: VBUS-5V * #####: PMIC_INT * * * A 140ms D * |------------------>>>>>>>>>>>>>>> * | B C * ########################## * | # * | 100ms # F E * -------------- ############## * * [PMIC] * A: charger plugin event(vbus-5v on); * C: pmic reaction time finish, [A~C] = 100ms; * D: pmic switch to charging mode, start charging, [A~D] = 140ms; * * [Software] * B: PLUG_IN_STS=0, we think it's not charging mode, so enable otg+boost, * but actually, PLUG_IN_STS is not effective now. * F: pmic reaction finish, PLUG_IN_STS is effective and we do check again. * E: output-5v mode really works(enable boost+otg) * * [Mistake detail] * 1. Charger plugin at spot-A and switch to charing mode at spot-D. * 2. Software check PLUG_IN_STS=0 at spot-B, so we think it's not * charging mode and we enable boost+otg, and this really works at * spot-E(because delay of i2c transfer or other). * 3. It's a pity that pmic has been changed to charing mode at spot-D * earlier than spot-E. * * After above mistake, we enable otg+boost in charing mode. Then, boost will * burn off if we plugout charger. * * [Solution] * we should abey the rule: Don't enable boost while in charging mode. * We should enable otg first at spot-B, trying to switch to output-5v mode, * then delay 140ms(pmic reaction and other) to check effective PLUG_IN_STS * again at spot-F, if PLUG_IN_STS=1, means it's charging mode now, we abandont * enable boost and disable otg. Otherwise, we can turn on boost safely. */ static void rk816_bat_set_otg_power(struct rk816_battery *di, int power) { u8 buf; switch (power) { case USB_OTG_POWER_ON: if (di->otg_pmic5v) { BAT_INFO("otg5v is on yet, ignore..\n"); break; } /* (spot-B). for safe, detect vbus-5v by pmic self */ buf = rk816_bat_read(di, RK816_VB_MON_REG); if (buf & PLUG_IN_STS) { BAT_INFO("detect vbus-5v suppling, deny otg on..\n"); break; } /* (spot-B). enable otg, try to switch to output-5v mode */ rk816_bat_set_bits(di, RK816_DCDC_EN_REG2, BOOST_OTG_MASK, BOOST_OFF_OTG_ON); /* * pmic need about 140ms to switch to charging mode, so wait * 140ms and check charger again. if still check vbus-5v online, * that means it's charger mode now, we should turn off boost * and otg, then return. */ msleep(140); /* spot-F */ buf = rk816_bat_read(di, RK816_VB_MON_REG); if (buf & PLUG_IN_STS) { rk816_bat_set_bits(di, RK816_DCDC_EN_REG2, BOOST_OTG_MASK, BOOST_OTG_OFF); BAT_INFO("detect vbus-5v suppling too, deny otg on\n"); break; } /* * reach here, means pmic switch to output-5v mode ok, it's * safe to enable boost-5v on output mode. */ rk816_bat_set_bits(di, RK816_DCDC_EN_REG2, BOOST_OTG_MASK, BOOST_OTG_ON); di->otg_pmic5v = 1; break; case USB_OTG_POWER_OFF: if (!di->otg_pmic5v) { BAT_INFO("otg5v is off yet, ignore..\n"); } else { rk816_bat_set_bits(di, RK816_DCDC_EN_REG2, BOOST_OTG_MASK, BOOST_OTG_OFF); di->otg_pmic5v = 0; } break; default: break; } } static enum charger_t rk816_bat_get_adc_dc_state(struct rk816_battery *di) { int val = 0; if (!di->iio_chan) { di->iio_chan = iio_channel_get(&di->rk816->i2c->dev, NULL); if (IS_ERR(di->iio_chan)) { di->iio_chan = NULL; return DC_TYPE_NONE_CHARGER; } } if (iio_read_channel_raw(di->iio_chan, &val) < 0) { pr_err("read channel error\n"); return DC_TYPE_NONE_CHARGER; } return (val >= DC_ADC_TRIGGER) ? DC_TYPE_DC_CHARGER : DC_TYPE_NONE_CHARGER; } static enum charger_t rk816_bat_get_gpio_dc_state(struct rk816_battery *di) { int level; if (!gpio_is_valid(di->pdata->dc_det_pin)) return DC_TYPE_NONE_CHARGER; level = gpio_get_value(di->pdata->dc_det_pin); return (level == di->pdata->dc_det_level) ? DC_TYPE_DC_CHARGER : DC_TYPE_NONE_CHARGER; } static enum charger_t rk816_bat_get_dc_state(struct rk816_battery *di) { enum charger_t type; if (di->pdata->dc_det_adc) type = rk816_bat_get_adc_dc_state(di); else type = rk816_bat_get_gpio_dc_state(di); return type; } static void rk816_bat_dc_delay_work(struct work_struct *work) { enum charger_t type; static enum charger_t old_type = USB_TYPE_UNKNOWN_CHARGER; struct rk816_battery *di = container_of(work, struct rk816_battery, dc_delay_work.work); type = rk816_bat_get_dc_state(di); if (old_type == type) goto out; old_type = type; if (type == DC_TYPE_DC_CHARGER) { BAT_INFO("detect dc charger in..\n"); rk816_bat_set_chrg_param(di, DC_TYPE_DC_CHARGER); /* check otg supply */ if (di->otg_in && di->pdata->power_dc2otg) { BAT_INFO("otg power from dc adapter\n"); rk816_bat_set_otg_power(di, USB_OTG_POWER_OFF); } } else { BAT_INFO("detect dc charger out..\n"); rk816_bat_set_chrg_param(di, DC_TYPE_NONE_CHARGER); /* check otg supply, power on anyway */ if (di->otg_in) { BAT_INFO("charge disable, enable otg\n"); /* * must wait 200ms to wait 5v-input fade away before * enable boost */ msleep(200); rk816_bat_set_otg_power(di, USB_OTG_POWER_ON); } } out: /* adc need check all the time */ if (di->pdata->dc_det_adc) queue_delayed_work(di->usb_charger_wq, &di->dc_delay_work, msecs_to_jiffies(1000)); } static int rk816_bat_fb_notifier(struct notifier_block *nb, unsigned long event, void *data) { struct rk816_battery *di; struct fb_event *evdata = data; di = container_of(nb, struct rk816_battery, fb_nb); if (event == FB_EVENT_BLANK || event == FB_EARLY_EVENT_BLANK || event == FB_R_EARLY_EVENT_BLANK) di->fb_blank = *(int *)evdata->data; else di->fb_blank = 1; return 0; } static int rk816_bat_register_fb_notify(struct rk816_battery *di) { memset(&di->fb_nb, 0, sizeof(di->fb_nb)); di->fb_nb.notifier_call = rk816_bat_fb_notifier; return fb_register_client(&di->fb_nb); } static int rk816_bat_unregister_fb_notify(struct rk816_battery *di) { return fb_unregister_client(&di->fb_nb); } static void rk816_bat_init_coulomb_cap(struct rk816_battery *di, u32 capacity) { u8 buf; u32 cap; if (!di->over_20mR) cap = RES_FAC_DIV(capacity * 2390, di->res_fac); else cap = RES_FAC_MUX(capacity * 2390, di->res_fac); buf = (cap >> 24) & 0xff; rk816_bat_write(di, RK816_GASCNT_CAL_REG3, buf); buf = (cap >> 16) & 0xff; rk816_bat_write(di, RK816_GASCNT_CAL_REG2, buf); buf = (cap >> 8) & 0xff; rk816_bat_write(di, RK816_GASCNT_CAL_REG1, buf); buf = (cap >> 0) & 0xff; rk816_bat_write(di, RK816_GASCNT_CAL_REG0, buf); di->remain_cap = capacity; di->rsoc = rk816_bat_get_rsoc(di); } static u8 rk816_bat_get_halt_cnt(struct rk816_battery *di) { return rk816_bat_read(di, RK816_HALT_CNT_REG); } static void rk816_bat_inc_halt_cnt(struct rk816_battery *di) { u8 cnt; cnt = rk816_bat_read(di, RK816_HALT_CNT_REG); rk816_bat_write(di, RK816_HALT_CNT_REG, ++cnt); } static bool is_rk816_bat_last_halt(struct rk816_battery *di) { int pre_cap = rk816_bat_get_prev_cap(di); int now_cap = rk816_bat_get_coulomb_cap(di); /* over 10%: system halt last time */ if (abs(now_cap - pre_cap) > (di->fcc / 10)) { rk816_bat_inc_halt_cnt(di); return true; } else { return false; } } static void rk816_bat_first_pwron(struct rk816_battery *di) { int ocv_vol; rk816_bat_save_fcc(di, di->design_cap); ocv_vol = rk816_bat_get_ocv_voltage(di); di->fcc = rk816_bat_get_fcc(di); di->nac = rk816_bat_vol_to_ocvcap(di, ocv_vol); di->rsoc = rk816_bat_vol_to_ocvsoc(di, ocv_vol); di->dsoc = di->rsoc; di->is_first_on = true; BAT_INFO("first on: dsoc=%d, rsoc=%d cap=%d, fcc=%d, ov=%d\n", di->dsoc, di->rsoc, di->nac, di->fcc, ocv_vol); } static void rk816_bat_not_first_pwron(struct rk816_battery *di) { int now_cap, pre_soc, pre_cap, ocv_cap, ocv_soc, ocv_vol; di->fcc = rk816_bat_get_fcc(di); pre_soc = rk816_bat_get_prev_dsoc(di); pre_cap = rk816_bat_get_prev_cap(di); now_cap = rk816_bat_get_coulomb_cap(di); di->is_halt = is_rk816_bat_last_halt(di); di->halt_cnt = rk816_bat_get_halt_cnt(di); di->is_initialized = is_rk816_bat_initialized(di); di->is_ocv_calib = is_rk816_bat_ocv_valid(di); if (di->is_initialized) { BAT_INFO("initialized yet..\n"); goto finish; } else if (di->is_halt) { BAT_INFO("system halt last time... cap: pre=%d, now=%d\n", pre_cap, now_cap); if (now_cap < 0) now_cap = 0; rk816_bat_init_coulomb_cap(di, now_cap); pre_cap = now_cap; pre_soc = di->rsoc; goto finish; } else if (di->is_ocv_calib) { ocv_vol = rk816_bat_get_ocv_voltage(di); ocv_soc = rk816_bat_vol_to_ocvsoc(di, ocv_vol); ocv_cap = rk816_bat_vol_to_ocvcap(di, ocv_vol); pre_cap = ocv_cap; di->ocv_pre_dsoc = pre_soc; di->ocv_new_dsoc = ocv_soc; if (abs(ocv_soc - pre_soc) >= di->pdata->max_soc_offset) { di->ocv_pre_dsoc = pre_soc; di->ocv_new_dsoc = ocv_soc; di->is_max_soc_offset = true; BAT_INFO("trigger max soc offset, dsoc: %d -> %d\n", pre_soc, ocv_soc); pre_soc = ocv_soc; } BAT_INFO("OCV calib: cap=%d, rsoc=%d\n", ocv_cap, ocv_soc); } else if (di->pwroff_min > 0) { ocv_vol = rk816_bat_get_ocv_voltage(di); ocv_soc = rk816_bat_vol_to_ocvsoc(di, ocv_vol); ocv_cap = rk816_bat_vol_to_ocvcap(di, ocv_vol); di->force_pre_dsoc = pre_soc; di->force_new_dsoc = ocv_soc; if (abs(ocv_soc - pre_soc) >= 80) { di->is_force_calib = true; BAT_INFO("dsoc force calib: %d -> %d\n", pre_soc, ocv_soc); pre_soc = ocv_soc; pre_cap = ocv_cap; } } finish: di->dsoc = pre_soc; di->nac = pre_cap; if (di->nac < 0) di->nac = 0; BAT_INFO("dsoc=%d cap=%d v=%d ov=%d rv=%d min=%d psoc=%d pcap=%d\n", di->dsoc, di->nac, rk816_bat_get_avg_voltage(di), rk816_bat_get_ocv_voltage(di), rk816_bat_get_relax_voltage(di), di->pwroff_min, rk816_bat_get_prev_dsoc(di), rk816_bat_get_prev_cap(di)); } static bool rk816_bat_ocv_sw_reset(struct rk816_battery *di) { u8 buf; buf = rk816_bat_read(di, RK816_MISC_MARK_REG); if (((buf & FG_RESET_LATE) && di->pwroff_min >= 30) || (buf & FG_RESET_NOW)) { buf &= ~FG_RESET_LATE; buf &= ~FG_RESET_NOW; rk816_bat_write(di, RK816_MISC_MARK_REG, buf); BAT_INFO("manual reset fuel gauge\n"); return true; } else { return false; } } static void rk816_bat_setup_ocv_table(struct rk816_battery *di, int temp) { int i, idx = 0; int temp_h, temp_l, percent, volt_htemp, volt_ltemp; int *temp_t = di->pdata->temp_t; int temp_t_num = di->pdata->temp_t_num; if (temp_t_num < 2) return; DBG("<%s>. temperature=%d\n", __func__, temp); /* Out of MIN, select MIN */ if (temp < temp_t[0]) { DBG("<%s>. Out MIN\n", __func__); di->pdata->ocv_table = di->pdata->table_t[0]; return; } /* Out of MAX, select MAX */ if (temp > temp_t[temp_t_num - 1]) { DBG("<%s>. Out MAX\n", __func__); di->pdata->ocv_table = di->pdata->table_t[temp_t_num - 1]; return; } /* Exactly match some one */ for (i = 0; i < temp_t_num; i++) { if (temp == temp_t[i]) { DBG("<%s>. Match: %d'C\n", __func__, temp_t[i]); di->pdata->ocv_table = di->pdata->table_t[i]; return; } } /* Find position of current temperature, must be fond */ for (i = 0; i < temp_t_num - 1; i++) { if ((temp > temp_t[i]) && (temp < temp_t[i + 1])) { idx = i; break; } } DBG("<%s>. found! idx = %d\n", __func__, idx); /* calculate percent */ temp_l = temp_t[idx]; temp_h = temp_t[idx + 1]; percent = (temp - temp_l) * 100 / DIV(temp_h - temp_l); /* Fill in new ocv table members */ for (i = 0; i < di->pdata->ocv_size; i++) { volt_ltemp = di->pdata->table_t[idx][i]; volt_htemp = di->pdata->table_t[idx + 1][i]; di->pdata->ocv_table[i] = volt_ltemp + (volt_htemp - volt_ltemp) * percent / 100; DBG("#low=%d'C[%dmv], me=%d'C[%dmv], high=%d'C[%dmv]. percent=%d, delta=%dmv\n", temp_l, volt_ltemp, temp, di->pdata->ocv_table[i], temp_h, volt_htemp, percent, (volt_htemp - volt_ltemp) * percent / 100); } } static void rk816_bat_init_rsoc(struct rk816_battery *di) { di->bat_first_power_on = is_rk816_bat_first_pwron(di); di->is_sw_reset = rk816_bat_ocv_sw_reset(di); di->pwroff_min = rk816_bat_get_pwroff_min(di); if (di->bat_first_power_on || di->is_sw_reset) rk816_bat_first_pwron(di); else rk816_bat_not_first_pwron(di); } static u8 rk816_bat_get_chrg_status(struct rk816_battery *di) { u8 status; status = rk816_bat_read(di, RK816_SUP_STS_REG) & CHRG_STATUS_MSK; switch (status) { case CHARGE_OFF: DBG("CHARGE-OFF ...\n"); break; case DEAD_CHARGE: BAT_INFO("DEAD CHARGE...\n"); break; case TRICKLE_CHARGE: BAT_INFO("TRICKLE CHARGE...\n "); break; case CC_OR_CV: DBG("CC or CV...\n"); break; case CHARGE_FINISH: DBG("CHARGE FINISH...\n"); break; case USB_OVER_VOL: BAT_INFO("USB OVER VOL...\n"); break; case BAT_TMP_ERR: BAT_INFO("BAT TMP ERROR...\n"); break; case TIMER_ERR: BAT_INFO("TIMER ERROR...\n"); break; case USB_EXIST: BAT_INFO("USB EXIST...\n"); break; case USB_EFF: BAT_INFO("USB EFF...\n"); break; default: BAT_INFO("UNKNOWN STATUS...\n"); break; } return status; } static u8 rk816_bat_fb_temp(struct rk816_battery *di) { u8 reg; int index, fb_temp; reg = DEFAULT_FB_TEMP; fb_temp = di->pdata->fb_temp; for (index = 0; index < ARRAY_SIZE(FEED_BACK_TEMP); index++) { if (fb_temp < FEED_BACK_TEMP[index]) break; reg = (index << FB_TEMP_SHIFT); } return reg; } static void rk816_bat_select_sample_res(struct rk816_battery *di) { if (di->pdata->sample_res == 20) { di->over_20mR = 0; di->res_fac = 10; } else if (di->pdata->sample_res > 20) { di->over_20mR = 1; di->res_fac = di->pdata->sample_res * 10 / 20; } else { di->over_20mR = 0; di->res_fac = 20 * 10 / di->pdata->sample_res; } } static void rk816_bat_select_chrg_cv(struct rk816_battery *di) { int index, chrg_vol_sel, chrg_cur_sel, chrg_cur_input; int chrg_cur_lp_input; di->chrg_vol_sel = DEFAULT_CHRG_VOL_SEL; di->chrg_cur_input = DEFAULT_CHRG_CUR_INPUT; di->chrg_cur_sel = DEFAULT_CHRG_CUR_SEL; di->chrg_cur_lp_input = 0; chrg_vol_sel = di->pdata->max_chrg_voltage; chrg_cur_sel = di->pdata->max_chrg_current; chrg_cur_input = di->pdata->max_input_current; chrg_cur_lp_input = di->pdata->lp_input_current; if (di->pdata->sample_res < 20) { if (chrg_cur_sel > 2000) chrg_cur_sel = RES_FAC_DIV(chrg_cur_sel, di->res_fac); else chrg_cur_sel = 1000; } else if (di->pdata->sample_res > 20) { chrg_cur_sel = RES_FAC_MUX(chrg_cur_sel, di->res_fac); if (chrg_cur_sel > 2400) chrg_cur_sel = 2400; if (chrg_cur_sel < 1000) chrg_cur_sel = 1000; } for (index = 0; index < ARRAY_SIZE(CHRG_CUR_INPUT); index++) { if (chrg_cur_lp_input < CHRG_CUR_INPUT[index]) break; di->chrg_cur_lp_input = (index << CHRG_CRU_INPUT_SHIFT); } for (index = 0; index < ARRAY_SIZE(CHRG_VOL_SEL); index++) { if (chrg_vol_sel < CHRG_VOL_SEL[index]) break; di->chrg_vol_sel = (index << CHRG_VOL_SEL_SHIFT); } for (index = 2; index < ARRAY_SIZE(CHRG_CUR_INPUT); index++) { if (chrg_cur_input < 850 && chrg_cur_input > 80) { di->chrg_cur_input = 0x0; break; } else if (chrg_cur_input <= 80) { di->chrg_cur_input = 0x1; break; } else { if (chrg_cur_input < CHRG_CUR_INPUT[index]) break; di->chrg_cur_input = (index << CHRG_CRU_INPUT_SHIFT); } } for (index = 0; index < ARRAY_SIZE(CHRG_CUR_SEL); index++) { if (chrg_cur_sel < CHRG_CUR_SEL[index]) break; di->chrg_cur_sel = (index << CHRG_CRU_SEL_SHIFT); } DBG("<%s>. vol = 0x%x, input = 0x%x, sel = 0x%x\n", __func__, di->chrg_vol_sel, di->chrg_cur_input, di->chrg_cur_sel); } static u8 rk816_bat_finish_ma(struct rk816_battery *di, int fcc) { u8 ma; if (fcc > 5000) ma = FINISH_250MA; else if (fcc >= 4000) ma = FINISH_200MA; else if (fcc >= 3000) ma = FINISH_150MA; else ma = FINISH_100MA; /* adjust ma according to sample resistor */ if (di->pdata->sample_res < 20) { /* ma should div 2 */ if (ma == FINISH_200MA) ma = FINISH_100MA; else if (ma == FINISH_250MA) ma = FINISH_150MA; } else if (di->pdata->sample_res > 20) { /* ma should mux 2 */ if (ma == FINISH_100MA) ma = FINISH_200MA; else if (ma == FINISH_150MA) ma = FINISH_250MA; } return ma; } static void rk816_bat_init_chrg_config(struct rk816_battery *di) { u8 chrg_ctrl1, usb_ctrl, chrg_ctrl2, chrg_ctrl3; u8 sup_sts, thermal, ggcon, finish_ma, fb_temp; rk816_bat_select_chrg_cv(di); finish_ma = rk816_bat_finish_ma(di, di->fcc); fb_temp = rk816_bat_fb_temp(di); ggcon = rk816_bat_read(di, RK816_GGCON_REG); sup_sts = rk816_bat_read(di, RK816_SUP_STS_REG); thermal = rk816_bat_read(di, RK816_THERMAL_REG); usb_ctrl = rk816_bat_read(di, RK816_USB_CTRL_REG); chrg_ctrl1 = rk816_bat_read(di, RK816_CHRG_CTRL_REG1); chrg_ctrl2 = rk816_bat_read(di, RK816_CHRG_CTRL_REG2); chrg_ctrl3 = rk816_bat_read(di, RK816_CHRG_CTRL_REG3); /* set charge current and voltage */ usb_ctrl &= ~INPUT_CUR_MSK; usb_ctrl |= di->chrg_cur_input; chrg_ctrl1 = (CHRG_EN) | (di->chrg_vol_sel | di->chrg_cur_sel); /* set charge finish current */ chrg_ctrl3 |= CHRG_TERM_DIG_SIGNAL; chrg_ctrl2 &= ~FINISH_CUR_MSK; chrg_ctrl2 |= finish_ma; /* disable cccv mode */ chrg_ctrl3 &= ~CHRG_TIMER_CCCV_EN; /* enable voltage limit and enable input current limit */ sup_sts |= USB_VLIMIT_EN; sup_sts |= USB_CLIMIT_EN; /* set feed back temperature */ if (di->pdata->fb_temp) usb_ctrl |= CHRG_CT_EN; else usb_ctrl &= ~CHRG_CT_EN; thermal &= ~FB_TEMP_MSK; thermal |= fb_temp; /* adc current mode */ ggcon |= ADC_CUR_MODE; ggcon |= AVG_CUR_MODE; rk816_bat_write(di, RK816_GGCON_REG, ggcon); rk816_bat_write(di, RK816_SUP_STS_REG, sup_sts); rk816_bat_write(di, RK816_THERMAL_REG, thermal); rk816_bat_write(di, RK816_USB_CTRL_REG, usb_ctrl); rk816_bat_write(di, RK816_CHRG_CTRL_REG1, chrg_ctrl1); rk816_bat_write(di, RK816_CHRG_CTRL_REG2, chrg_ctrl2); rk816_bat_write(di, RK816_CHRG_CTRL_REG3, chrg_ctrl3); } static void rk816_bat_init_poffset(struct rk816_battery *di) { int coffset, ioffset; coffset = rk816_bat_get_coffset(di); ioffset = rk816_bat_get_ioffset(di); di->poffset = coffset - ioffset; } static void rk816_bat_caltimer_isr(unsigned long data) { struct rk816_battery *di = (struct rk816_battery *)data; mod_timer(&di->caltimer, jiffies + MINUTE(8) * HZ); queue_delayed_work(di->bat_monitor_wq, &di->calib_delay_work, msecs_to_jiffies(10)); } static void rk816_bat_internal_calib(struct work_struct *work) { int ioffset; struct rk816_battery *di = container_of(work, struct rk816_battery, calib_delay_work.work); ioffset = rk816_bat_get_ioffset(di); rk816_bat_set_coffset(di, di->poffset + ioffset); rk816_bat_init_voltage_kb(di); BAT_INFO("caltimer: ioffset=0x%x, coffset=0x%x\n", ioffset, rk816_bat_get_coffset(di)); } static void rk816_bat_init_caltimer(struct rk816_battery *di) { setup_timer(&di->caltimer, rk816_bat_caltimer_isr, (unsigned long)di); di->caltimer.expires = jiffies + MINUTE(8) * HZ; add_timer(&di->caltimer); INIT_DELAYED_WORK(&di->calib_delay_work, rk816_bat_internal_calib); } static void rk816_bat_init_zero_table(struct rk816_battery *di) { int i, diff, min, max; size_t ocv_size, length; ocv_size = di->pdata->ocv_size; length = sizeof(di->pdata->zero_table) * ocv_size; di->pdata->zero_table = devm_kzalloc(di->dev, length, GFP_KERNEL); if (!di->pdata->zero_table) { di->pdata->zero_table = di->pdata->ocv_table; dev_err(di->dev, "malloc zero table fail\n"); return; } min = di->pdata->pwroff_vol, max = di->pdata->ocv_table[ocv_size - 4]; diff = (max - min) / DIV(ocv_size - 1); for (i = 0; i < ocv_size; i++) di->pdata->zero_table[i] = min + (i * diff); if (!dbg_enable) return; for (i = 0; i < ocv_size; i++) DBG("zero[%d] = %d\n", i, di->pdata->zero_table[i]); for (i = 0; i < ocv_size; i++) DBG("ocv[%d] = %d\n", i, di->pdata->ocv_table[i]); } static void rk816_bat_calc_sm_linek(struct rk816_battery *di) { int linek, current_avg; u8 diff, delta; delta = abs(di->dsoc - di->rsoc); diff = delta * 3;/* speed:3/4 */ current_avg = rk816_bat_get_avg_current(di); if (current_avg >= 0) { if (di->dsoc < di->rsoc) linek = 1000 * (delta + diff) / DIV(diff); else if (di->dsoc > di->rsoc) linek = 1000 * diff / DIV(delta + diff); else linek = 1000; di->dbg_meet_soc = (di->dsoc >= di->rsoc) ? (di->dsoc + diff) : (di->rsoc + diff); } else { if (di->dsoc < di->rsoc) linek = -1000 * diff / DIV(delta + diff); else if (di->dsoc > di->rsoc) linek = -1000 * (delta + diff) / DIV(diff); else linek = -1000; di->dbg_meet_soc = (di->dsoc >= di->rsoc) ? (di->dsoc - diff) : (di->rsoc - diff); } di->sm_linek = linek; di->sm_remain_cap = di->remain_cap; di->dbg_calc_dsoc = di->dsoc; di->dbg_calc_rsoc = di->rsoc; DBG("<%s>.diff=%d, k=%d, cur=%d\n", __func__, diff, linek, current_avg); } static void rk816_bat_calc_zero_linek(struct rk816_battery *di) { int dead_voltage, ocv_voltage; int voltage_avg, current_avg, vsys; int ocv_cap, dead_cap, xsoc; int ocv_soc, dead_soc; int pwroff_vol, org_linek = 0; int min_gap_xsoc; if ((abs(di->current_avg) < 400) && (di->dsoc > 5)) pwroff_vol = di->pdata->pwroff_vol + 50; else pwroff_vol = di->pdata->pwroff_vol; /* calc estimate ocv voltage */ voltage_avg = rk816_bat_get_avg_voltage(di); current_avg = rk816_bat_get_avg_current(di); vsys = voltage_avg + (current_avg * DEF_PWRPATH_RES) / 1000; DBG("ZERO0: shtd_vol: org = %d, now = %d, zero_reserve_dsoc = %d\n", di->pdata->pwroff_vol, pwroff_vol, di->pdata->zero_reserve_dsoc); dead_voltage = pwroff_vol - current_avg * (di->bat_res + DEF_PWRPATH_RES) / 1000; ocv_voltage = voltage_avg - (current_avg * di->bat_res) / 1000; DBG("ZERO0: dead_voltage(shtd) = %d, ocv_voltage(now) = %d\n", dead_voltage, ocv_voltage); /* calc estimate soc and cap */ dead_soc = rk816_bat_vol_to_zerosoc(di, dead_voltage); dead_cap = rk816_bat_vol_to_zerocap(di, dead_voltage); DBG("ZERO0: dead_soc = %d, dead_cap = %d\n", dead_soc, dead_cap); ocv_soc = rk816_bat_vol_to_zerosoc(di, ocv_voltage); ocv_cap = rk816_bat_vol_to_zerocap(di, ocv_voltage); DBG("ZERO0: ocv_soc = %d, ocv_cap = %d\n", ocv_soc, ocv_cap); /* xsoc: available rsoc */ xsoc = ocv_soc - dead_soc; /* min_gap_xsoc: reserve xsoc */ if (abs(current_avg) > ZERO_LOAD_LVL1) min_gap_xsoc = MIN_ZERO_GAP_XSOC3; else if (abs(current_avg) > ZERO_LOAD_LVL2) min_gap_xsoc = MIN_ZERO_GAP_XSOC2; else min_gap_xsoc = MIN_ZERO_GAP_XSOC1; if ((xsoc <= 30) && (di->dsoc >= di->pdata->zero_reserve_dsoc)) min_gap_xsoc = min_gap_xsoc + MIN_ZERO_GAP_CALIB; di->zero_remain_cap = di->remain_cap; di->zero_timeout_cnt = 0; if ((di->dsoc <= 1) && (xsoc > 0)) { di->zero_linek = 400; di->zero_drop_sec = 0; } else if (xsoc >= 0) { di->zero_drop_sec = 0; di->zero_linek = (di->zero_dsoc + xsoc / 2) / DIV(xsoc); org_linek = di->zero_linek; /* battery energy mode to use up voltage */ if ((di->pdata->energy_mode) && (xsoc - di->dsoc >= MIN_ZERO_GAP_XSOC3) && (di->dsoc <= 10) && (di->zero_linek < 300)) { di->zero_linek = 300; DBG("ZERO-new: zero_linek adjust step0...\n"); /* reserve enough power yet, slow down any way */ } else if ((xsoc - di->dsoc >= min_gap_xsoc) || ((xsoc - di->dsoc >= MIN_ZERO_GAP_XSOC2) && (di->dsoc <= 10) && (xsoc > 15))) { if (xsoc <= 20 && di->dsoc >= di->pdata->zero_reserve_dsoc) di->zero_linek = 1200; else if (xsoc - di->dsoc >= 2 * min_gap_xsoc) di->zero_linek = 400; else if (xsoc - di->dsoc >= 3 + min_gap_xsoc) di->zero_linek = 600; else di->zero_linek = 800; DBG("ZERO-new: zero_linek adjust step1...\n"); /* control zero mode beginning enter */ } else if ((di->zero_linek > 1800) && (di->dsoc > 70)) { di->zero_linek = 1800; DBG("ZERO-new: zero_linek adjust step2...\n"); /* dsoc close to xsoc: it must reserve power */ } else if ((di->zero_linek > 1000) && (di->zero_linek < 1200)) { di->zero_linek = 1200; DBG("ZERO-new: zero_linek adjust step3...\n"); /* dsoc[5~15], dsoc < xsoc */ } else if ((di->dsoc <= 15 && di->dsoc > 5) && (di->zero_linek <= 1200)) { /* slow down */ if ((xsoc - di->dsoc) >= min_gap_xsoc) di->zero_linek = 800; /* reserve power */ else di->zero_linek = 1200; DBG("ZERO-new: zero_linek adjust step4...\n"); /* dsoc[5, 100], dsoc < xsoc */ } else if ((di->zero_linek < 1000) && (di->dsoc >= 5)) { if ((xsoc - di->dsoc) < min_gap_xsoc) { /* reserve power */ di->zero_linek = 1200; } else { if (abs(di->current_avg) > 500)/* heavy */ di->zero_linek = 900; else di->zero_linek = 1000; } DBG("ZERO-new: zero_linek adjust step5...\n"); /* dsoc[0~5], dsoc < xsoc */ } else if ((di->zero_linek < 1000) && (di->dsoc <= 5)) { if ((xsoc - di->dsoc) <= 3) di->zero_linek = 1200; else di->zero_linek = 800; DBG("ZERO-new: zero_linek adjust step6...\n"); } } else { /* xsoc < 0 */ di->zero_linek = 1000; if (!di->zero_drop_sec) di->zero_drop_sec = get_boot_sec(); if (base2sec(di->zero_drop_sec) >= WAIT_DSOC_DROP_SEC) { DBG("ZERO0: t=%lu\n", base2sec(di->zero_drop_sec)); di->zero_drop_sec = 0; di->dsoc--; di->zero_dsoc = (di->dsoc + 1) * 1000 - MIN_ACCURACY; } } if (voltage_avg < pwroff_vol - 70) { if (!di->shtd_drop_sec) di->shtd_drop_sec = get_boot_sec(); if (base2sec(di->shtd_drop_sec) > WAIT_SHTD_DROP_SEC) { BAT_INFO("voltage extreme low...soc:%d->0\n", di->dsoc); di->shtd_drop_sec = 0; di->dsoc = 0; } } else { di->shtd_drop_sec = 0; } DBG("ZERO-new: org_linek=%d, zero_linek=%d, dsoc=%d, Xsoc=%d, rsoc=%d, gap=%d, v=%d, vsys=%d\n" "ZERO-new: di->zero_dsoc=%d, zero_remain_cap=%d, zero_drop=%ld, sht_drop=%ld\n\n", org_linek, di->zero_linek, di->dsoc, xsoc, di->rsoc, min_gap_xsoc, voltage_avg, vsys, di->zero_dsoc, di->zero_remain_cap, base2sec(di->zero_drop_sec), base2sec(di->shtd_drop_sec)); } static void rk816_bat_finish_algo_prepare(struct rk816_battery *di) { di->chrg_finish_base = get_boot_sec(); if (!di->chrg_finish_base) di->chrg_finish_base = 1; } static void rk816_bat_smooth_algo_prepare(struct rk816_battery *di) { int tmp_soc; tmp_soc = di->sm_chrg_dsoc / 1000; if (tmp_soc != di->dsoc) di->sm_chrg_dsoc = di->dsoc * 1000; tmp_soc = di->sm_dischrg_dsoc / 1000; if (tmp_soc != di->dsoc) di->sm_dischrg_dsoc = (di->dsoc + 1) * 1000 - MIN_ACCURACY; DBG("<%s>. tmp_soc=%d, dsoc=%d, dsoc:sm_dischrg=%d, sm_chrg=%d\n", __func__, tmp_soc, di->dsoc, di->sm_dischrg_dsoc, di->sm_chrg_dsoc); rk816_bat_calc_sm_linek(di); } static void rk816_bat_zero_algo_prepare(struct rk816_battery *di) { int tmp_dsoc; di->zero_timeout_cnt = 0; tmp_dsoc = di->zero_dsoc / 1000; if (tmp_dsoc != di->dsoc) di->zero_dsoc = (di->dsoc + 1) * 1000 - MIN_ACCURACY; DBG("<%s>. first calc, reinit linek\n", __func__); rk816_bat_calc_zero_linek(di); } static void rk816_bat_calc_zero_algorithm(struct rk816_battery *di) { int tmp_soc = 0, sm_delta_dsoc = 0; tmp_soc = di->zero_dsoc / 1000; if (tmp_soc == di->dsoc) goto out; DBG("<%s>. enter: dsoc=%d, rsoc=%d\n", __func__, di->dsoc, di->rsoc); /* when discharge slow down, take sm chrg into calc */ if (di->dsoc < di->rsoc) { /* take sm charge rest into calc */ tmp_soc = di->sm_chrg_dsoc / 1000; if (tmp_soc == di->dsoc) { sm_delta_dsoc = di->sm_chrg_dsoc - di->dsoc * 1000; di->sm_chrg_dsoc = di->dsoc * 1000; di->zero_dsoc += sm_delta_dsoc; DBG("ZERO1: take sm chrg,delta=%d\n", sm_delta_dsoc); } } /* when discharge speed up, take sm dischrg into calc */ if (di->dsoc > di->rsoc) { /* take sm discharge rest into calc */ tmp_soc = di->sm_dischrg_dsoc / 1000; if (tmp_soc == di->dsoc) { sm_delta_dsoc = di->sm_dischrg_dsoc - ((di->dsoc + 1) * 1000 - MIN_ACCURACY); di->sm_dischrg_dsoc = (di->dsoc + 1) * 1000 - MIN_ACCURACY; di->zero_dsoc += sm_delta_dsoc; DBG("ZERO1: take sm dischrg,delta=%d\n", sm_delta_dsoc); } } /* check overflow */ if (di->zero_dsoc > (di->dsoc + 1) * 1000 - MIN_ACCURACY) { DBG("ZERO1: zero dsoc overflow: %d\n", di->zero_dsoc); di->zero_dsoc = (di->dsoc + 1) * 1000 - MIN_ACCURACY; } /* check new dsoc */ tmp_soc = di->zero_dsoc / 1000; if (tmp_soc != di->dsoc) { /* avoid dsoc jump when heavy load */ if ((di->dsoc - tmp_soc) > 1) { di->dsoc--; di->zero_dsoc = (di->dsoc + 1) * 1000 - MIN_ACCURACY; DBG("ZERO1: heavy load...\n"); } else { di->dsoc = tmp_soc; } di->zero_drop_sec = 0; } out: DBG("ZERO1: zero_dsoc(Y0)=%d, dsoc=%d, rsoc=%d, tmp_soc=%d\n", di->zero_dsoc, di->dsoc, di->rsoc, tmp_soc); DBG("ZERO1: sm_dischrg_dsoc=%d, sm_chrg_dsoc=%d\n", di->sm_dischrg_dsoc, di->sm_chrg_dsoc); } static void rk816_bat_zero_algorithm(struct rk816_battery *di) { int delta_cap = 0, delta_soc = 0; di->zero_timeout_cnt++; delta_cap = di->zero_remain_cap - di->remain_cap; delta_soc = di->zero_linek * (delta_cap * 100) / DIV(di->fcc); DBG("ZERO1: zero_linek=%d, zero_dsoc(Y0)=%d, dsoc=%d, rsoc=%d\n" "ZERO1: delta_soc(X0)=%d, delta_cap=%d, zero_remain_cap = %d\n" "ZERO1: timeout_cnt=%d, sm_dischrg=%d, sm_chrg=%d\n\n", di->zero_linek, di->zero_dsoc, di->dsoc, di->rsoc, delta_soc, delta_cap, di->zero_remain_cap, di->zero_timeout_cnt, di->sm_dischrg_dsoc, di->sm_chrg_dsoc); if ((delta_soc >= MIN_ZERO_DSOC_ACCURACY) || (di->zero_timeout_cnt > MIN_ZERO_OVERCNT) || (di->zero_linek == 0)) { DBG("ZERO1:--------- enter calc -----------\n"); di->zero_timeout_cnt = 0; di->zero_dsoc -= delta_soc; rk816_bat_calc_zero_algorithm(di); rk816_bat_calc_zero_linek(di); } } static void rk816_bat_dump_time_table(struct rk816_battery *di) { u8 i; static int old_index; static int old_min; u32 time; int mod = di->dsoc % 10; int index = di->dsoc / 10; if (rk816_bat_chrg_online(di)) time = base2min(di->plug_in_base); else time = base2min(di->plug_out_base); if ((mod == 0) && (index > 0) && (old_index != index)) { di->dbg_chrg_min[index - 1] = time - old_min; old_min = time; old_index = index; } for (i = 1; i < 11; i++) DBG("Time[%d]=%d, ", (i * 10), di->dbg_chrg_min[i - 1]); DBG("\n"); } static void rk816_bat_debug_info(struct rk816_battery *di) { u8 sup_tst, ggcon, ggsts, vb_mod, ts_ctrl, reboot_cnt; u8 usb_ctrl, chrg_ctrl1, thermal; u8 int_sts1, int_sts2, int_sts3; u8 int_msk1, int_msk2, int_msk3; u8 chrg_ctrl2, chrg_ctrl3, rtc, misc, dcdc_en2; u32 chrg_sel; const char *work_mode[] = {"ZERO", "FINISH", "UN", "UN", "SMOOTH"}; const char *bat_mode[] = {"BAT", "VIRTUAL"}; if (rk816_bat_chrg_online(di)) di->plug_out_base = get_boot_sec(); else di->plug_in_base = get_boot_sec(); rk816_bat_dump_time_table(di); if (!dbg_enable) return; reboot_cnt = rk816_bat_read(di, RK816_REBOOT_CNT_REG); ts_ctrl = rk816_bat_read(di, RK816_TS_CTRL_REG); misc = rk816_bat_read(di, RK816_MISC_MARK_REG); ggcon = rk816_bat_read(di, RK816_GGCON_REG); ggsts = rk816_bat_read(di, RK816_GGSTS_REG); sup_tst = rk816_bat_read(di, RK816_SUP_STS_REG); vb_mod = rk816_bat_read(di, RK816_VB_MON_REG); usb_ctrl = rk816_bat_read(di, RK816_USB_CTRL_REG); chrg_ctrl1 = rk816_bat_read(di, RK816_CHRG_CTRL_REG1); chrg_ctrl2 = rk816_bat_read(di, RK816_CHRG_CTRL_REG2); chrg_ctrl3 = rk816_bat_read(di, RK816_CHRG_CTRL_REG3); rtc = rk816_bat_read(di, RK808_SECONDS_REG); thermal = rk816_bat_read(di, RK816_THERMAL_REG); int_sts1 = rk816_bat_read(di, RK816_INT_STS_REG1); int_sts2 = rk816_bat_read(di, RK816_INT_STS_REG2); int_sts3 = rk816_bat_read(di, RK816_INT_STS_REG3); int_msk1 = rk816_bat_read(di, RK816_INT_STS_MSK_REG1); int_msk2 = rk816_bat_read(di, RK816_INT_STS_MSK_REG2); int_msk3 = rk816_bat_read(di, RK816_INT_STS_MSK_REG3); dcdc_en2 = rk816_bat_read(di, RK816_DCDC_EN_REG2); chrg_sel = CHRG_CUR_SEL[chrg_ctrl1 & 0x0f]; if (!di->over_20mR) chrg_sel = RES_FAC_MUX(chrg_sel, di->res_fac); else chrg_sel = RES_FAC_DIV(chrg_sel, di->res_fac); DBG("\n------- DEBUG REGS, [Ver: %s] -------------------\n" "GGCON=0x%2x, GGSTS=0x%2x, RTC=0x%2x, DCDC_EN2=0x%2x\n" "SUP_STS= 0x%2x, VB_MOD=0x%2x, USB_CTRL=0x%2x\n" "THERMAL=0x%2x, MISC_MARK=0x%2x, TS_CTRL=0x%2x\n" "CHRG_CTRL:REG1=0x%2x, REG2=0x%2x, REG3=0x%2x\n" "INT_STS: REG1=0x%2x, REG2=0x%2x, REG3=0x%2x\n" "INT_MSK: REG1=0x%2x, REG2=0x%2x, REG3=0x%2x\n", DRIVER_VERSION, ggcon, ggsts, rtc, dcdc_en2, sup_tst, vb_mod, usb_ctrl, thermal, misc, ts_ctrl, chrg_ctrl1, chrg_ctrl2, chrg_ctrl3, int_sts1, int_sts2, int_sts3, int_msk1, int_msk2, int_msk3 ); DBG("###############################################################\n" "Dsoc=%d, Rsoc=%d, Vavg=%d, Iavg=%d, Cap=%d, Fcc=%d, d=%d\n" "K=%d, Mode=%s, Oldcap=%d, Is=%d, Ip=%d, Vs=%d, Vusb=%d\n" "AC=%d, USB=%d, DC=%d, OTG=%d, 5V=%d, PROP=%d, Tfb=%d, Tbat=%d\n" "off:i=0x%x, c=0x%x, p=%d, Rbat=%d, age_ocv_cap=%d, fb=%d, hot=%d\n" "adp:in=%lu, out=%lu, finish=%lu, LFcc=%d, boot_min=%lu, sleep_min=%lu, adc=%d, Rfac=%d\n" "bat:%s, meet: soc=%d, calc: dsoc=%d, rsoc=%d, Vocv=%d, Rsam=%d\n" "pwr: dsoc=%d, rsoc=%d, vol=%d, halt: st=%d, cnt=%d, reboot=%d\n" "ocv_c=%d: %d -> %d; max_c=%d: %d -> %d; force_c=%d: %d -> %d\n" "min=%d, init=%d, sw=%d, below0=%d, first=%d, changed=%d\n" "###############################################################\n", di->dsoc, di->rsoc, di->voltage_avg, di->current_avg, di->remain_cap, di->fcc, di->dsoc - di->rsoc, di->sm_linek, work_mode[di->work_mode], di->sm_remain_cap, chrg_sel, CHRG_CUR_INPUT[usb_ctrl & 0x0f], CHRG_VOL_SEL[(chrg_ctrl1 & 0x70) >> 4], rk816_bat_get_usb_voltage(di), di->ac_in, di->usb_in, di->dc_in, di->otg_in, di->otg_pmic5v, di->prop_status, FEED_BACK_TEMP[(thermal & 0x0c) >> 2], di->temperature, rk816_bat_get_ioffset(di), rk816_bat_get_coffset(di), di->poffset, di->bat_res, di->age_adjust_cap, di->fb_blank, !!(thermal & HOTDIE_STS), base2min(di->plug_in_base), base2min(di->plug_out_base), base2min(di->chrg_finish_base), di->lock_fcc, base2min(di->boot_base), di->sleep_sum_sec / 60, di->adc_allow_update, di->res_fac, bat_mode[di->pdata->bat_mode], di->dbg_meet_soc, di->dbg_calc_dsoc, di->dbg_calc_rsoc, di->voltage_ocv, di->pdata->sample_res, di->dbg_pwr_dsoc, di->dbg_pwr_rsoc, di->dbg_pwr_vol, di->is_halt, di->halt_cnt, reboot_cnt, di->is_ocv_calib, di->ocv_pre_dsoc, di->ocv_new_dsoc, di->is_max_soc_offset, di->max_pre_dsoc, di->max_new_dsoc, di->is_force_calib, di->force_pre_dsoc, di->force_new_dsoc, di->pwroff_min, di->is_initialized, di->is_sw_reset, di->dbg_cap_low0, di->is_first_on, di->last_dsoc ); } static void rk816_bat_init_capacity(struct rk816_battery *di, u32 cap) { int delta_cap; delta_cap = cap - di->remain_cap; if (!delta_cap) return; di->age_adjust_cap += delta_cap; rk816_bat_init_coulomb_cap(di, cap); rk816_bat_smooth_algo_prepare(di); rk816_bat_zero_algo_prepare(di); } static void rk816_bat_update_age_fcc(struct rk816_battery *di) { int fcc; int remain_cap; int age_keep_min; di->lock_fcc = rk816_bat_get_lock_fcc(di); if (di->lock_fcc == 0) return; fcc = di->lock_fcc; remain_cap = fcc - di->age_ocv_cap - di->age_adjust_cap; age_keep_min = base2min(di->age_keep_sec); DBG("%s: lock_fcc=%d, age_ocv_cap=%d, age_adjust_cap=%d, remain_cap=%d, age_allow_update=%d, age_keep_min=%d\n", __func__, fcc, di->age_ocv_cap, di->age_adjust_cap, remain_cap, di->age_allow_update, age_keep_min); if ((di->chrg_status == CHARGE_FINISH) && (di->age_allow_update) && (age_keep_min < 1200)) { di->age_allow_update = false; fcc = remain_cap * 100 / DIV(100 - di->age_ocv_soc); BAT_INFO("lock_fcc=%d, calc_cap=%d, age: soc=%d, cap=%d, level=%d, fcc:%d->%d?\n", di->lock_fcc, remain_cap, di->age_ocv_soc, di->age_ocv_cap, di->age_level, di->fcc, fcc); if ((fcc < di->qmax) && (fcc > MIN_FCC)) { BAT_INFO("fcc:%d->%d!\n", di->fcc, fcc); di->fcc = fcc; rk816_bat_init_capacity(di, di->fcc); rk816_bat_save_fcc(di, di->fcc); rk816_bat_save_age_level(di, di->age_level); } } } static void rk816_bat_wait_finish_sig(struct rk816_battery *di) { int chrg_finish_vol = di->pdata->max_chrg_voltage; if (!rk816_bat_chrg_online(di)) return; if ((di->chrg_status == CHARGE_FINISH) && (!is_rk816_bat_st_cvtlim(di)) && (di->voltage_avg > chrg_finish_vol - 150) && di->adc_allow_update) { rk816_bat_update_age_fcc(di);/* save new fcc*/ if (rk816_bat_adc_calib(di)) di->adc_allow_update = false; } } static void rk816_bat_finish_algorithm(struct rk816_battery *di) { unsigned long finish_sec, soc_sec; int plus_soc, finish_current, rest = 0; /* rsoc */ if ((di->remain_cap != di->fcc) && (rk816_bat_get_chrg_status(di) == CHARGE_FINISH)) { di->age_adjust_cap += (di->fcc - di->remain_cap); rk816_bat_init_coulomb_cap(di, di->fcc); } /* dsoc */ if (di->dsoc < 100) { if (!di->chrg_finish_base) di->chrg_finish_base = get_boot_sec(); finish_current = (di->rsoc - di->dsoc) > FINISH_MAX_SOC_DELAY ? FINISH_CHRG_CUR2 : FINISH_CHRG_CUR1; finish_sec = base2sec(di->chrg_finish_base); soc_sec = di->fcc * 3600 / 100 / DIV(finish_current); plus_soc = finish_sec / DIV(soc_sec); if (finish_sec > soc_sec) { rest = finish_sec % soc_sec; di->dsoc += plus_soc; di->chrg_finish_base = get_boot_sec(); if (di->chrg_finish_base > rest) di->chrg_finish_base = get_boot_sec() - rest; } DBG("<%s>.CHARGE_FINISH:dsoc<100,dsoc=%d\n" "soc_time=%lu, sec_finish=%lu, plus_soc=%d, rest=%d\n", __func__, di->dsoc, soc_sec, finish_sec, plus_soc, rest); } } static void rk816_bat_calc_smooth_dischrg(struct rk816_battery *di) { int tmp_soc = 0, sm_delta_dsoc = 0, zero_delta_dsoc = 0; tmp_soc = di->sm_dischrg_dsoc / 1000; if (tmp_soc == di->dsoc) goto out; DBG("<%s>. enter: dsoc=%d, rsoc=%d\n", __func__, di->dsoc, di->rsoc); /* when dischrge slow down, take sm charge rest into calc */ if (di->dsoc < di->rsoc) { tmp_soc = di->sm_chrg_dsoc / 1000; if (tmp_soc == di->dsoc) { sm_delta_dsoc = di->sm_chrg_dsoc - di->dsoc * 1000; di->sm_chrg_dsoc = di->dsoc * 1000; di->sm_dischrg_dsoc += sm_delta_dsoc; DBG("<%s>. take sm dischrg, delta=%d\n", __func__, sm_delta_dsoc); } } /* when discharge speed up, take zero discharge rest into calc */ if (di->dsoc > di->rsoc) { tmp_soc = di->zero_dsoc / 1000; if (tmp_soc == di->dsoc) { zero_delta_dsoc = di->zero_dsoc - ((di->dsoc + 1) * 1000 - MIN_ACCURACY); di->zero_dsoc = (di->dsoc + 1) * 1000 - MIN_ACCURACY; di->sm_dischrg_dsoc += zero_delta_dsoc; DBG("<%s>. take zero schrg, delta=%d\n", __func__, zero_delta_dsoc); } } /* check up overflow */ if ((di->sm_dischrg_dsoc) > ((di->dsoc + 1) * 1000 - MIN_ACCURACY)) { DBG("<%s>. dischrg_dsoc up overflow\n", __func__); di->sm_dischrg_dsoc = (di->dsoc + 1) * 1000 - MIN_ACCURACY; } /* check new dsoc */ tmp_soc = di->sm_dischrg_dsoc / 1000; if (tmp_soc != di->dsoc) { di->dsoc = tmp_soc; di->sm_chrg_dsoc = di->dsoc * 1000; } out: DBG("<%s>. dsoc=%d, rsoc=%d, dsoc:sm_dischrg=%d, sm_chrg=%d, zero=%d\n", __func__, di->dsoc, di->rsoc, di->sm_dischrg_dsoc, di->sm_chrg_dsoc, di->zero_dsoc); } static void rk816_bat_calc_smooth_chrg(struct rk816_battery *di) { int tmp_soc = 0, sm_delta_dsoc = 0, zero_delta_dsoc = 0; tmp_soc = di->sm_chrg_dsoc / 1000; if (tmp_soc == di->dsoc) goto out; DBG("<%s>. enter: dsoc=%d, rsoc=%d\n", __func__, di->dsoc, di->rsoc); /* when charge slow down, take zero & sm dischrg into calc */ if (di->dsoc > di->rsoc) { /* take sm discharge rest into calc */ tmp_soc = di->sm_dischrg_dsoc / 1000; if (tmp_soc == di->dsoc) { sm_delta_dsoc = di->sm_dischrg_dsoc - ((di->dsoc + 1) * 1000 - MIN_ACCURACY); di->sm_dischrg_dsoc = (di->dsoc + 1) * 1000 - MIN_ACCURACY; di->sm_chrg_dsoc += sm_delta_dsoc; DBG("<%s>. take sm dischrg, delta=%d\n", __func__, sm_delta_dsoc); } /* take zero discharge rest into calc */ tmp_soc = di->zero_dsoc / 1000; if (tmp_soc == di->dsoc) { zero_delta_dsoc = di->zero_dsoc - ((di->dsoc + 1) * 1000 - MIN_ACCURACY); di->zero_dsoc = (di->dsoc + 1) * 1000 - MIN_ACCURACY; di->sm_chrg_dsoc += zero_delta_dsoc; DBG("<%s>. take zero dischrg, delta=%d\n", __func__, zero_delta_dsoc); } } /* check down overflow */ if (di->sm_chrg_dsoc < di->dsoc * 1000) { DBG("<%s>. chrg_dsoc down overflow\n", __func__); di->sm_chrg_dsoc = di->dsoc * 1000; } /* check new dsoc */ tmp_soc = di->sm_chrg_dsoc / 1000; if (tmp_soc != di->dsoc) { di->dsoc = tmp_soc; di->sm_dischrg_dsoc = (di->dsoc + 1) * 1000 - MIN_ACCURACY; } out: DBG("<%s>.dsoc=%d, rsoc=%d, dsoc: sm_dischrg=%d, sm_chrg=%d, zero=%d\n", __func__, di->dsoc, di->rsoc, di->sm_dischrg_dsoc, di->sm_chrg_dsoc, di->zero_dsoc); } static void rk816_bat_smooth_algorithm(struct rk816_battery *di) { int ydsoc = 0, delta_cap = 0, old_cap = 0; unsigned long tgt_sec = 0; di->remain_cap = rk816_bat_get_coulomb_cap(di); /* full charge: slow down */ if ((di->dsoc == 99) && (di->chrg_status == CC_OR_CV) && (di->current_avg > 0)) { di->sm_linek = FULL_CHRG_K; /* terminal charge, slow down */ } else if ((di->current_avg >= TERM_CHRG_CURR) && (di->chrg_status == CC_OR_CV) && (di->dsoc >= TERM_CHRG_DSOC)) { di->sm_linek = TERM_CHRG_K; DBG("<%s>. terminal mode..\n", __func__); /* simulate charge, speed up */ } else if ((di->current_avg <= SIMULATE_CHRG_CURR) && (di->current_avg > 0) && (di->chrg_status == CC_OR_CV) && (di->dsoc < TERM_CHRG_DSOC) && ((di->rsoc - di->dsoc) >= SIMULATE_CHRG_INTV)) { di->sm_linek = SIMULATE_CHRG_K; DBG("<%s>. simulate mode..\n", __func__); } else { /* charge and discharge switch */ if ((di->sm_linek * di->current_avg <= 0) || (di->sm_linek == TERM_CHRG_K) || (di->sm_linek == FULL_CHRG_K) || (di->sm_linek == SIMULATE_CHRG_K)) { DBG("<%s>. linek mode, retinit sm linek..\n", __func__); rk816_bat_calc_sm_linek(di); } } old_cap = di->sm_remain_cap; /* * when dsoc equal rsoc(not include full, term, simulate case), * sm_linek should change to -1000/1000 smoothly to avoid dsoc+1/-1 * right away, so change it after flat seconds */ if ((di->dsoc == di->rsoc) && (abs(di->sm_linek) != 1000) && (di->sm_linek != FULL_CHRG_K && di->sm_linek != TERM_CHRG_K && di->sm_linek != SIMULATE_CHRG_K)) { if (!di->flat_match_sec) di->flat_match_sec = get_boot_sec(); tgt_sec = di->fcc * 3600 / 100 / DIV(abs(di->current_avg)) / 3; if (base2sec(di->flat_match_sec) >= tgt_sec) { di->flat_match_sec = 0; di->sm_linek = (di->current_avg >= 0) ? 1000 : -1000; } DBG("<%s>. flat_sec=%ld, tgt_sec=%ld, sm_k=%d\n", __func__, base2sec(di->flat_match_sec), tgt_sec, di->sm_linek); } else { di->flat_match_sec = 0; } /* abs(k)=1000 or dsoc=100, stop calc */ if ((abs(di->sm_linek) == 1000) || (di->current_avg >= 0 && di->chrg_status == CC_OR_CV && di->dsoc >= 100)) { DBG("<%s>. sm_linek=%d\n", __func__, di->sm_linek); if (abs(di->sm_linek) == 1000) { di->dsoc = di->rsoc; di->sm_linek = (di->sm_linek > 0) ? 1000 : -1000; DBG("<%s>. dsoc == rsoc, sm_linek=%d\n", __func__, di->sm_linek); } di->sm_remain_cap = di->remain_cap; di->sm_chrg_dsoc = di->dsoc * 1000; di->sm_dischrg_dsoc = (di->dsoc + 1) * 1000 - MIN_ACCURACY; DBG("<%s>. sm_dischrg_dsoc=%d, sm_chrg_dsoc=%d\n", __func__, di->sm_dischrg_dsoc, di->sm_chrg_dsoc); } else { delta_cap = di->remain_cap - di->sm_remain_cap; if (delta_cap == 0) { DBG("<%s>. delta_cap = 0\n", __func__); return; } ydsoc = di->sm_linek * abs(delta_cap) * 100 / DIV(di->fcc); if (ydsoc == 0) { DBG("<%s>. ydsoc = 0\n", __func__); return; } di->sm_remain_cap = di->remain_cap; DBG("<%s>. k=%d, ydsoc=%d; cap:old=%d, new:%d; delta_cap=%d\n", __func__, di->sm_linek, ydsoc, old_cap, di->sm_remain_cap, delta_cap); /* discharge mode */ if (ydsoc < 0) { di->sm_dischrg_dsoc += ydsoc; rk816_bat_calc_smooth_dischrg(di); /* charge mode */ } else { di->sm_chrg_dsoc += ydsoc; rk816_bat_calc_smooth_chrg(di); } if (di->s2r) { di->s2r = false; rk816_bat_calc_sm_linek(di); } } } static bool rk816_bat_fake_finish_mode(struct rk816_battery *di) { if ((di->rsoc == 100) && (rk816_bat_get_chrg_status(di) == CC_OR_CV) && (abs(di->current_avg) <= 100)) return true; else return false; } static void rk816_bat_display_smooth(struct rk816_battery *di) { /* discharge: reinit "zero & smooth" algorithm to avoid handling dsoc */ if (di->s2r && !di->sleep_chrg_online) { DBG("s2r: discharge, reset algorithm...\n"); di->s2r = false; rk816_bat_zero_algo_prepare(di); rk816_bat_smooth_algo_prepare(di); return; } if (di->work_mode == MODE_FINISH) { DBG("step1: charge finish...\n"); rk816_bat_finish_algorithm(di); if ((rk816_bat_get_chrg_status(di) != CHARGE_FINISH) && !rk816_bat_fake_finish_mode(di)) { if ((di->current_avg < 0) && (di->voltage_avg < di->pdata->zero_algorithm_vol)) { DBG("step1: change to zero mode...\n"); rk816_bat_zero_algo_prepare(di); di->work_mode = MODE_ZERO; } else { DBG("step1: change to smooth mode...\n"); rk816_bat_smooth_algo_prepare(di); di->work_mode = MODE_SMOOTH; } } } else if (di->work_mode == MODE_ZERO) { DBG("step2: zero algorithm...\n"); rk816_bat_zero_algorithm(di); if ((di->voltage_avg >= di->pdata->zero_algorithm_vol + 50) || (di->current_avg >= 0)) { DBG("step2: change to smooth mode...\n"); rk816_bat_smooth_algo_prepare(di); di->work_mode = MODE_SMOOTH; } else if ((rk816_bat_get_chrg_status(di) == CHARGE_FINISH) || rk816_bat_fake_finish_mode(di)) { DBG("step2: change to finish mode...\n"); rk816_bat_finish_algo_prepare(di); di->work_mode = MODE_FINISH; } } else { DBG("step3: smooth algorithm...\n"); rk816_bat_smooth_algorithm(di); if ((di->current_avg < 0) && (di->voltage_avg < di->pdata->zero_algorithm_vol)) { DBG("step3: change to zero mode...\n"); rk816_bat_zero_algo_prepare(di); di->work_mode = MODE_ZERO; } else if ((rk816_bat_get_chrg_status(di) == CHARGE_FINISH) || rk816_bat_fake_finish_mode(di)) { DBG("step3: change to finish mode...\n"); rk816_bat_finish_algo_prepare(di); di->work_mode = MODE_FINISH; } } } static void rk816_bat_relax_vol_calib(struct rk816_battery *di) { int soc, cap, vol; vol = di->voltage_relax - (di->current_relax * di->bat_res) / 1000; soc = rk816_bat_vol_to_ocvsoc(di, vol); cap = rk816_bat_vol_to_ocvcap(di, vol); rk816_bat_init_capacity(di, cap); BAT_INFO("sleep ocv calib: rsoc=%d, cap=%d\n", soc, cap); } static void rk816_bat_relife_age_flag(struct rk816_battery *di) { u8 ocv_soc, ocv_cap, soc_level; if (di->voltage_relax <= 0) return; ocv_soc = rk816_bat_vol_to_ocvsoc(di, di->voltage_relax); ocv_cap = rk816_bat_vol_to_ocvcap(di, di->voltage_relax); DBG("<%s>. ocv_soc=%d, min=%lu, vol=%d\n", __func__, ocv_soc, di->sleep_dischrg_sec / 60, di->voltage_relax); /* sleep enough time and ocv_soc enough low */ if (!di->age_allow_update && ocv_soc <= 10) { di->age_voltage = di->voltage_relax; di->age_ocv_cap = ocv_cap; di->age_ocv_soc = ocv_soc; di->age_adjust_cap = 0; if (ocv_soc <= 1) di->age_level = 100; else if (ocv_soc < 5) di->age_level = 90; else di->age_level = 80; soc_level = rk816_bat_get_age_level(di); if (soc_level > di->age_level) { di->age_allow_update = false; } else { di->age_allow_update = true; di->age_keep_sec = get_boot_sec(); } BAT_INFO("resume: age_vol:%d, age_ocv_cap:%d, age_ocv_soc:%d, age_soc_level:%d, age_allow_update:%d, age_level:%d\n", di->age_voltage, di->age_ocv_cap, ocv_soc, soc_level, di->age_allow_update, di->age_level); } } static int rk816_bat_sleep_dischrg(struct rk816_battery *di) { bool ocv_soc_updated = false; int tgt_dsoc, gap_soc, sleep_soc = 0; int pwroff_vol = di->pdata->pwroff_vol; unsigned long sleep_sec = di->sleep_dischrg_sec; DBG("<%s>. enter: dsoc=%d, rsoc=%d, rv=%d, v=%d, sleep_min=%lu\n", __func__, di->dsoc, di->rsoc, di->voltage_relax, di->voltage_avg, sleep_sec / 60); if (di->voltage_relax >= di->voltage_avg) { rk816_bat_relax_vol_calib(di); rk816_bat_restart_relax(di); rk816_bat_relife_age_flag(di); ocv_soc_updated = true; } /*handle dsoc*/ if (di->dsoc <= di->rsoc) { di->sleep_sum_cap = (SLP_CURR_MIN * sleep_sec / 3600); sleep_soc = di->sleep_sum_cap * 100 / DIV(di->fcc); tgt_dsoc = di->dsoc - sleep_soc; if (sleep_soc > 0) { BAT_INFO("calib0: rl=%d, dl=%d, intval=%d\n", di->rsoc, di->dsoc, sleep_soc); if (di->dsoc < 5) { di->dsoc--; } else if ((tgt_dsoc < 5) && (di->dsoc >= 5)) { if (di->dsoc == 5) di->dsoc--; else di->dsoc = 5; } else if (tgt_dsoc > 5) { di->dsoc = tgt_dsoc; } } DBG("%s: dsoc<=rsoc, sum_cap=%d==>sleep_soc=%d, tgt_dsoc=%d\n", __func__, di->sleep_sum_cap, sleep_soc, tgt_dsoc); } else { /*di->dsoc > di->rsoc*/ di->sleep_sum_cap = (SLP_CURR_MAX * sleep_sec / 3600); sleep_soc = di->sleep_sum_cap / DIV(di->fcc / 100); gap_soc = di->dsoc - di->rsoc; BAT_INFO("calib1: rsoc=%d, dsoc=%d, intval=%d\n", di->rsoc, di->dsoc, sleep_soc); if (gap_soc > sleep_soc) { if ((gap_soc - 5) > (sleep_soc * 2)) di->dsoc -= (sleep_soc * 2); else di->dsoc -= sleep_soc; } else { di->dsoc = di->rsoc; } DBG("%s: dsoc>rsoc, sum_cap=%d=>sleep_soc=%d, gap_soc=%d\n", __func__, di->sleep_sum_cap, sleep_soc, gap_soc); } if (di->voltage_avg <= pwroff_vol - 70) { di->dsoc = 0; rk_send_wakeup_key(); BAT_INFO("low power sleeping, shutdown... %d\n", di->dsoc); } if (ocv_soc_updated && sleep_soc && (di->rsoc - di->dsoc) < 5 && di->dsoc < 40) { di->dsoc--; BAT_INFO("low power sleeping, reserved... %d\n", di->dsoc); } if (di->dsoc <= 0) { di->dsoc = 0; rk_send_wakeup_key(); BAT_INFO("sleep dsoc is %d...\n", di->dsoc); } DBG("<%s>. out: dsoc=%d, rsoc=%d, sum_cap=%d\n", __func__, di->dsoc, di->rsoc, di->sleep_sum_cap); return sleep_soc; } static void rk816_bat_power_supply_changed(struct rk816_battery *di) { u8 status, thermal; static int old_soc = -1; /* check dsoc */ if (di->dsoc > 100) di->dsoc = 100; else if (di->dsoc < 0) di->dsoc = 0; /* update prop and leds */ if (rk816_bat_chrg_online(di)) { if (di->dsoc == 100) di->prop_status = POWER_SUPPLY_STATUS_FULL; else di->prop_status = POWER_SUPPLY_STATUS_CHARGING; rk816_bat_update_leds(di, di->prop_status); } if (di->dsoc == old_soc) return; /* report changed dsoc */ thermal = rk816_bat_read(di, RK816_THERMAL_REG); status = rk816_bat_read(di, RK816_SUP_STS_REG); status = (status & CHRG_STATUS_MSK) >> 4; old_soc = di->dsoc; di->last_dsoc = di->dsoc; power_supply_changed(di->bat); BAT_INFO("changed: dsoc=%d, rsoc=%d, v=%d, ov=%d c=%d, cap=%d, f=%d, st=%s, hotdie=%d\n", di->dsoc, di->rsoc, di->voltage_avg, di->voltage_ocv, di->current_avg, di->remain_cap, di->fcc, bat_status[status], !!(thermal & HOTDIE_STS)); BAT_INFO("dl=%d, rl=%d, v=%d, halt=%d, halt_n=%d, max=%d, init=%d, sw=%d, calib=%d, below0=%d, force=%d\n", di->dbg_pwr_dsoc, di->dbg_pwr_rsoc, di->dbg_pwr_vol, di->is_halt, di->halt_cnt, di->is_max_soc_offset, di->is_initialized, di->is_sw_reset, di->is_ocv_calib, di->dbg_cap_low0, di->is_force_calib); } static u8 rk816_bat_check_reboot(struct rk816_battery *di) { u8 cnt; cnt = rk816_bat_read(di, RK816_REBOOT_CNT_REG); cnt++; if (cnt >= REBOOT_MAX_CNT) { BAT_INFO("reboot: %d --> %d\n", di->dsoc, di->rsoc); di->dsoc = di->rsoc; if (di->dsoc > 100) di->dsoc = 100; else if (di->dsoc < 0) di->dsoc = 0; rk816_bat_save_dsoc(di, di->dsoc); cnt = REBOOT_MAX_CNT; } rk816_bat_save_reboot_cnt(di, cnt); DBG("reboot cnt: %d\n", cnt); return cnt; } static void rk816_bat_check_charger(struct rk816_battery *di) { u8 buf; buf = rk816_bat_read(di, RK816_VB_MON_REG); /* pmic detect plug in, but ac/usb/dc_in offline, do check */ if ((buf & PLUG_IN_STS) != 0 && !rk816_bat_chrg_online(di)) { rk816_bat_set_chrg_param(di, USB_TYPE_USB_CHARGER); BAT_INFO("pmic detect charger.. USB\n"); /* pmic not detect plug in, but one of ac/usb/dc_in online, reset */ } else if ((buf & PLUG_IN_STS) == 0 && rk816_bat_chrg_online(di)) { rk816_bat_set_chrg_param(di, USB_TYPE_UNKNOWN_CHARGER); BAT_INFO("pmic not detect charger..\n"); } } static void rk816_bat_rsoc_daemon(struct rk816_battery *di) { int est_vol, remain_cap; static unsigned long sec; if ((di->remain_cap < 0) && (di->fb_blank != 0)) { if (!sec) sec = get_boot_sec(); wake_lock_timeout(&di->wake_lock, (di->pdata->monitor_sec + 1) * HZ); DBG("sec=%ld, hold_sec=%ld\n", sec, base2sec(sec)); if (base2sec(sec) >= 60) { sec = 0; di->dbg_cap_low0++; est_vol = di->voltage_avg - (di->bat_res * di->current_avg) / 1000; remain_cap = rk816_bat_vol_to_ocvcap(di, est_vol); rk816_bat_init_capacity(di, remain_cap); BAT_INFO("adjust cap below 0 --> %d, rsoc=%d\n", di->remain_cap, di->rsoc); wake_unlock(&di->wake_lock); } } else { sec = 0; } } static void rk816_bat_update_info(struct rk816_battery *di) { bool is_charging; di->voltage_avg = rk816_bat_get_avg_voltage(di); di->current_avg = rk816_bat_get_avg_current(di); di->chrg_status = rk816_bat_get_chrg_status(di); di->voltage_relax = rk816_bat_get_relax_voltage(di); di->rsoc = rk816_bat_get_rsoc(di); di->remain_cap = rk816_bat_get_coulomb_cap(di); is_charging = rk816_bat_chrg_online(di); if (is_charging != di->is_charging) { di->is_charging = is_charging; if (is_charging) di->charge_count++; } if (di->voltage_avg > di->voltage_max) di->voltage_max = di->voltage_avg; if (di->current_avg > di->current_max) di->current_max = di->current_avg; /* smooth charge */ if (di->remain_cap > di->fcc) { di->sm_remain_cap -= (di->remain_cap - di->fcc); DBG("<%s>. cap: remain=%d, sm_remain=%d\n", __func__, di->remain_cap, di->sm_remain_cap); rk816_bat_init_coulomb_cap(di, di->fcc); } if (di->chrg_status != CHARGE_FINISH) di->chrg_finish_base = get_boot_sec(); /* * we need update fcc in continuous charging state, if discharge state * keep at least 2 hour, we decide not to update fcc, so clear the * fcc update flag: age_allow_update. */ if (base2min(di->plug_out_base) > 120) di->age_allow_update = false; /* do adc calib: status must from cccv mode to finish mode */ if (di->chrg_status == CC_OR_CV) { di->adc_allow_update = true; di->adc_calib_cnt = 0; } } static void rk816_bat_init_dsoc_algorithm(struct rk816_battery *di) { u8 buf; int16_t rest = 0; unsigned long soc_sec; const char *mode_name[] = { "MODE_ZERO", "MODE_FINISH", "MODE_SMOOTH_CHRG", "MODE_SMOOTH_DISCHRG", "MODE_SMOOTH", }; /* get rest */ rest |= rk816_bat_read(di, RK816_CALC_REST_REGH) << 8; rest |= rk816_bat_read(di, RK816_CALC_REST_REGL) << 0; /* get mode */ buf = rk816_bat_read(di, RK816_MISC_MARK_REG); di->algo_rest_mode = (buf & ALGO_REST_MODE_MSK) >> ALGO_REST_MODE_SHIFT; if (rk816_bat_get_chrg_status(di) == CHARGE_FINISH) { if (di->algo_rest_mode == MODE_FINISH) { soc_sec = di->fcc * 3600 / 100 / FINISH_CHRG_CUR1; if ((rest / DIV(soc_sec)) > 0) { if (di->dsoc < 100) { di->dsoc++; di->algo_rest_val = rest % soc_sec; BAT_INFO("algorithm rest(%d) dsoc inc: %d\n", rest, di->dsoc); } else { di->algo_rest_val = 0; } } else { di->algo_rest_val = rest; } } else { di->algo_rest_val = rest; } } else { buf = rk816_bat_read(di, RK816_VB_MON_REG); /* charge speed up */ if ((rest / 1000) > 0 && (buf & PLUG_IN_STS)) { if (di->dsoc < di->rsoc) { di->dsoc++; di->algo_rest_val = rest % 1000; BAT_INFO("algorithm rest(%d) dsoc inc: %d\n", rest, di->dsoc); } else { di->algo_rest_val = 0; } /* discharge speed up */ } else if (((rest / 1000) < 0) && !(buf & PLUG_IN_STS)) { if (di->dsoc > di->rsoc) { di->dsoc--; di->algo_rest_val = rest % 1000; BAT_INFO("algorithm rest(%d) dsoc sub: %d\n", rest, di->dsoc); } else { di->algo_rest_val = 0; } } else { di->algo_rest_val = rest; } } if (di->dsoc >= 100) di->dsoc = 100; else if (di->dsoc <= 0) di->dsoc = 0; /* init current mode */ di->voltage_avg = rk816_bat_get_avg_voltage(di); di->current_avg = rk816_bat_get_avg_current(di); if (rk816_bat_get_chrg_status(di) == CHARGE_FINISH) { rk816_bat_finish_algo_prepare(di); di->work_mode = MODE_FINISH; } else { rk816_bat_smooth_algo_prepare(di); di->work_mode = MODE_SMOOTH; } DBG("<%s>. init: org_rest=%d, rest=%d, mode=%s; " "doc(x1000): zero=%d, chrg=%d, dischrg=%d, finish=%lu\n", __func__, rest, di->algo_rest_val, mode_name[di->algo_rest_mode], di->zero_dsoc, di->sm_chrg_dsoc, di->sm_dischrg_dsoc, di->chrg_finish_base); } static void rk816_bat_save_algo_rest(struct rk816_battery *di) { u8 buf, mode; int16_t algo_rest = 0; int tmp_soc; int zero_rest = 0, sm_chrg_rest = 0; int sm_dischrg_rest = 0, finish_rest = 0; static const char *mode_name[] = { "MODE_ZERO", "MODE_FINISH", "MODE_SMOOTH_CHRG", "MODE_SMOOTH_DISCHRG", "MODE_SMOOTH", }; /* zero dischrg */ tmp_soc = (di->zero_dsoc) / 1000; if (tmp_soc == di->dsoc) zero_rest = di->zero_dsoc - ((di->dsoc + 1) * 1000 - MIN_ACCURACY); /* sm chrg */ tmp_soc = di->sm_chrg_dsoc / 1000; if (tmp_soc == di->dsoc) sm_chrg_rest = di->sm_chrg_dsoc - di->dsoc * 1000; /* sm dischrg */ tmp_soc = (di->sm_dischrg_dsoc) / 1000; if (tmp_soc == di->dsoc) sm_dischrg_rest = di->sm_dischrg_dsoc - ((di->dsoc + 1) * 1000 - MIN_ACCURACY); /* last time is also finish chrg, then add last rest */ if (di->algo_rest_mode == MODE_FINISH && di->algo_rest_val) finish_rest = base2sec(di->chrg_finish_base) + di->algo_rest_val; else finish_rest = base2sec(di->chrg_finish_base); /* total calc */ if ((rk816_bat_chrg_online(di) && (di->dsoc > di->rsoc)) || (!rk816_bat_chrg_online(di) && (di->dsoc < di->rsoc)) || (di->dsoc == di->rsoc)) { di->algo_rest_val = 0; algo_rest = 0; DBG("<%s>. step1..\n", __func__); } else if (di->work_mode == MODE_FINISH) { algo_rest = finish_rest; DBG("<%s>. step2..\n", __func__); } else if (di->algo_rest_mode == MODE_FINISH) { algo_rest = zero_rest + sm_dischrg_rest + sm_chrg_rest; DBG("<%s>. step3..\n", __func__); } else { if (rk816_bat_chrg_online(di) && (di->dsoc < di->rsoc)) algo_rest = sm_chrg_rest + di->algo_rest_val; else if (!rk816_bat_chrg_online(di) && (di->dsoc > di->rsoc)) algo_rest = zero_rest + sm_dischrg_rest + di->algo_rest_val; else algo_rest = zero_rest + sm_dischrg_rest + sm_chrg_rest + di->algo_rest_val; DBG("<%s>. step4..\n", __func__); } /* check mode */ if ((di->work_mode == MODE_FINISH) || (di->work_mode == MODE_ZERO)) { mode = di->work_mode; } else {/* MODE_SMOOTH */ if (di->sm_linek > 0) mode = MODE_SMOOTH_CHRG; else mode = MODE_SMOOTH_DISCHRG; } /* save mode */ buf = rk816_bat_read(di, RK816_MISC_MARK_REG); buf &= ~ALGO_REST_MODE_MSK; buf |= (mode << ALGO_REST_MODE_SHIFT); rk816_bat_write(di, RK816_MISC_MARK_REG, buf); /* save rest */ buf = (algo_rest >> 8) & 0xff; rk816_bat_write(di, RK816_CALC_REST_REGH, buf); buf = (algo_rest >> 0) & 0xff; rk816_bat_write(di, RK816_CALC_REST_REGL, buf); DBG("<%s>. rest: algo=%d, mode=%s, last_rest=%d; zero=%d, chrg=%d, dischrg=%d, finish=%lu\n", __func__, algo_rest, mode_name[mode], di->algo_rest_val, zero_rest, sm_chrg_rest, sm_dischrg_rest, base2sec(di->chrg_finish_base)); } static void rk816_bat_save_data(struct rk816_battery *di) { rk816_bat_save_dsoc(di, di->dsoc); rk816_bat_save_cap(di, di->remain_cap); rk816_bat_save_algo_rest(di); } /*get ntc resistance*/ static int rk816_bat_get_ntc_res(struct rk816_battery *di) { int res, val = 0; val |= rk816_bat_read(di, RK816_TS_ADC_REGL) << 0; val |= rk816_bat_read(di, RK816_TS_ADC_REGH) << 8; res = ((di->voltage_k * val) / 1000 + di->voltage_b) * 1000 / 2200; res = res * 1000 / di->pdata->ntc_factor; DBG("<%s>. val=%d, ntc_res=%d, factor=%d\n", __func__, val, res, di->pdata->ntc_factor); DBG("<%s>. t=[%d'C(%d) ~ %dC(%d)]\n", __func__, di->pdata->ntc_degree_from, di->pdata->ntc_table[0], di->pdata->ntc_degree_from + di->pdata->ntc_size - 1, di->pdata->ntc_table[di->pdata->ntc_size - 1]); return res; } static void rk816_bat_update_temperature(struct rk816_battery *di) { u32 ntc_size, *ntc_table; int i, res; ntc_table = di->pdata->ntc_table; ntc_size = di->pdata->ntc_size; di->temperature = VIRTUAL_TEMPERATURE; if (ntc_size) { res = rk816_bat_get_ntc_res(di); if (res < ntc_table[ntc_size - 1]) { BAT_INFO("bat ntc upper max degree: R=%d\n", res); } else if (res > ntc_table[0]) { BAT_INFO("bat ntc lower min degree: R=%d\n", res); } else { for (i = 0; i < ntc_size; i++) { if (res >= ntc_table[i]) break; } di->temperature = (i + di->pdata->ntc_degree_from) * 10; } } } static void rk816_bat_update_ocv_table(struct rk816_battery *di) { static bool initialized; static int temp_idx, temperature_sum, last_avg_temp, curr_avg_temp; static int temp_record_table[TEMP_RECORD_NUM]; int i, curr_temp = di->temperature / 10; if (di->pdata->temp_t_num < 2) return; /* only run once for initialize */ if (!initialized) { for (i = 0; i < TEMP_RECORD_NUM; i++) temp_record_table[i] = curr_temp; temperature_sum = curr_temp * TEMP_RECORD_NUM; last_avg_temp = curr_temp; initialized = true; } /* pick out earliest temperature from sum */ temperature_sum -= temp_record_table[temp_idx]; /* add current temperature into sum */ temp_record_table[temp_idx] = curr_temp; temperature_sum += curr_temp; /* new avg temperature currently */ curr_avg_temp = temperature_sum / TEMP_RECORD_NUM; /* move to next idx */ temp_idx = (temp_idx + 1) % TEMP_RECORD_NUM; DBG("<%s>: temp_idx=%d, curr_temp=%d, last_avg=%d, curr_avg=%d\n", __func__, temp_idx, curr_temp, last_avg_temp, curr_avg_temp); /* tempearture changed, update ocv table */ if (curr_avg_temp != last_avg_temp) { BAT_INFO("OCV table update, temperature now=%d, last=%d\n", curr_avg_temp, last_avg_temp); rk816_bat_setup_ocv_table(di, curr_avg_temp); last_avg_temp = curr_avg_temp; if (!dbg_enable) return; for (i = 0; i < di->pdata->ocv_size; i++) DBG("* ocv_table[%d]=%d\n", i, di->pdata->ocv_table[i]); } } static void rk816_battery_work(struct work_struct *work) { struct rk816_battery *di = container_of(work, struct rk816_battery, bat_delay_work.work); rk816_bat_update_info(di); rk816_bat_wait_finish_sig(di); rk816_bat_rsoc_daemon(di); rk816_bat_check_charger(di); rk816_bat_update_temperature(di); rk816_bat_update_ocv_table(di); rk816_bat_lowpwr_check(di); rk816_bat_display_smooth(di); rk816_bat_power_supply_changed(di); rk816_bat_save_data(di); rk816_bat_debug_info(di); queue_delayed_work(di->bat_monitor_wq, &di->bat_delay_work, msecs_to_jiffies(di->monitor_ms)); } static void rk816_bat_discnt_evt_worker(struct work_struct *work) { struct rk816_battery *di = container_of(work, struct rk816_battery, discnt_work.work); if (extcon_get_cable_state_(di->cable_edev, EXTCON_USB) == 0) { BAT_INFO("receive extcon notifier event: DISCNT...\n"); rk816_bat_set_chrg_param(di, USB_TYPE_NONE_CHARGER); } } static void rk816_bat_host_evt_worker(struct work_struct *work) { struct rk816_battery *di = container_of(work, struct rk816_battery, host_work.work); struct extcon_dev *edev = di->cable_edev; /* Determine cable/charger type */ if (extcon_get_cable_state_(edev, EXTCON_USB_VBUS_EN) > 0) { rk816_bat_set_otg_in(di, ONLINE); BAT_INFO("receive extcon notifier event: OTG ON...\n"); if (di->dc_in && di->pdata->power_dc2otg) BAT_INFO("otg power from dc adapter\n"); else rk816_bat_set_otg_power(di, USB_OTG_POWER_ON); } else if (extcon_get_cable_state_(edev, EXTCON_USB_VBUS_EN) == 0) { BAT_INFO("receive extcon notifier event: OTG OFF...\n"); rk816_bat_set_otg_in(di, OFFLINE); rk816_bat_set_otg_power(di, USB_OTG_POWER_OFF); } } static void rk816_bat_charger_evt_worker(struct work_struct *work) { struct rk816_battery *di = container_of(work, struct rk816_battery, usb_work.work); struct extcon_dev *edev = di->cable_edev; enum charger_t charger = USB_TYPE_UNKNOWN_CHARGER; static const char *event[] = {"UN", "NONE", "USB", "AC", "CDP1.5A"}; /* Determine cable/charger type */ if (extcon_get_cable_state_(edev, EXTCON_CHG_USB_SDP) > 0) charger = USB_TYPE_USB_CHARGER; else if (extcon_get_cable_state_(edev, EXTCON_CHG_USB_DCP) > 0) charger = USB_TYPE_AC_CHARGER; else if (extcon_get_cable_state_(edev, EXTCON_CHG_USB_CDP) > 0) charger = USB_TYPE_CDP_CHARGER; else charger = USB_TYPE_NONE_CHARGER; if (charger != USB_TYPE_UNKNOWN_CHARGER) { BAT_INFO("receive extcon notifier event: %s...\n", event[charger]); rk816_bat_set_chrg_param(di, charger); } } static int rk816_bat_charger_evt_notifier(struct notifier_block *nb, unsigned long event, void *ptr) { struct rk816_battery *di = container_of(nb, struct rk816_battery, cable_cg_nb); queue_delayed_work(di->usb_charger_wq, &di->usb_work, msecs_to_jiffies(10)); return NOTIFY_DONE; } static int rk816_bat_discnt_evt_notfier(struct notifier_block *nb, unsigned long event, void *ptr) { struct rk816_battery *di = container_of(nb, struct rk816_battery, cable_discnt_nb); queue_delayed_work(di->usb_charger_wq, &di->discnt_work, msecs_to_jiffies(10)); return NOTIFY_DONE; } static int rk816_bat_host_evt_notifier(struct notifier_block *nb, unsigned long event, void *ptr) { struct rk816_battery *di = container_of(nb, struct rk816_battery, cable_host_nb); queue_delayed_work(di->usb_charger_wq, &di->host_work, msecs_to_jiffies(10)); return NOTIFY_DONE; } static irqreturn_t rk816_vb_low_irq(int irq, void *bat) { struct rk816_battery *di = (struct rk816_battery *)bat; BAT_INFO("lower power yet, power off system! v=%d\n", di->voltage_avg); di->dsoc = 0; rk_send_wakeup_key(); power_supply_changed(di->bat); return IRQ_HANDLED; } static irqreturn_t rk816_plug_in(int irq, void *bat) { rk_send_wakeup_key(); BAT_INFO("pmic: plug in\n"); return IRQ_HANDLED; } static irqreturn_t rk816_cvtlmt(int irq, void *bat) { struct rk816_battery *di = (struct rk816_battery *)bat; di->cvtlmt_int_event = 1; BAT_INFO("pmic: cvtlmt irq\n"); return IRQ_HANDLED; } static irqreturn_t rk816_plug_out(int irq, void *bat) { rk_send_wakeup_key(); BAT_INFO("pmic: plug out\n"); return IRQ_HANDLED; } static irqreturn_t rk816_vbat_dc_det(int irq, void *bat) { struct rk816_battery *di = (struct rk816_battery *)bat; if (gpio_get_value(di->pdata->dc_det_pin)) irq_set_irq_type(irq, IRQF_TRIGGER_LOW); else irq_set_irq_type(irq, IRQF_TRIGGER_HIGH); BAT_INFO("dc det in/out\n"); queue_delayed_work(di->usb_charger_wq, &di->dc_delay_work, msecs_to_jiffies(500)); rk_send_wakeup_key(); return IRQ_HANDLED; } static void rk816_bat_init_sysfs(struct rk816_battery *di) { int i, ret; for (i = 0; i < ARRAY_SIZE(rk816_bat_attr); i++) { ret = sysfs_create_file(&di->dev->kobj, &rk816_bat_attr[i].attr); if (ret) dev_err(di->dev, "create bat node(%s) error\n", rk816_bat_attr[i].attr.name); } } static int rk816_bat_init_irqs(struct rk816_battery *di) { int ret; int plug_in_irq, plug_out_irq, vb_lo_irq, cvtlmt_irq; struct rk808 *rk816 = di->rk816; struct platform_device *pdev = di->pdev; vb_lo_irq = regmap_irq_get_virq(rk816->irq_data, RK816_IRQ_VB_LOW); if (vb_lo_irq < 0) { dev_err(&pdev->dev, "find vb_lo_irq error\n"); return vb_lo_irq; } plug_in_irq = regmap_irq_get_virq(rk816->battery_irq_data, RK816_IRQ_PLUG_IN); if (plug_in_irq < 0) { dev_err(&pdev->dev, "find plug_in_irq error\n"); return plug_in_irq; } plug_out_irq = regmap_irq_get_virq(rk816->battery_irq_data, RK816_IRQ_PLUG_OUT); if (plug_out_irq < 0) { dev_err(&pdev->dev, "find plug_out_irq error\n"); return plug_out_irq; } cvtlmt_irq = regmap_irq_get_virq(rk816->battery_irq_data, RK816_IRQ_CHG_CVTLIM); if (cvtlmt_irq < 0) { dev_err(&pdev->dev, "find cvtlmt_irq error\n"); return cvtlmt_irq; } /* low power */ ret = devm_request_threaded_irq(di->dev, vb_lo_irq, NULL, rk816_vb_low_irq, IRQF_TRIGGER_HIGH | IRQF_ONESHOT, "rk816_vb_low", di); if (ret) { dev_err(di->dev, "vb low irq request failed!\n"); return ret; } enable_irq_wake(vb_lo_irq); /* plug in */ ret = devm_request_threaded_irq(di->dev, plug_in_irq, NULL, rk816_plug_in, IRQF_TRIGGER_FALLING | IRQF_ONESHOT, "rk816_plug_in", di); if (ret) { dev_err(di->dev, "plug in irq request failed!\n"); return ret; } /* plug out */ ret = devm_request_threaded_irq(di->dev, plug_out_irq, NULL, rk816_plug_out, IRQF_TRIGGER_FALLING | IRQF_ONESHOT, "rk816_plug_out", di); if (ret) { dev_err(di->dev, "plug out irq request failed!\n"); return ret; } /* cvtlmt */ ret = devm_request_threaded_irq(di->dev, cvtlmt_irq, NULL, rk816_cvtlmt, IRQF_TRIGGER_FALLING | IRQF_ONESHOT, "rk816_cvtlmt", di); if (ret) { dev_err(di->dev, "cvtlmt irq request failed!\n"); return ret; } disable_irq(cvtlmt_irq); di->cvtlmt_irq = cvtlmt_irq; return 0; } static void rk816_bat_init_info(struct rk816_battery *di) { di->design_cap = di->pdata->design_capacity; di->qmax = di->pdata->design_qmax; di->bat_res = di->pdata->bat_res; di->sleep_chrg_status = rk816_bat_get_chrg_status(di); di->monitor_ms = di->pdata->monitor_sec * TIMER_MS_COUNTS; di->prop_status = POWER_SUPPLY_STATUS_DISCHARGING; di->boot_base = POWER_ON_SEC_BASE; di->chrg_finish_base = 0; di->plug_in_base = 0; di->plug_out_base = 0; } static enum charger_t rk816_bat_init_adc_dc_det(struct rk816_battery *di) { return rk816_bat_get_adc_dc_state(di); } static enum charger_t rk816_bat_init_gpio_dc_det(struct rk816_battery *di) { int ret, level; unsigned long irq_flags; unsigned int dc_det_irq; enum charger_t type = DC_TYPE_NONE_CHARGER; if (gpio_is_valid(di->pdata->dc_det_pin)) { ret = devm_gpio_request(di->dev, di->pdata->dc_det_pin, "rk816_dc_det"); if (ret < 0) { dev_err(di->dev, "Failed to request gpio %d\n", di->pdata->dc_det_pin); goto out; } ret = gpio_direction_input(di->pdata->dc_det_pin); if (ret) { dev_err(di->dev, "failed to set gpio input\n"); goto out; } level = gpio_get_value(di->pdata->dc_det_pin); if (level == di->pdata->dc_det_level) type = DC_TYPE_DC_CHARGER; else type = DC_TYPE_NONE_CHARGER; if (level) irq_flags = IRQF_TRIGGER_LOW; else irq_flags = IRQF_TRIGGER_HIGH; dc_det_irq = gpio_to_irq(di->pdata->dc_det_pin); ret = devm_request_irq(di->dev, dc_det_irq, rk816_vbat_dc_det, irq_flags, "rk816_dc_det", di); if (ret != 0) { dev_err(di->dev, "rk816_dc_det_irq request failed!\n"); goto out; } enable_irq_wake(dc_det_irq); } out: return type; } static enum charger_t rk816_bat_init_dc_det(struct rk816_battery *di) { enum charger_t type; if (di->pdata->dc_det_adc) type = rk816_bat_init_adc_dc_det(di); else type = rk816_bat_init_gpio_dc_det(di); return type; } static int rk816_bat_init_charger(struct rk816_battery *di) { enum charger_t dc_charger; struct device *dev = di->dev; struct extcon_dev *edev; int ret; di->usb_charger_wq = alloc_ordered_workqueue("%s", WQ_MEM_RECLAIM | WQ_FREEZABLE, "rk816-bat-charger-wq"); INIT_DELAYED_WORK(&di->dc_delay_work, rk816_bat_dc_delay_work); /* Find extcon phandle */ edev = extcon_get_edev_by_phandle(dev->parent, 0); if (IS_ERR(edev)) { if (PTR_ERR(edev) != -EPROBE_DEFER) dev_err(dev, "Invalid or missing extcon\n"); return PTR_ERR(edev); } /* Register chargers */ INIT_DELAYED_WORK(&di->usb_work, rk816_bat_charger_evt_worker); di->cable_cg_nb.notifier_call = rk816_bat_charger_evt_notifier; ret = extcon_register_notifier(edev, EXTCON_CHG_USB_SDP, &di->cable_cg_nb); if (ret < 0) { dev_err(dev, "failed to register notifier for SDP\n"); return ret; } ret = extcon_register_notifier(edev, EXTCON_CHG_USB_DCP, &di->cable_cg_nb); if (ret < 0) { dev_err(dev, "failed to register notifier for DCP\n"); extcon_unregister_notifier(edev, EXTCON_CHG_USB_SDP, &di->cable_cg_nb); return ret; } ret = extcon_register_notifier(edev, EXTCON_CHG_USB_CDP, &di->cable_cg_nb); if (ret < 0) { dev_err(dev, "failed to register notifier for CDP\n"); extcon_unregister_notifier(edev, EXTCON_CHG_USB_SDP, &di->cable_cg_nb); extcon_unregister_notifier(edev, EXTCON_CHG_USB_DCP, &di->cable_cg_nb); return ret; } /* Register host */ INIT_DELAYED_WORK(&di->host_work, rk816_bat_host_evt_worker); di->cable_host_nb.notifier_call = rk816_bat_host_evt_notifier; ret = extcon_register_notifier(edev, EXTCON_USB_VBUS_EN, &di->cable_host_nb); if (ret < 0) { dev_err(dev, "failed to register notifier for HOST\n"); extcon_unregister_notifier(edev, EXTCON_CHG_USB_SDP, &di->cable_cg_nb); extcon_unregister_notifier(edev, EXTCON_CHG_USB_DCP, &di->cable_cg_nb); extcon_unregister_notifier(edev, EXTCON_CHG_USB_CDP, &di->cable_cg_nb); return ret; } /* Register discnt usb */ INIT_DELAYED_WORK(&di->discnt_work, rk816_bat_discnt_evt_worker); di->cable_discnt_nb.notifier_call = rk816_bat_discnt_evt_notfier; ret = extcon_register_notifier(edev, EXTCON_USB, &di->cable_discnt_nb); if (ret < 0) { dev_err(dev, "failed to register notifier for HOST\n"); extcon_unregister_notifier(edev, EXTCON_CHG_USB_SDP, &di->cable_cg_nb); extcon_unregister_notifier(edev, EXTCON_CHG_USB_DCP, &di->cable_cg_nb); extcon_unregister_notifier(edev, EXTCON_CHG_USB_CDP, &di->cable_cg_nb); extcon_unregister_notifier(edev, EXTCON_USB_VBUS_EN, &di->cable_host_nb); return ret; } di->cable_edev = edev; /* Check usb and otg state */ schedule_delayed_work(&di->host_work, 0); schedule_delayed_work(&di->usb_work, 0); BAT_INFO("register extcon evt notifier\n"); /* adc dc need poll every 1s */ if (di->pdata->dc_det_adc) queue_delayed_work(di->usb_charger_wq, &di->dc_delay_work, msecs_to_jiffies(1000)); dc_charger = rk816_bat_init_dc_det(di); rk816_bat_set_chrg_param(di, dc_charger); if (di->dc_in && di->otg_in && di->pdata->power_dc2otg) { BAT_INFO("otg power from dc adapter\n"); rk816_bat_set_otg_power(di, USB_OTG_POWER_OFF); } return 0; } static time_t rk816_get_rtc_sec(void) { int err; struct rtc_time tm; struct timespec tv = { .tv_nsec = NSEC_PER_SEC >> 1, }; struct rtc_device *rtc = rtc_class_open(CONFIG_RTC_HCTOSYS_DEVICE); time_t sec; err = rtc_read_time(rtc, &tm); if (err) { dev_err(rtc->dev.parent, "read hardware clk failed\n"); return 0; } err = rtc_valid_tm(&tm); if (err) { dev_err(rtc->dev.parent, "invalid date time\n"); return 0; } rtc_tm_to_time(&tm, &tv.tv_sec); sec = tv.tv_sec; return sec; } static int rk816_bat_rtc_sleep_sec(struct rk816_battery *di) { int interval_sec; interval_sec = rk816_get_rtc_sec() - di->rtc_base; return (interval_sec > 0) ? interval_sec : 0; } static void rk816_bat_init_ts_detect(struct rk816_battery *di) { u8 buf; if (!di->pdata->ntc_size) return; /* Pin func: ts */ buf = rk816_bat_read(di, RK816_GPIO_IO_POL_REG); buf &= ~BIT(2); rk816_bat_write(di, RK816_GPIO_IO_POL_REG, buf); /* External temperature monitoring */ buf = rk816_bat_read(di, RK816_TS_CTRL_REG); buf &= ~BIT(4); rk816_bat_write(di, RK816_TS_CTRL_REG, buf); /* select ua */ buf = rk816_bat_read(di, RK816_TS_CTRL_REG); buf &= ~ADC_CUR_MSK; if (di->pdata->ntc_factor == NTC_CALC_FACTOR_80UA) buf |= ADC_CUR_80UA; else if (di->pdata->ntc_factor == NTC_CALC_FACTOR_60UA) buf |= ADC_CUR_60UA; else if (di->pdata->ntc_factor == NTC_CALC_FACTOR_40UA) buf |= ADC_CUR_40UA; else buf |= ADC_CUR_20UA; rk816_bat_write(di, RK816_TS_CTRL_REG, buf); /* ADC_TS_EN */ buf = rk816_bat_read(di, RK816_ADC_CTRL_REG); buf |= BIT(5); rk816_bat_write(di, RK816_ADC_CTRL_REG, buf); } static void rk816_bat_init_fg(struct rk816_battery *di) { rk816_bat_enable_input_current(di); rk816_bat_enable_gauge(di); rk816_bat_init_voltage_kb(di); rk816_bat_init_poffset(di); rk816_bat_select_sample_res(di); rk816_bat_set_relax_sample(di); rk816_bat_set_ioffset_sample(di); rk816_bat_set_ocv_sample(di); rk816_bat_init_ts_detect(di); rk816_bat_update_temperature(di); rk816_bat_setup_ocv_table(di, di->temperature / 10); rk816_bat_init_rsoc(di); rk816_bat_init_coulomb_cap(di, di->nac); rk816_bat_init_age_algorithm(di); rk816_bat_init_chrg_config(di); rk816_bat_init_zero_table(di); rk816_bat_init_caltimer(di); rk816_bat_init_dsoc_algorithm(di); di->voltage_avg = rk816_bat_get_avg_voltage(di); di->voltage_ocv = rk816_bat_get_ocv_voltage(di); di->voltage_relax = rk816_bat_get_relax_voltage(di); di->current_avg = rk816_bat_get_avg_current(di); di->current_relax = rk816_bat_get_relax_current(di); di->remain_cap = rk816_bat_get_coulomb_cap(di); di->dbg_pwr_dsoc = di->dsoc; di->dbg_pwr_rsoc = di->rsoc; di->dbg_pwr_vol = di->voltage_avg; rk816_bat_dump_regs(di, 0x99, 0xee); DBG("nac=%d cap=%d ov=%d v=%d rv=%d dl=%d rl=%d c=%d\n", di->nac, di->remain_cap, di->voltage_ocv, di->voltage_avg, di->voltage_relax, di->dsoc, di->rsoc, di->current_avg); } static int rk816_bat_read_ocv_tables(struct rk816_battery *di, struct device_node *np) { struct battery_platform_data *pdata = di->pdata; u32 negative, value; int length, i, j; int idx = 0; /* t0 */ if (of_find_property(np, "table_t0", &length) && of_find_property(np, "temp_t0", &length)) { DBG("%s: read table_t0\n", __func__); if (of_property_read_u32_array(np, "table_t0", pdata->table_t[idx], pdata->ocv_size)) { dev_err(di->dev, "invalid table_t0\n"); return -EINVAL; } if (of_property_read_u32_index(np, "temp_t0", 1, &value) || of_property_read_u32_index(np, "temp_t0", 0, &negative)) { dev_err(di->dev, "invalid temp_t0\n"); return -EINVAL; } if (negative) pdata->temp_t[idx] = -value; else pdata->temp_t[idx] = value; idx++; } /* t1 */ if (of_find_property(np, "table_t1", &length) && of_find_property(np, "temp_t1", &length)) { DBG("%s: read table_t1\n", __func__); if (of_property_read_u32_array(np, "table_t1", pdata->table_t[idx], pdata->ocv_size)) { dev_err(di->dev, "invalid table_t1\n"); return -EINVAL; } if (of_property_read_u32_index(np, "temp_t1", 1, &value) || of_property_read_u32_index(np, "temp_t1", 0, &negative)) { dev_err(di->dev, "invalid temp_t1\n"); return -EINVAL; } if (negative) pdata->temp_t[idx] = -value; else pdata->temp_t[idx] = value; idx++; } /* t2 */ if (of_find_property(np, "table_t2", &length) && of_find_property(np, "temp_t2", &length)) { DBG("%s: read table_t2\n", __func__); if (of_property_read_u32_array(np, "table_t2", pdata->table_t[idx], pdata->ocv_size)) { dev_err(di->dev, "invalid table_t2\n"); return -EINVAL; } if (of_property_read_u32_index(np, "temp_t2", 1, &value) || of_property_read_u32_index(np, "temp_t2", 0, &negative)) { dev_err(di->dev, "invalid temp_t2\n"); return -EINVAL; } if (negative) pdata->temp_t[idx] = -value; else pdata->temp_t[idx] = value; idx++; } /* t3 */ if (of_find_property(np, "table_t3", &length) && of_find_property(np, "temp_t3", &length)) { DBG("%s: read table_t3\n", __func__); if (of_property_read_u32_array(np, "table_t3", pdata->table_t[idx], pdata->ocv_size)) { dev_err(di->dev, "invalid table_t3\n"); return -EINVAL; } if (of_property_read_u32_index(np, "temp_t3", 1, &value) || of_property_read_u32_index(np, "temp_t3", 0, &negative)) { dev_err(di->dev, "invalid temp_t3\n"); return -EINVAL; } if (negative) pdata->temp_t[idx] = -value; else pdata->temp_t[idx] = value; idx++; } di->pdata->temp_t_num = idx; DBG("realtime ocv table nums=%d\n", di->pdata->temp_t_num); if (dbg_enable) { for (j = 0; j < pdata->temp_t_num; j++) { DBG("\n\ntemperature[%d]=%d\n", j, pdata->temp_t[j]); for (i = 0; i < di->pdata->ocv_size; i++) DBG("table_t%d[%d]=%d\n", j, i, pdata->table_t[j][i]); } } return 0; } static int rk816_bat_parse_dt(struct rk816_battery *di) { u32 out_value; int length, ret; size_t size; struct device_node *np; struct battery_platform_data *pdata; struct device *dev = di->dev; enum of_gpio_flags flags; np = of_find_node_by_name(di->rk816->i2c->dev.of_node, "battery"); if (!np) { dev_err(dev, "battery node not found!\n"); return -ENODEV; } pdata = devm_kzalloc(di->dev, sizeof(*pdata), GFP_KERNEL); if (!pdata) return -ENOMEM; di->pdata = pdata; /* init default param */ pdata->bat_res = DEFAULT_BAT_RES; pdata->monitor_sec = DEFAULT_MONITOR_SEC; pdata->pwroff_vol = DEFAULT_PWROFF_VOL_THRESD; pdata->sleep_exit_current = DEFAULT_SLP_EXIT_CUR; pdata->sleep_enter_current = DEFAULT_SLP_ENTER_CUR; pdata->sleep_filter_current = DEFAULT_SLP_FILTER_CUR; pdata->bat_mode = MODE_BATTARY; pdata->max_soc_offset = DEFAULT_MAX_SOC_OFFSET; pdata->fb_temp = DEFAULT_FB_TEMP; pdata->energy_mode = DEFAULT_ENERGY_MODE; pdata->zero_reserve_dsoc = DEFAULT_ZERO_RESERVE_DSOC; pdata->sample_res = DEFAULT_SAMPLE_RES; /* parse necessary param */ if (!of_find_property(np, "ocv_table", &length)) { dev_err(dev, "ocv_table not found!\n"); return -EINVAL; } pdata->ocv_size = length / sizeof(u32); if (pdata->ocv_size <= 0) { dev_err(dev, "invalid ocv table\n"); return -EINVAL; } size = sizeof(*pdata->ocv_table) * pdata->ocv_size; pdata->ocv_table = devm_kzalloc(di->dev, size, GFP_KERNEL); if (!pdata->ocv_table) return -ENOMEM; ret = of_property_read_u32_array(np, "ocv_table", pdata->ocv_table, pdata->ocv_size); if (ret < 0) return ret; ret = rk816_bat_read_ocv_tables(di, np); if (ret < 0) { di->pdata->temp_t_num = 0; dev_err(dev, "read table_t error\n"); return ret; } ret = of_property_read_u32(np, "design_capacity", &out_value); if (ret < 0) { dev_err(dev, "design_capacity not found!\n"); return ret; } pdata->design_capacity = out_value; ret = of_property_read_u32(np, "design_qmax", &out_value); if (ret < 0) { dev_err(dev, "design_qmax not found!\n"); return ret; } pdata->design_qmax = out_value; ret = of_property_read_u32(np, "max_chrg_current", &out_value); if (ret < 0) { dev_err(dev, "max_chrg_current missing!\n"); return ret; } pdata->max_chrg_current = out_value; ret = of_property_read_u32(np, "max_input_current", &out_value); if (ret < 0) { dev_err(dev, "max_input_current missing!\n"); return ret; } pdata->max_input_current = out_value; ret = of_property_read_u32(np, "max_chrg_voltage", &out_value); if (ret < 0) { dev_err(dev, "max_chrg_voltage missing!\n"); return ret; } pdata->max_chrg_voltage = out_value; if (out_value >= 4300) pdata->zero_algorithm_vol = DEFAULT_ALGR_VOL_THRESD2; else pdata->zero_algorithm_vol = DEFAULT_ALGR_VOL_THRESD1; pdata->extcon = device_property_read_bool(dev->parent, "extcon"); if (!pdata->extcon) { dev_err(dev, "Can't find extcon node under rk816 node\n"); return -EINVAL; } /* parse unnecessary param */ of_property_read_u32(np, "sample_res", &pdata->sample_res); if (!of_find_property(np, "lp_input_current", &length)) { pdata->lp_input_current = 0; } else { of_property_read_u32_index(np, "lp_input_current", 0, &pdata->lp_input_current); of_property_read_u32_index(np, "lp_input_current", 1, &pdata->lp_soc_min); of_property_read_u32_index(np, "lp_input_current", 2, &pdata->lp_soc_max); if (pdata->lp_soc_max <= pdata->lp_soc_min) { dev_err(dev, "lp input current set min max error\n"); pdata->lp_input_current = 0; } } ret = of_property_read_u32(np, "fb_temperature", &pdata->fb_temp); if (ret < 0) dev_err(dev, "fb_temperature missing!\n"); ret = of_property_read_u32(np, "energy_mode", &pdata->energy_mode); if (ret < 0) dev_err(dev, "energy_mode missing!\n"); ret = of_property_read_u32(np, "max_soc_offset", &pdata->max_soc_offset); if (ret < 0) dev_err(dev, "max_soc_offset missing!\n"); ret = of_property_read_u32(np, "monitor_sec", &pdata->monitor_sec); if (ret < 0) dev_err(dev, "monitor_sec missing!\n"); ret = of_property_read_u32(np, "zero_algorithm_vol", &pdata->zero_algorithm_vol); if (ret < 0) dev_err(dev, "zero_algorithm_vol missing!\n"); ret = of_property_read_u32(np, "zero_reserve_dsoc", &pdata->zero_reserve_dsoc); ret = of_property_read_u32(np, "virtual_power", &pdata->bat_mode); if (ret < 0) dev_err(dev, "virtual_power missing!\n"); ret = of_property_read_u32(np, "power_dc2otg", &pdata->power_dc2otg); if (ret < 0) dev_err(dev, "power_dc2otg missing!\n"); ret = of_property_read_u32(np, "bat_res", &pdata->bat_res); if (ret < 0) dev_err(dev, "bat_res missing!\n"); ret = of_property_read_u32(np, "sleep_enter_current", &pdata->sleep_enter_current); if (ret < 0) dev_err(dev, "sleep_enter_current missing!\n"); ret = of_property_read_u32(np, "sleep_exit_current", &pdata->sleep_exit_current); if (ret < 0) dev_err(dev, "sleep_exit_current missing!\n"); ret = of_property_read_u32(np, "sleep_filter_current", &pdata->sleep_filter_current); if (ret < 0) dev_err(dev, "sleep_filter_current missing!\n"); ret = of_property_read_u32(np, "power_off_thresd", &pdata->pwroff_vol); if (ret < 0) dev_err(dev, "power_off_thresd missing!\n"); ret = of_property_read_u32(np, "otg5v_suspend_enable", &pdata->otg5v_suspend_enable); if (ret < 0) pdata->otg5v_suspend_enable = 1; if (!of_find_property(np, "dc_det_gpio", &length)) { pdata->dc_det_pin = -1; of_property_read_u32(np, "dc_det_adc", &pdata->dc_det_adc); if (!pdata->dc_det_adc) BAT_INFO("not support dc\n"); else BAT_INFO("support adc dc\n"); } else { BAT_INFO("support gpio dc\n"); pdata->dc_det_pin = of_get_named_gpio_flags(np, "dc_det_gpio", 0, &flags); if (gpio_is_valid(pdata->dc_det_pin)) { pdata->dc_det_level = (flags & OF_GPIO_ACTIVE_LOW) ? 0 : 1; /* if support dc, default set power_dc2otg = 1 */ pdata->power_dc2otg = 1; } } if (!of_find_property(np, "ntc_table", &length)) { pdata->ntc_size = 0; } else { /* get ntc degree base value */ ret = of_property_read_u32_index(np, "ntc_degree_from", 1, &pdata->ntc_degree_from); if (ret) { dev_err(dev, "invalid ntc_degree_from\n"); return -EINVAL; } of_property_read_u32_index(np, "ntc_degree_from", 0, &out_value); if (out_value) pdata->ntc_degree_from = -pdata->ntc_degree_from; pdata->ntc_size = length / sizeof(u32); } if (pdata->ntc_size) { size = sizeof(*pdata->ntc_table) * pdata->ntc_size; pdata->ntc_table = devm_kzalloc(di->dev, size, GFP_KERNEL); if (!pdata->ntc_table) return -ENOMEM; ret = of_property_read_u32_array(np, "ntc_table", pdata->ntc_table, pdata->ntc_size); if (ret < 0) return ret; if (pdata->ntc_table[0] < NTC_80UA_MAX_MEASURE) pdata->ntc_factor = NTC_CALC_FACTOR_80UA; else if (pdata->ntc_table[0] < NTC_60UA_MAX_MEASURE) pdata->ntc_factor = NTC_CALC_FACTOR_60UA; else if (pdata->ntc_table[0] < NTC_40UA_MAX_MEASURE) pdata->ntc_factor = NTC_CALC_FACTOR_40UA; else pdata->ntc_factor = NTC_CALC_FACTOR_20UA; } DBG("the battery dts info dump:\n" "bat_res:%d\n" "res_sample:%d\n" "max_input_currentmA:%d\n" "max_chrg_current:%d\n" "max_chrg_voltage:%d\n" "design_capacity:%d\n" "design_qmax :%d\n" "sleep_enter_current:%d\n" "sleep_exit_current:%d\n" "sleep_filter_current:%d\n" "zero_algorithm_vol:%d\n" "zero_reserve_dsoc:%d\n" "monitor_sec:%d\n" "power_dc2otg:%d\n" "max_soc_offset:%d\n" "virtual_power:%d\n" "pwroff_vol:%d\n" "dc_det_adc:%d\n" "ntc_factor:%d\n" "ntc_size=%d\n" "ntc_degree_from:%d\n" "ntc_degree_to:%d\n", pdata->bat_res, pdata->sample_res, pdata->max_input_current, pdata->max_chrg_current, pdata->max_chrg_voltage, pdata->design_capacity, pdata->design_qmax, pdata->sleep_enter_current, pdata->sleep_exit_current, pdata->sleep_filter_current, pdata->zero_algorithm_vol, pdata->zero_reserve_dsoc, pdata->monitor_sec, pdata->power_dc2otg, pdata->max_soc_offset, pdata->bat_mode, pdata->pwroff_vol, pdata->dc_det_adc, pdata->ntc_factor, pdata->ntc_size, pdata->ntc_degree_from, pdata->ntc_degree_from + pdata->ntc_size - 1 ); return 0; } static const struct of_device_id rk816_battery_of_match[] = { {.compatible = "rk816-battery",}, { }, }; static int rk816_battery_probe(struct platform_device *pdev) { const struct of_device_id *of_id = of_match_device(rk816_battery_of_match, &pdev->dev); struct rk816_battery *di; struct rk808 *rk816 = dev_get_drvdata(pdev->dev.parent); int ret; if (!of_id) { dev_err(&pdev->dev, "Failed to find matching dt id\n"); return -ENODEV; } di = devm_kzalloc(&pdev->dev, sizeof(*di), GFP_KERNEL); if (!di) return -ENOMEM; di->rk816 = rk816; di->pdev = pdev; di->dev = &pdev->dev; di->regmap = rk816->regmap; platform_set_drvdata(pdev, di); ret = rk816_bat_parse_dt(di); if (ret < 0) { dev_err(&pdev->dev, "rk816 battery parse dt failed!\n"); return ret; } if (!is_rk816_bat_exist(di)) { di->pdata->bat_mode = MODE_VIRTUAL; dev_err(&pdev->dev, "no battery, virtual power mode\n"); } ret = rk816_bat_init_power_supply(di); if (ret) { dev_err(&pdev->dev, "rk816 power supply register failed!\n"); return ret; } rk816_bat_init_info(di); rk816_bat_init_fg(di); rk816_bat_init_leds(di); rk816_bat_init_charger(di); rk816_bat_init_sysfs(di); rk816_bat_register_fb_notify(di); wake_lock_init(&di->wake_lock, WAKE_LOCK_SUSPEND, "rk816_bat_lock"); di->bat_monitor_wq = alloc_ordered_workqueue("%s", WQ_MEM_RECLAIM | WQ_FREEZABLE, "rk816-bat-monitor-wq"); INIT_DELAYED_WORK(&di->bat_delay_work, rk816_battery_work); ret = rk816_bat_init_irqs(di); if (ret) { dev_err(&pdev->dev, "rk816 bat irq init failed!\n"); goto irq_fail; } queue_delayed_work(di->bat_monitor_wq, &di->bat_delay_work, msecs_to_jiffies(TIMER_MS_COUNTS * 5)); BAT_INFO("driver version %s\n", DRIVER_VERSION); return 0; irq_fail: cancel_delayed_work(&di->dc_delay_work); cancel_delayed_work(&di->bat_delay_work); cancel_delayed_work(&di->calib_delay_work); destroy_workqueue(di->bat_monitor_wq); destroy_workqueue(di->usb_charger_wq); rk816_bat_unregister_fb_notify(di); del_timer(&di->caltimer); wake_lock_destroy(&di->wake_lock); return ret; } static int rk816_battery_suspend(struct platform_device *dev, pm_message_t state) { struct rk816_battery *di = platform_get_drvdata(dev); u8 st; cancel_delayed_work_sync(&di->bat_delay_work); di->s2r = false; di->sleep_chrg_online = rk816_bat_chrg_online(di); di->sleep_chrg_status = rk816_bat_get_chrg_status(di); di->current_avg = rk816_bat_get_avg_current(di); di->remain_cap = rk816_bat_get_coulomb_cap(di); di->rsoc = rk816_bat_get_rsoc(di); di->rtc_base = rk816_get_rtc_sec(); rk816_bat_save_data(di); st = (rk816_bat_read(di, RK816_SUP_STS_REG) & CHRG_STATUS_MSK) >> 4; di->slp_dcdc_en_reg = rk816_bat_read(di, RK816_SLP_DCDC_EN_REG); /* enable sleep boost5v and otg5v */ if (di->pdata->otg5v_suspend_enable) { if ((di->otg_in && !di->dc_in) || (di->otg_in && di->dc_in && !di->pdata->power_dc2otg)) { rk816_bat_set_bits(di, RK816_SLP_DCDC_EN_REG, OTG_BOOST_SLP_ON, OTG_BOOST_SLP_ON); BAT_INFO("suspend: otg 5v on\n"); } else { /* disable sleep otg5v */ rk816_bat_set_bits(di, RK816_SLP_DCDC_EN_REG, OTG_BOOST_SLP_ON, 0); BAT_INFO("suspend: otg 5v off\n"); } } else { /* disable sleep otg5v */ rk816_bat_set_bits(di, RK816_SLP_DCDC_EN_REG, OTG_BOOST_SLP_ON, 0); BAT_INFO("suspend: otg 5v off\n"); } /* if not CHARGE_FINISH, reinit chrg_finish_base. * avoid sleep loop in suspend and resume all the time */ if (di->sleep_chrg_status != CHARGE_FINISH) di->chrg_finish_base = get_boot_sec(); /* avoid: enter suspend from MODE_ZERO: load from heavy to light */ if ((di->work_mode == MODE_ZERO) && (di->sleep_chrg_online) && (di->current_avg >= 0)) { DBG("suspend: MODE_ZERO exit...\n"); /* it need't do prepare for mode finish and smooth, it will * be done in display_smooth */ if (di->sleep_chrg_status == CHARGE_FINISH) { di->work_mode = MODE_FINISH; di->chrg_finish_base = get_boot_sec(); } else { di->work_mode = MODE_SMOOTH; rk816_bat_smooth_algo_prepare(di); } } BAT_INFO("suspend: dl=%d rl=%d c=%d v=%d cap=%d at=%ld ch=%d st=%s\n", di->dsoc, di->rsoc, di->current_avg, rk816_bat_get_avg_voltage(di), rk816_bat_get_coulomb_cap(di), di->sleep_dischrg_sec, di->sleep_chrg_online, bat_status[st]); return 0; } static int rk816_battery_resume(struct platform_device *dev) { int interval_sec, pwroff_vol, time_step = DISCHRG_TIME_STEP1; struct rk816_battery *di = platform_get_drvdata(dev); u8 st; di->s2r = true; di->voltage_avg = rk816_bat_get_avg_voltage(di); di->current_avg = rk816_bat_get_avg_current(di); di->voltage_relax = rk816_bat_get_relax_voltage(di); di->current_relax = rk816_bat_get_relax_current(di); di->remain_cap = rk816_bat_get_coulomb_cap(di); di->rsoc = rk816_bat_get_rsoc(di); interval_sec = rk816_bat_rtc_sleep_sec(di); di->sleep_sum_sec += interval_sec; pwroff_vol = di->pdata->pwroff_vol; st = (rk816_bat_read(di, RK816_SUP_STS_REG) & CHRG_STATUS_MSK) >> 4; /* resume sleep boost5v and otg5v */ rk816_bat_set_bits(di, RK816_SLP_DCDC_EN_REG, OTG_BOOST_SLP_ON, di->slp_dcdc_en_reg); if (!di->sleep_chrg_online) { /* only add up discharge sleep seconds */ di->sleep_dischrg_sec += interval_sec; if (di->voltage_avg <= pwroff_vol + 50) time_step = DISCHRG_TIME_STEP1; else time_step = DISCHRG_TIME_STEP2; } BAT_INFO("resume: dl=%d rl=%d c=%d v=%d rv=%d cap=%d dt=%d at=%ld ch=%d st=%s\n", di->dsoc, di->rsoc, di->current_avg, di->voltage_avg, di->voltage_relax, rk816_bat_get_coulomb_cap(di), interval_sec, di->sleep_dischrg_sec, di->sleep_chrg_online, bat_status[st]); /* sleep: enough time and discharge */ if ((di->sleep_dischrg_sec > time_step) && (!di->sleep_chrg_online)) { if (rk816_bat_sleep_dischrg(di)) di->sleep_dischrg_sec = 0; } rk816_bat_save_data(di); /* charge/lowpower lock: for battery work to update dsoc and rsoc */ if ((di->sleep_chrg_online) || (!di->sleep_chrg_online && di->voltage_avg <= pwroff_vol)) wake_lock_timeout(&di->wake_lock, msecs_to_jiffies(2000)); queue_delayed_work(di->bat_monitor_wq, &di->bat_delay_work, msecs_to_jiffies(1000)); return 0; } static void rk816_battery_shutdown(struct platform_device *dev) { u8 cnt = 0; struct rk816_battery *di = platform_get_drvdata(dev); extcon_unregister_notifier(di->cable_edev, EXTCON_CHG_USB_SDP, &di->cable_cg_nb); extcon_unregister_notifier(di->cable_edev, EXTCON_CHG_USB_DCP, &di->cable_cg_nb); extcon_unregister_notifier(di->cable_edev, EXTCON_CHG_USB_CDP, &di->cable_cg_nb); extcon_unregister_notifier(di->cable_edev, EXTCON_USB_VBUS_EN, &di->cable_host_nb); extcon_unregister_notifier(di->cable_edev, EXTCON_USB, &di->cable_discnt_nb); rk816_bat_unregister_fb_notify(di); cancel_delayed_work_sync(&di->dc_delay_work); cancel_delayed_work_sync(&di->bat_delay_work); cancel_delayed_work_sync(&di->calib_delay_work); cancel_delayed_work_sync(&di->usb_work); cancel_delayed_work_sync(&di->host_work); cancel_delayed_work_sync(&di->discnt_work); destroy_workqueue(di->bat_monitor_wq); destroy_workqueue(di->usb_charger_wq); del_timer(&di->caltimer); rk816_bat_set_otg_power(di, USB_OTG_POWER_OFF); if (base2sec(di->boot_base) < REBOOT_PERIOD_SEC) cnt = rk816_bat_check_reboot(di); else rk816_bat_save_reboot_cnt(di, 0); BAT_INFO("shutdown: dl=%d rl=%d c=%d v=%d cap=%d f=%d ch=%d otg=%d 5v=%d n=%d mode=%d rest=%d\n", di->dsoc, di->rsoc, di->current_avg, di->voltage_avg, di->remain_cap, di->fcc, rk816_bat_chrg_online(di), di->otg_in, di->otg_pmic5v, cnt, di->algo_rest_mode, di->algo_rest_val); } static struct platform_driver rk816_battery_driver = { .probe = rk816_battery_probe, .suspend = rk816_battery_suspend, .resume = rk816_battery_resume, .shutdown = rk816_battery_shutdown, .driver = { .name = "rk816-battery", .of_match_table = rk816_battery_of_match, }, }; static int __init battery_init(void) { return platform_driver_register(&rk816_battery_driver); } fs_initcall_sync(battery_init); static void __exit battery_exit(void) { platform_driver_unregister(&rk816_battery_driver); } module_exit(battery_exit); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:rk816-battery"); MODULE_AUTHOR("chenjh");