/* * drivers/input/touchscreen/gslX680.c * * Copyright (c) 2012 Shanghai Basewin * Guan Yuwei * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "tp_suspend.h" #include "gslx680_firefly.h" #define REPORT_DATA_ANDROID_4_0 #define SLEEP_CLEAR_POINT #ifdef FILTER_POINT #define FILTER_MAX 9 #endif #define GSLX680_I2C_NAME "gslX680" #define GSL_DATA_REG 0x80 #define GSL_STATUS_REG 0xe0 #define GSL_PAGE_REG 0xf0 #define PRESS_MAX 255 #define MAX_FINGERS 10 #define MAX_CONTACTS 10 #define DMA_TRANS_LEN 0x20 #define GPIO_LOW 0 #define GPIO_HIGH 1 /*#define TPD_PROC_DEBUG*/ #ifdef TPD_PROC_DEBUG #include static struct proc_dir_entry *gsl_config_proc; #define GSL_CONFIG_PROC_FILE "gsl_config" #define CONFIG_LEN 31 static char gsl_read[CONFIG_LEN]; static u8 gsl_data_proc[8] = {0}; static u8 gsl_proc_flag; #endif #ifdef GSLX680_COMPATIBLE static char chip_type = 0x36; #endif static char is_noid_version; static struct i2c_client *gsl_client; #define I2C_SPEED (200 * 1000) #ifdef HAVE_TOUCH_KEY static u16 key; static int key_state_flag; struct key_data { u16 key; u16 x_min; u16 x_max; u16 y_min; u16 y_max; }; const u16 key_array[] = { KEY_BACK, KEY_HOME, KEY_MENU, KEY_SEARCH, }; #define MAX_KEY_NUM ARRAY_SIZE(key_array) struct key_data gsl_key_data[MAX_KEY_NUM] = { {KEY_BACK, 2048, 2048, 2048, 2048}, {KEY_HOME, 2048, 2048, 2048, 2048}, {KEY_MENU, 2048, 2048, 2048, 2048}, {KEY_SEARCH, 2048, 2048, 2048, 2048}, }; #endif struct gsl_ts_data { u8 x_index; u8 y_index; u8 z_index; u8 id_index; u8 touch_index; u8 data_reg; u8 status_reg; u8 data_size; u8 touch_bytes; u8 update_data; u8 touch_meta_data; u8 finger_size; }; static struct gsl_ts_data devices[] = { { .x_index = 6, .y_index = 4, .z_index = 5, .id_index = 7, .data_reg = GSL_DATA_REG, .status_reg = GSL_STATUS_REG, .update_data = 0x4, .touch_bytes = 4, .touch_meta_data = 4, .finger_size = 70, }, }; struct gsl_ts { struct i2c_client *client; struct input_dev *input; struct work_struct work; struct workqueue_struct *wq; struct gsl_ts_data *dd; u8 *touch_data; u8 device_id; int irq; int irq_pin; int rst_pin; int rst_val; int flip_x; int flip_y; int swap_xy; struct tp_device tp; #if defined(CONFIG_HAS_EARLYSUSPEND) struct early_suspend early_suspend; #endif }; #ifdef GSL_DEBUG #define print_info(fmt, args...) \ do { \ printk(fmt, ##args); \ } while (0) #else #define print_info(fmt, args...) #endif static u32 id_sign[MAX_CONTACTS + 1] = {0}; static u8 id_state_flag[MAX_CONTACTS + 1] = {0}; static u8 id_state_old_flag[MAX_CONTACTS + 1] = {0}; static u16 x_old[MAX_CONTACTS + 1] = {0}; static u16 y_old[MAX_CONTACTS + 1] = {0}; static u16 x_new; static u16 y_new; static struct gsl_ts *gts; static int gslX680_shutdown_low(void) { if (gpio_is_valid(gts->rst_pin)) gpio_set_value(gts->rst_pin, GPIO_LOW); return 0; } static int gslX680_shutdown_high(void) { if (gpio_is_valid(gts->rst_pin)) gpio_set_value(gts->rst_pin, GPIO_HIGH); return 0; } static inline u16 join_bytes(u8 a, u8 b) { u16 ab = 0; ab = ab | a; ab = ab << 8 | b; return ab; } static u32 gsl_write_interface(struct i2c_client *client, const u8 reg, u8 *buf, u32 num) { struct i2c_msg xfer_msg[1]; buf[0] = reg; xfer_msg[0].addr = client->addr; xfer_msg[0].len = num + 1; xfer_msg[0].flags = client->flags & I2C_M_TEN; xfer_msg[0].buf = buf; return i2c_transfer(client->adapter, xfer_msg, 1) == 1 ? 0 : -EFAULT; } static int gsl_ts_write(struct i2c_client *client, u8 addr, u8 *pdata, int datalen) { int ret = 0; u8 tmp_buf[128]; unsigned int bytelen = 0; if (datalen > 125) return -1; tmp_buf[0] = addr; bytelen++; if (datalen != 0 && pdata != NULL) { memcpy(&tmp_buf[bytelen], pdata, datalen); bytelen += datalen; } ret = i2c_master_send(client, tmp_buf, bytelen); return ret; } static int gsl_ts_read(struct i2c_client *client, u8 addr, u8 *pdata, unsigned int datalen) { int ret = 0; if (datalen > 126) return -1; ret = gsl_ts_write(client, addr, NULL, 0); if (ret < 0) return ret; return i2c_master_recv(client, pdata, datalen); } #ifdef GSLX680_COMPATIBLE static void judge_chip_type(struct i2c_client *client) { u8 read_buf[4] = {0, 0, 0, 0}; printk("org chip_type=%x\n", chip_type); msleep(50); gsl_ts_read(client, 0xfc, read_buf, sizeof(read_buf)); if (read_buf[2] != 0x36 && read_buf[2] != 0x88) { msleep(50); gsl_ts_read(client, 0xfc, read_buf, sizeof(read_buf)); } if (read_buf[2] == 0x36) { chip_type = 0x36; is_noid_version = 1; } else { chip_type = 0x88; is_noid_version = 0; } print_info("chip_type=%x, reg=%x\n", chip_type, read_buf[2]); } #endif static __inline__ void fw2buf(u8 *buf, const u32 *fw) { u32 *u32_buf = (int *)buf; *u32_buf = *fw; } static void gsl_load_fw(struct i2c_client *client) { u8 buf[DMA_TRANS_LEN * 4 + 1] = {0}; u8 send_flag = 1; u8 *cur = buf + 1; u32 source_line = 0; u32 source_len = 0; const struct fw_data *ptr_fw = NULL; #ifdef GSLX680_COMPATIBLE if (0x36 == chip_type) { ptr_fw = GSL3680B_FW; source_len = ARRAY_SIZE(GSL3680B_FW); } #endif for (source_line = 0; source_line < source_len; source_line++) { /* init page trans, set the page val */ if (GSL_PAGE_REG == ptr_fw[source_line].offset) { fw2buf(cur, &ptr_fw[source_line].val); gsl_write_interface(client, GSL_PAGE_REG, buf, 4); send_flag = 1; } else { if (1 == send_flag % (DMA_TRANS_LEN < 0x20 ? DMA_TRANS_LEN : 0x20)) buf[0] = (u8)ptr_fw[source_line].offset; fw2buf(cur, &ptr_fw[source_line].val); cur += 4; if (0 == send_flag % (DMA_TRANS_LEN < 0x20 ? DMA_TRANS_LEN : 0x20)) { gsl_write_interface(client, buf[0], buf, cur - buf - 1); cur = buf + 1; } send_flag++; } } } static int test_i2c(struct i2c_client *client) { u8 read_buf = 0; u8 write_buf = 0x12; int ret, rc = 1; ret = gsl_ts_read(client, 0xf0, &read_buf, sizeof(read_buf)); if (ret < 0) rc--; msleep(2); ret = gsl_ts_write(client, 0xf0, &write_buf, sizeof(write_buf)); msleep(2); ret = gsl_ts_read(client, 0xf0, &read_buf, sizeof(read_buf)); if (ret < 0) rc--; return rc; } static void startup_chip(struct i2c_client *client) { u8 tmp = 0x00; #ifdef GSL_NOID_VERSION if (is_noid_version) gsl_DataInit(gsl_config_data_id_3680B); #endif gsl_ts_write(client, 0xe0, &tmp, 1); msleep(10); } static void reset_chip(struct i2c_client *client) { u8 tmp = 0x88; u8 buf[4] = {0x00}; gsl_ts_write(client, 0xe0, &tmp, sizeof(tmp)); msleep(20); tmp = 0x04; gsl_ts_write(client, 0xe4, &tmp, sizeof(tmp)); msleep(10); gsl_ts_write(client, 0xbc, buf, sizeof(buf)); msleep(10); } static void clr_reg(struct i2c_client *client) { u8 write_buf[4] = {0}; write_buf[0] = 0x88; gsl_ts_write(client, 0xe0, &write_buf[0], 1); msleep(20); write_buf[0] = 0x03; gsl_ts_write(client, 0x80, &write_buf[0], 1); msleep(5); write_buf[0] = 0x04; gsl_ts_write(client, 0xe4, &write_buf[0], 1); msleep(5); write_buf[0] = 0x00; gsl_ts_write(client, 0xe0, &write_buf[0], 1); msleep(20); } static void init_chip(struct i2c_client *client) { int rc; gslX680_shutdown_low(); msleep(20); gslX680_shutdown_high(); msleep(20); rc = test_i2c(client); if (rc < 0) { print_info("------gslX680 test_i2c error------\n"); return; } clr_reg(client); reset_chip(client); gsl_load_fw(client); startup_chip(client); reset_chip(client); startup_chip(client); } static void check_mem_data(struct i2c_client *client) { u8 read_buf[4] = {0}; msleep(30); gsl_ts_read(client, 0xb0, read_buf, sizeof(read_buf)); if (read_buf[3] != 0x5a || read_buf[2] != 0x5a || read_buf[1] != 0x5a || read_buf[0] != 0x5a) init_chip(client); } #ifdef TPD_PROC_DEBUG static int char_to_int(char ch) { if (ch >= '0' && ch <= '9') return (ch - '0'); else return (ch - 'a' + 10); } static int gsl_config_read_proc(char *page, char **start, off_t off, int count, int *eof, void *data) { char *ptr = page; char temp_data[5] = {0}; unsigned int tmp = 0; if ('v' == gsl_read[0] && 's' == gsl_read[1]) { #ifdef GSL_NOID_VERSION tmp = gsl_version_id(); #else tmp = 0x20121215; #endif ptr += sprintf(ptr, "version:%x\n", tmp); } else if ('r' == gsl_read[0] && 'e' == gsl_read[1]) { if ('i' == gsl_read[3]) { tmp = (gsl_data_proc[5] << 8) | gsl_data_proc[4]; ptr += s printf(ptr, "gsl_config_data_id[%d] = ", tmp); if (tmp >= 0 && tmp < ARRAY_SIZE(gsl_config_data_id_3680B)) { ptr += sprintf(ptr, "%d\n", gsl_config_data_id_3680B[tmp]); } else { gsl_ts_write(gsl_client, 0Xf0, &gsl_data_proc[4], 4); if (gsl_data_proc[0] < 0x80) gsl_ts_read(gsl_client, gsl_data_proc[0], temp_data, 4); gsl_ts_read(gsl_client, gsl_data_proc[0], temp_data, 4); ptr += sprintf(ptr, "offset : {0x%02x,0x", gsl_data_proc[0]); ptr += sprintf(ptr, "%02x", temp_data[3]); ptr += sprintf(ptr, "%02x", temp_data[2]); ptr += sprintf(ptr, "%02x", temp_data[1]); ptr += sprintf(ptr, "%02x};\n", temp_data[0]); } } *eof = 1; return (ptr - page); } static int gsl_config_write_proc(struct file *file, const char *buffer, unsigned long count, void *data) { u8 buf[8] = {0}; char temp_buf[CONFIG_LEN]; char *path_buf; int tmp = 0; int tmp1 = 0; print_info("[tp-gsl][%s]\n", __func__); if (count > 512) { print_info("size not match [%d:%ld]\n", CONFIG_LEN, count); return -EFAULT; } path_buf = devm_kzalloc(>s->client->dev, count, GFP_KERNEL); if (!path_buf) print_info("alloc path_buf memory error\n"); if (copy_from_user(path_buf, buffer, count)) { print_info("copy from user fail\n"); goto exit_write_proc_out; } memcpy(temp_buf, path_buf, (count < CONFIG_LEN ? count : CONFIG_LEN)); print_info("[tp-gsl][%s][%s]\n", __func__, temp_buf); buf[3] = char_to_int(temp_buf[14]) << 4 | char_to_int(temp_buf[15]); buf[2] = char_to_int(temp_buf[16]) << 4 | char_to_int(temp_buf[17]); buf[1] = char_to_int(temp_buf[18]) << 4 | char_to_int(temp_buf[19]); buf[0] = char_to_int(temp_buf[20]) << 4 | char_to_int(temp_buf[21]); buf[7] = char_to_int(temp_buf[5]) << 4 | char_to_int(temp_buf[6]); buf[6] = char_to_int(temp_buf[7]) << 4 | char_to_int(temp_buf[8]); buf[5] = char_to_int(temp_buf[9]) << 4 | char_to_int(temp_buf[10]); buf[4] = char_to_int(temp_buf[11]) << 4 | char_to_int(temp_buf[12]); if ('v' == temp_buf[0] && 's' == temp_buf[1]) { memcpy(gsl_read, temp_buf, 4); } else if ('s' == temp_buf[0] && 't' == temp_buf[1]) { gsl_proc_flag = 1; reset_chip(gsl_client); } else if ('e' == temp_buf[0] && 'n' == temp_buf[1]) { msleep(20); reset_chip(gsl_client); startup_chip(gsl_client); gsl_proc_flag = 0; } else if ('r' == temp_buf[0] && 'e' == temp_buf[1]) { memcpy(gsl_read, temp_buf, 4); memcpy(gsl_data_proc, buf, 8); } else if ('w' == temp_buf[0] && 'r' == temp_buf[1]) { gsl_ts_write(gsl_client, buf[4], buf, 4); } #ifdef GSL_NOID_VERSION else if ('i' == temp_buf[0] && 'd' == temp_buf[1]) { tmp1 = (buf[7] << 24) | (buf[6] << 16) | (buf[5] << 8) | buf[4]; tmp = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0]; if (tmp1 >= 0 && tmp1 < ARRAY_SIZE(gsl_config_data_id_3680B)) gsl_config_data_id_3680B[tmp1] = tmp; } #endif exit_write_proc_out: devm_kfree(&client->dev, path_buf); return count; } #endif #ifdef FILTER_POINT static void filter_point(u16 x, u16 y, u8 id) { u16 x_err = 0; u16 y_err = 0; u16 filter_step_x = 0, filter_step_y = 0; id_sign[id] = id_sign[id] + 1; if (id_sign[id] == 1) { x_old[id] = x; y_old[id] = y; } x_err = x > x_old[id] ? (x - x_old[id]) : (x_old[id] - x); y_err = y > y_old[id] ? (y - y_old[id]) : (y_old[id] - y); if ((x_err > FILTER_MAX && y_err > FILTER_MAX / 3) || (x_err > FILTER_MAX / 3 && y_err > FILTER_MAX)) { filter_step_x = x_err; filter_step_y = y_err; } else { if (x_err > FILTER_MAX) filter_step_x = x_err; if (y_err > FILTER_MAX) filter_step_y = y_err; } if (x_err <= 2 * FILTER_MAX && y_err <= 2 * FILTER_MAX) { filter_step_x >>= 2; filter_step_y >>= 2; } else if (x_err <= 3 * FILTER_MAX && y_err <= 3 * FILTER_MAX) { filter_step_x >>= 1; filter_step_y >>= 1; } else if (x_err <= 4 * FILTER_MAX && y_err <= 4 * FILTER_MAX) { filter_step_x = filter_step_x * 3 / 4; filter_step_y = filter_step_y * 3 / 4; } x_new = x > x_old[id] ? (x_old[id] + filter_step_x) : (x_old[id] - filter_step_x); y_new = y > y_old[id] ? (y_old[id] + filter_step_y) : (y_old[id] - filter_step_y); x_old[id] = x_new; y_old[id] = y_new; } #else static void record_point(u16 x, u16 y, u8 id) { u16 x_err = 0; u16 y_err = 0; id_sign[id] = id_sign[id] + 1; if (id_sign[id] == 1) { x_old[id] = x; y_old[id] = y; } x = (x_old[id] + x) / 2; y = (y_old[id] + y) / 2; if (x > x_old[id]) x_err = x - x_old[id]; else x_err = x_old[id] - x; if (y > y_old[id]) y_err = y - y_old[id]; else y_err = y_old[id] - y; if ((x_err > 3 && y_err > 1) || (x_err > 1 && y_err > 3)) { x_new = x; x_old[id] = x; y_new = y; y_old[id] = y; } else { if (x_err > 3) { x_new = x; x_old[id] = x; } else { x_new = x_old[id]; } if (y_err > 3) { y_new = y; y_old[id] = y; } else { y_new = y_old[id]; } } if (id_sign[id] == 1) { x_new = x_old[id]; y_new = y_old[id]; } } #endif #ifdef HAVE_TOUCH_KEY static void report_key(struct gsl_ts *ts, u16 x, u16 y) { u16 i = 0; for (i = 0; i < MAX_KEY_NUM; i++) { if ((gsl_key_data[i].x_min < x) && (x < gsl_key_data[i].x_max) && (gsl_key_data[i].y_min < y) && (y < gsl_key_data[i].y_max)) { key = gsl_key_data[i].key; input_report_key(ts->input, key, 1); input_sync(ts->input); key_state_flag = 1; break; } } } #endif static void report_data(struct gsl_ts *ts, u16 x, u16 y, u8 pressure, u8 id) { if (ts->flip_x == 1) x = SCREEN_MAX_X - x; if (ts->flip_y == 1) y = SCREEN_MAX_Y - y; if (ts->swap_xy == 1) swap(x, y); print_info("#####id=%d,x=%d,y=%d######\n", id, x, y); if (x > SCREEN_MAX_X || y > SCREEN_MAX_Y) { #ifdef HAVE_TOUCH_KEY report_key(ts, x, y); #endif return; } #ifdef CONFIG_TCHIP_MACH_BACK_MUSIC y = SCREEN_MAX_Y - y; #endif #ifdef REPORT_DATA_ANDROID_4_0 input_mt_slot(ts->input, id); input_report_abs(ts->input, ABS_MT_TRACKING_ID, id); input_report_abs(ts->input, ABS_MT_TOUCH_MAJOR, pressure); input_report_abs(ts->input, ABS_MT_POSITION_X, x); input_report_abs(ts->input, ABS_MT_POSITION_Y, y); input_report_abs(ts->input, ABS_MT_WIDTH_MAJOR, 1); #else input_report_abs(ts->input, ABS_MT_TRACKING_ID, id); input_report_abs(ts->input, ABS_MT_TOUCH_MAJOR, pressure); input_report_abs(ts->input, ABS_MT_POSITION_X, x); input_report_abs(ts->input, ABS_MT_POSITION_Y, y); input_report_abs(ts->input, ABS_MT_WIDTH_MAJOR, 1); input_mt_sync(ts->input); #endif } static void gslX680_ts_worker(struct work_struct *work) { int rc, i; u8 id, touches; u16 x, y; #ifdef GSL_NOID_VERSION u32 tmp1; u8 buf[4] = {0}; struct gsl_touch_info cinfo = {{0} }; #endif struct gsl_ts *ts = container_of(work, struct gsl_ts, work); #ifdef TPD_PROC_DEBUG if (gsl_proc_flag == 1) goto schedule; #endif rc = gsl_ts_read(ts->client, 0x80, ts->touch_data, ts->dd->data_size); if (rc < 0) { dev_err(&ts->client->dev, "read failed\n"); goto schedule; } touches = ts->touch_data[ts->dd->touch_index]; print_info("-----touches: %d -----\n", touches); #ifdef GSL_NOID_VERSION cinfo.finger_num = touches; print_info("tp-gsl finger_num = %d\n", cinfo.finger_num); for (i = 0; i < (touches < MAX_CONTACTS ? touches : MAX_CONTACTS); i++) { cinfo.x[i] = join_bytes((ts->touch_data[ts->dd->x_index + 4 * i + 1] & 0xf), ts->touch_data[ts->dd->x_index + 4 * i]); cinfo.y[i] = join_bytes(ts->touch_data[ts->dd->y_index + 4 * i + 1], ts->touch_data[ts->dd->y_index + 4 * i]); print_info("tp-gsl x = %d y = %d\n", cinfo.x[i], cinfo.y[i]); } cinfo.finger_num = (ts->touch_data[3] << 24) | (ts->touch_data[2] << 16) | (ts->touch_data[1] << 8) | (ts->touch_data[0]); gsl_alg_id_main(&cinfo); tmp1 = gsl_mask_tiaoping(); print_info("[tp-gsl] tmp1=%x\n", tmp1); if (tmp1 > 0 && tmp1 < 0xffffffff) { buf[0] = 0xa; buf[1] = 0; buf[2] = 0; buf[3] = 0; gsl_ts_write(ts->client, 0xf0, buf, 4); buf[0] = (u8)(tmp1 & 0xff); buf[1] = (u8)((tmp1 >> 8) & 0xff); buf[2] = (u8)((tmp1 >> 16) & 0xff); buf[3] = (u8)((tmp1 >> 24) & 0xff); print_info("tmp1=%08x,buf[0]=%02x,buf[1]=%02x,buf[2]=%02x,buf[3]=%02x\n", tmp1, buf[0], buf[1], buf[2], buf[3]); gsl_ts_write(ts->client, 0x8, buf, 4); } touches = cinfo.finger_num; #endif for (i = 1; i <= MAX_CONTACTS; i++) { if (touches == 0) id_sign[i] = 0; id_state_flag[i] = 0; } for (i = 0; i < (touches > MAX_FINGERS ? MAX_FINGERS : touches); i++) { #ifdef GSL_NOID_VERSION id = cinfo.id[i]; x = cinfo.x[i]; y = cinfo.y[i]; #else x = join_bytes((ts->touch_data[ts->dd->x_index + 4 * i + 1] & 0xf), ts->touch_data[ts->dd->x_index + 4 * i]); y = join_bytes(ts->touch_data[ts->dd->y_index + 4 * i + 1], ts->touch_data[ts->dd->y_index + 4 * i]); id = ts->touch_data[ts->dd->id_index + 4 * i] >> 4; #endif if (1 <= id && id <= MAX_CONTACTS) { #ifdef FILTER_POINT filter_point(x, y, id); #else record_point(x, y, id); #endif report_data(ts, x_new, y_new, 10, id); id_state_flag[id] = 1; } } for (i = 1; i <= MAX_CONTACTS; i++) { if ((touches == 0) || ((id_state_old_flag[i] != 0) && (id_state_flag[i] == 0))) { #ifdef REPORT_DATA_ANDROID_4_0 input_mt_slot(ts->input, i); input_report_abs(ts->input, ABS_MT_TRACKING_ID, -1); input_mt_report_slot_state(ts->input, MT_TOOL_FINGER, false); #endif id_sign[i] = 0; } id_state_old_flag[i] = id_state_flag[i]; } #ifndef REPORT_DATA_ANDROID_4_0 if (touches == 0) { input_mt_sync(ts->input); #ifdef HAVE_TOUCH_KEY if (key_state_flag) { input_report_key(ts->input, key, 0); input_sync(ts->input); key_state_flag = 0; } #endif } #endif input_sync(ts->input); schedule: enable_irq(ts->irq); } extern void regulator_ctrl_vcc_tp(bool on); static irqreturn_t gsl_ts_irq(int irq, void *dev_id) { struct gsl_ts *ts = dev_id; print_info("========gslX680 Interrupt=========\n"); disable_irq_nosync(ts->irq); if (!work_pending(&ts->work)) queue_work(ts->wq, &ts->work); return IRQ_HANDLED; } static int gslX680_ts_init(struct i2c_client *client, struct gsl_ts *ts) { struct input_dev *input_device; int rc = 0; ts->dd = &devices[ts->device_id]; if (ts->device_id == 0) { ts->dd->data_size = MAX_FINGERS * ts->dd->touch_bytes + ts->dd->touch_meta_data; ts->dd->touch_index = 0; } ts->touch_data = devm_kzalloc(&client->dev, ts->dd->data_size, GFP_KERNEL); if (!ts->touch_data) { pr_err("%s: Unable to allocate memory\n", __func__); return -ENOMEM; } input_device = input_allocate_device(); if (!input_device) { rc = -ENOMEM; goto error_alloc_dev; } ts->input = input_device; input_device->name = GSLX680_I2C_NAME; input_device->id.bustype = BUS_I2C; input_device->dev.parent = &client->dev; input_set_drvdata(input_device, ts); #ifdef REPORT_DATA_ANDROID_4_0 __set_bit(EV_ABS, input_device->evbit); __set_bit(EV_KEY, input_device->evbit); __set_bit(EV_REP, input_device->evbit); __set_bit(INPUT_PROP_DIRECT, input_device->propbit); input_mt_init_slots(input_device, (MAX_CONTACTS + 1), 0); #else input_set_abs_params(input_device, ABS_MT_TRACKING_ID, 0, (MAX_CONTACTS + 1), 0, 0); set_bit(EV_ABS, input_device->evbit); set_bit(EV_KEY, input_device->evbit); __set_bit(INPUT_PROP_DIRECT, input_device->propbit); input_device->keybit[BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH); #endif #ifdef HAVE_TOUCH_KEY input_device->evbit[0] = BIT_MASK(EV_KEY); for (i = 0; i < MAX_KEY_NUM; i++) set_bit(key_array[i], input_device->keybit); #endif set_bit(ABS_MT_POSITION_X, input_device->absbit); set_bit(ABS_MT_POSITION_Y, input_device->absbit); set_bit(ABS_MT_TOUCH_MAJOR, input_device->absbit); set_bit(ABS_MT_WIDTH_MAJOR, input_device->absbit); input_set_abs_params(input_device, ABS_MT_POSITION_X, 0, SCREEN_MAX_X, 0, 0); input_set_abs_params(input_device, ABS_MT_POSITION_Y, 0, SCREEN_MAX_Y, 0, 0); input_set_abs_params(input_device, ABS_MT_TOUCH_MAJOR, 0, PRESS_MAX, 0, 0); input_set_abs_params(input_device, ABS_MT_WIDTH_MAJOR, 0, 200, 0, 0); client->irq = gts->irq_pin; ts->irq = client->irq; ts->wq = create_singlethread_workqueue("kworkqueue_ts"); if (!ts->wq) { dev_err(&client->dev, "Could not create workqueue\n"); goto error_wq_create; } flush_workqueue(ts->wq); INIT_WORK(&ts->work, gslX680_ts_worker); rc = input_register_device(input_device); if (rc) goto error_unreg_device; return 0; error_unreg_device: destroy_workqueue(ts->wq); error_wq_create: input_free_device(input_device); error_alloc_dev: devm_kfree(&client->dev, ts->touch_data); return rc; } static int rk_ts_early_suspend(struct tp_device *tp_d) { struct gsl_ts *ts = container_of(tp_d, struct gsl_ts, tp); int i; disable_irq_nosync(ts->irq); gslX680_shutdown_low(); #ifdef SLEEP_CLEAR_POINT msleep(10); #ifdef REPORT_DATA_ANDROID_4_0 for (i = 1; i <= MAX_CONTACTS; i++) { input_mt_slot(ts->input, i); input_report_abs(ts->input, ABS_MT_TRACKING_ID, -1); input_mt_report_slot_state(ts->input, MT_TOOL_FINGER, false); } #else input_mt_sync(ts->input); #endif input_sync(ts->input); msleep(10); report_data(ts, 1, 1, 10, 1); input_sync(ts->input); #endif return 0; } static int rk_ts_early_resume(struct tp_device *tp_d) { struct gsl_ts *ts = container_of(tp_d, struct gsl_ts, tp); int i; gslX680_shutdown_high(); msleep(20); reset_chip(ts->client); startup_chip(ts->client); check_mem_data(ts->client); #ifdef SLEEP_CLEAR_POINT #ifdef REPORT_DATA_ANDROID_4_0 for (i = 1; i <= MAX_CONTACTS; i++) { input_mt_slot(ts->input, i); input_report_abs(ts->input, ABS_MT_TRACKING_ID, -1); input_mt_report_slot_state(ts->input, MT_TOOL_FINGER, false); } #else input_mt_sync(ts->input); #endif input_sync(ts->input); #endif enable_irq(ts->irq); return 0; } #ifdef CONFIG_HAS_EARLYSUSPEND static void gsl_ts_early_suspend(struct early_suspend *h) { struct gsl_ts *ts = container_of(h, struct gsl_ts, early_suspend); gsl_ts_suspend(&ts->client->dev); } static void gsl_ts_late_resume(struct early_suspend *h) { struct gsl_ts *ts = container_of(h, struct gsl_ts, early_suspend); gsl_ts_resume(&ts->client->dev); } #endif static int gsl_ts_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct gsl_ts *ts; int rc; int timer = 3; int ret = 0; char buffer = 0; struct device_node *np = client->dev.of_node; enum of_gpio_flags rst_flags; unsigned long irq_flags; while (timer > 0) { ret = i2c_master_recv(client, &buffer, 1); if (ret >= 0) break; timer--; msleep(100); } if (ret < 0) return ret; if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) { dev_err(&client->dev, "I2C functionality not supported\n"); return -ENODEV; } ts = devm_kzalloc(&client->dev, sizeof(*ts), GFP_KERNEL); if (!ts) return -ENOMEM; ts->client = client; i2c_set_clientdata(client, ts); ts->device_id = 0; ts->tp.tp_resume = rk_ts_early_resume; ts->tp.tp_suspend = rk_ts_early_suspend; tp_register_fb(&ts->tp); ts->irq_pin = of_get_named_gpio_flags(np, "touch-gpio", 0, (enum of_gpio_flags *)&irq_flags); ts->rst_pin = of_get_named_gpio_flags(np, "reset-gpio", 0, &rst_flags); if (of_property_read_u32(np, "flip-x", &ts->flip_x) < 0) ts->flip_x = 0; if (of_property_read_u32(np, "flip-y", &ts->flip_y) < 0) ts->flip_y = 0; if (of_property_read_u32(np, "swap-xy", &ts->swap_xy) < 0) ts->swap_xy = 0; if (gpio_is_valid(ts->rst_pin)) { ts->rst_val = (rst_flags & OF_GPIO_ACTIVE_LOW) ? 0 : 1; ret = devm_gpio_request_one(&client->dev, ts->rst_pin, (rst_flags & OF_GPIO_ACTIVE_LOW) ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW, "goodix reset pin"); if (ret != 0) { dev_err(&client->dev, "goodix gpio_request error\n"); return -EIO; } gpio_direction_output(ts->rst_pin, 0); gpio_set_value(ts->rst_pin, GPIO_HIGH); msleep(20); } else { dev_info(&client->dev, "reset pin invalid\n"); } gts = ts; rc = gslX680_ts_init(client, ts); if (rc < 0) { dev_err(&client->dev, "GSLX680 init failed\n"); goto error_mutex_destroy; } gsl_client = client; #ifdef GSLX680_COMPATIBLE judge_chip_type(ts->client); #endif init_chip(ts->client); check_mem_data(ts->client); ts->irq = gpio_to_irq(ts->irq_pin); /*If not defined in client*/ if (ts->irq) { rc = devm_request_threaded_irq(&client->dev, ts->irq, NULL, gsl_ts_irq, irq_flags | IRQF_ONESHOT, client->name, ts); if (rc != 0) { print_info("Cannot allocate ts INT!ERRNO:%d\n", ret); goto error_req_irq_fail; } } #ifdef CONFIG_HAS_EARLYSUSPEND ts->early_suspend.level = EARLY_SUSPEND_LEVEL_BLANK_SCREEN + 1; ts->early_suspend.suspend = gsl_ts_early_suspend; ts->early_suspend.resume = gsl_ts_late_resume; register_early_suspend(&ts->early_suspend); #endif #ifdef TPD_PROC_DEBUG gsl_config_proc = create_proc_entry(GSL_CONFIG_PROC_FILE, 0666, NULL); if (!gsl_config_proc) { print_info("create_proc_entry %s failed\n", GSL_CONFIG_PROC_FILE); } else { gsl_config_proc->read_proc = gsl_config_read_proc; gsl_config_proc->write_proc = gsl_config_write_proc; } gsl_proc_flag = 0; #endif return 0; error_req_irq_fail: free_irq(ts->irq, ts); error_mutex_destroy: input_free_device(ts->input); devm_kfree(&client->dev, ts); return rc; } static int gsl_ts_remove(struct i2c_client *client) { struct gsl_ts *ts = i2c_get_clientdata(client); #ifdef CONFIG_HAS_EARLYSUSPEND unregister_early_suspend(&ts->early_suspend); #endif device_init_wakeup(&client->dev, 0); cancel_work_sync(&ts->work); free_irq(ts->irq, ts); destroy_workqueue(ts->wq); input_unregister_device(ts->input); devm_kfree(&client->dev, ts->touch_data); devm_kfree(&client->dev, ts); return 0; } static const struct i2c_device_id gsl_ts_id[] = { {GSLX680_I2C_NAME, 0}, {} }; MODULE_DEVICE_TABLE(i2c, gsl_ts_id); static struct of_device_id goodix_ts_dt_ids[] = { { .compatible = "gslX680" }, { } }; static struct i2c_driver gsl_ts_driver = { .driver = { .name = GSLX680_I2C_NAME, .owner = THIS_MODULE, .of_match_table = of_match_ptr(goodix_ts_dt_ids), }, .probe = gsl_ts_probe, .remove = gsl_ts_remove, .id_table = gsl_ts_id, }; static int __init gsl_ts_init(void) { int ret; ret = i2c_add_driver(&gsl_ts_driver); return ret; } static void __exit gsl_ts_exit(void) { i2c_del_driver(&gsl_ts_driver); } module_init(gsl_ts_init); module_exit(gsl_ts_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("GSLX680 touchscreen controller driver");