summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorFelipe Balbi <felipe.balbi@linux.intel.com>2016-05-31 13:07:47 +0300
committerTao Huang <huangtao@rock-chips.com>2018-04-27 10:27:04 +0800
commit9af9852cc108ee44e03fbd35edac379ed124eab4 (patch)
treeadbb6329c0ca64af567b0262a43240b84b8d8047
parent00011b0208bbf96e7995fc2b7fe0ec23e66ec3bb (diff)
UPSTREAM: usb: gadget: move gadget API functions to udc-core
instead of defining all functions as static inlines, let's move them to udc-core and export them with EXPORT_SYMBOL_GPL, that way we can make sure that only GPL drivers will use them. As a side effect, it'll be nicer to add tracepoints to the gadget API. While at that, also fix Kconfig dependencies to avoid randconfig build failures. Change-Id: I3fcc99c0730608076cfa8624908e58b7ee6f1bef Acked-By: Sebastian Reichel <sre@kernel.org> Acked-by: Peter Chen <peter.chen@nxp.com> Signed-off-by: Felipe Balbi <felipe.balbi@linux.intel.com> Signed-off-by: William Wu <william.wu@rock-chips.com> (cherry-picked from commit 5a8d651a2bde01e00caf78496390d6ae46df80af)
-rw-r--r--drivers/phy/Kconfig1
-rw-r--r--drivers/power/Kconfig1
-rw-r--r--drivers/usb/gadget/udc/udc-core.c573
-rw-r--r--drivers/usb/host/Kconfig2
-rw-r--r--drivers/usb/phy/Kconfig11
-rw-r--r--include/linux/usb/gadget.h571
6 files changed, 640 insertions, 519 deletions
diff --git a/drivers/phy/Kconfig b/drivers/phy/Kconfig
index 3625138eaddd..e65e3877b8ee 100644
--- a/drivers/phy/Kconfig
+++ b/drivers/phy/Kconfig
@@ -159,6 +159,7 @@ config TWL4030_USB
tristate "TWL4030 USB Transceiver Driver"
depends on TWL4030_CORE && REGULATOR_TWL4030 && USB_MUSB_OMAP2PLUS
depends on USB_SUPPORT
+ depends on USB_GADGET || !USB_GADGET # if USB_GADGET=m, this can't 'y'
select GENERIC_PHY
select USB_PHY
help
diff --git a/drivers/power/Kconfig b/drivers/power/Kconfig
index 262c73058c60..9dfd965ac39f 100644
--- a/drivers/power/Kconfig
+++ b/drivers/power/Kconfig
@@ -309,6 +309,7 @@ config BATTERY_RX51
config CHARGER_ISP1704
tristate "ISP1704 USB Charger Detection"
depends on USB_PHY
+ depends on USB_GADGET || !USB_GADGET # if USB_GADGET=m, this can't be 'y'
help
Say Y to enable support for USB Charger Detection with
ISP1707/ISP1704 USB transceivers.
diff --git a/drivers/usb/gadget/udc/udc-core.c b/drivers/usb/gadget/udc/udc-core.c
index 89f7cd66f5e6..327f3fa50477 100644
--- a/drivers/usb/gadget/udc/udc-core.c
+++ b/drivers/usb/gadget/udc/udc-core.c
@@ -55,6 +55,579 @@ static DEFINE_MUTEX(udc_lock);
/* ------------------------------------------------------------------------- */
+/**
+ * usb_ep_set_maxpacket_limit - set maximum packet size limit for endpoint
+ * @ep:the endpoint being configured
+ * @maxpacket_limit:value of maximum packet size limit
+ *
+ * This function should be used only in UDC drivers to initialize endpoint
+ * (usually in probe function).
+ */
+void usb_ep_set_maxpacket_limit(struct usb_ep *ep,
+ unsigned maxpacket_limit)
+{
+ ep->maxpacket_limit = maxpacket_limit;
+ ep->maxpacket = maxpacket_limit;
+}
+EXPORT_SYMBOL_GPL(usb_ep_set_maxpacket_limit);
+
+/**
+ * usb_ep_enable - configure endpoint, making it usable
+ * @ep:the endpoint being configured. may not be the endpoint named "ep0".
+ * drivers discover endpoints through the ep_list of a usb_gadget.
+ *
+ * When configurations are set, or when interface settings change, the driver
+ * will enable or disable the relevant endpoints. while it is enabled, an
+ * endpoint may be used for i/o until the driver receives a disconnect() from
+ * the host or until the endpoint is disabled.
+ *
+ * the ep0 implementation (which calls this routine) must ensure that the
+ * hardware capabilities of each endpoint match the descriptor provided
+ * for it. for example, an endpoint named "ep2in-bulk" would be usable
+ * for interrupt transfers as well as bulk, but it likely couldn't be used
+ * for iso transfers or for endpoint 14. some endpoints are fully
+ * configurable, with more generic names like "ep-a". (remember that for
+ * USB, "in" means "towards the USB master".)
+ *
+ * returns zero, or a negative error code.
+ */
+int usb_ep_enable(struct usb_ep *ep)
+{
+ int ret;
+
+ if (ep->enabled)
+ return 0;
+
+ ret = ep->ops->enable(ep, ep->desc);
+ if (ret)
+ return ret;
+
+ ep->enabled = true;
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(usb_ep_enable);
+
+/**
+ * usb_ep_disable - endpoint is no longer usable
+ * @ep:the endpoint being unconfigured. may not be the endpoint named "ep0".
+ *
+ * no other task may be using this endpoint when this is called.
+ * any pending and uncompleted requests will complete with status
+ * indicating disconnect (-ESHUTDOWN) before this call returns.
+ * gadget drivers must call usb_ep_enable() again before queueing
+ * requests to the endpoint.
+ *
+ * returns zero, or a negative error code.
+ */
+int usb_ep_disable(struct usb_ep *ep)
+{
+ int ret;
+
+ if (!ep->enabled)
+ return 0;
+
+ ret = ep->ops->disable(ep);
+ if (ret)
+ return ret;
+
+ ep->enabled = false;
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(usb_ep_disable);
+
+/**
+ * usb_ep_alloc_request - allocate a request object to use with this endpoint
+ * @ep:the endpoint to be used with with the request
+ * @gfp_flags:GFP_* flags to use
+ *
+ * Request objects must be allocated with this call, since they normally
+ * need controller-specific setup and may even need endpoint-specific
+ * resources such as allocation of DMA descriptors.
+ * Requests may be submitted with usb_ep_queue(), and receive a single
+ * completion callback. Free requests with usb_ep_free_request(), when
+ * they are no longer needed.
+ *
+ * Returns the request, or null if one could not be allocated.
+ */
+struct usb_request *usb_ep_alloc_request(struct usb_ep *ep,
+ gfp_t gfp_flags)
+{
+ return ep->ops->alloc_request(ep, gfp_flags);
+}
+EXPORT_SYMBOL_GPL(usb_ep_alloc_request);
+
+/**
+ * usb_ep_free_request - frees a request object
+ * @ep:the endpoint associated with the request
+ * @req:the request being freed
+ *
+ * Reverses the effect of usb_ep_alloc_request().
+ * Caller guarantees the request is not queued, and that it will
+ * no longer be requeued (or otherwise used).
+ */
+void usb_ep_free_request(struct usb_ep *ep,
+ struct usb_request *req)
+{
+ ep->ops->free_request(ep, req);
+}
+EXPORT_SYMBOL_GPL(usb_ep_free_request);
+
+/**
+ * usb_ep_queue - queues (submits) an I/O request to an endpoint.
+ * @ep:the endpoint associated with the request
+ * @req:the request being submitted
+ * @gfp_flags: GFP_* flags to use in case the lower level driver couldn't
+ * pre-allocate all necessary memory with the request.
+ *
+ * This tells the device controller to perform the specified request through
+ * that endpoint (reading or writing a buffer). When the request completes,
+ * including being canceled by usb_ep_dequeue(), the request's completion
+ * routine is called to return the request to the driver. Any endpoint
+ * (except control endpoints like ep0) may have more than one transfer
+ * request queued; they complete in FIFO order. Once a gadget driver
+ * submits a request, that request may not be examined or modified until it
+ * is given back to that driver through the completion callback.
+ *
+ * Each request is turned into one or more packets. The controller driver
+ * never merges adjacent requests into the same packet. OUT transfers
+ * will sometimes use data that's already buffered in the hardware.
+ * Drivers can rely on the fact that the first byte of the request's buffer
+ * always corresponds to the first byte of some USB packet, for both
+ * IN and OUT transfers.
+ *
+ * Bulk endpoints can queue any amount of data; the transfer is packetized
+ * automatically. The last packet will be short if the request doesn't fill it
+ * out completely. Zero length packets (ZLPs) should be avoided in portable
+ * protocols since not all usb hardware can successfully handle zero length
+ * packets. (ZLPs may be explicitly written, and may be implicitly written if
+ * the request 'zero' flag is set.) Bulk endpoints may also be used
+ * for interrupt transfers; but the reverse is not true, and some endpoints
+ * won't support every interrupt transfer. (Such as 768 byte packets.)
+ *
+ * Interrupt-only endpoints are less functional than bulk endpoints, for
+ * example by not supporting queueing or not handling buffers that are
+ * larger than the endpoint's maxpacket size. They may also treat data
+ * toggle differently.
+ *
+ * Control endpoints ... after getting a setup() callback, the driver queues
+ * one response (even if it would be zero length). That enables the
+ * status ack, after transferring data as specified in the response. Setup
+ * functions may return negative error codes to generate protocol stalls.
+ * (Note that some USB device controllers disallow protocol stall responses
+ * in some cases.) When control responses are deferred (the response is
+ * written after the setup callback returns), then usb_ep_set_halt() may be
+ * used on ep0 to trigger protocol stalls. Depending on the controller,
+ * it may not be possible to trigger a status-stage protocol stall when the
+ * data stage is over, that is, from within the response's completion
+ * routine.
+ *
+ * For periodic endpoints, like interrupt or isochronous ones, the usb host
+ * arranges to poll once per interval, and the gadget driver usually will
+ * have queued some data to transfer at that time.
+ *
+ * Returns zero, or a negative error code. Endpoints that are not enabled
+ * report errors; errors will also be
+ * reported when the usb peripheral is disconnected.
+ */
+int usb_ep_queue(struct usb_ep *ep,
+ struct usb_request *req, gfp_t gfp_flags)
+{
+ if (WARN_ON_ONCE(!ep->enabled && ep->address))
+ return -ESHUTDOWN;
+
+ return ep->ops->queue(ep, req, gfp_flags);
+}
+EXPORT_SYMBOL_GPL(usb_ep_queue);
+
+/**
+ * usb_ep_dequeue - dequeues (cancels, unlinks) an I/O request from an endpoint
+ * @ep:the endpoint associated with the request
+ * @req:the request being canceled
+ *
+ * If the request is still active on the endpoint, it is dequeued and its
+ * completion routine is called (with status -ECONNRESET); else a negative
+ * error code is returned. This is guaranteed to happen before the call to
+ * usb_ep_dequeue() returns.
+ *
+ * Note that some hardware can't clear out write fifos (to unlink the request
+ * at the head of the queue) except as part of disconnecting from usb. Such
+ * restrictions prevent drivers from supporting configuration changes,
+ * even to configuration zero (a "chapter 9" requirement).
+ */
+int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
+{
+ return ep->ops->dequeue(ep, req);
+}
+EXPORT_SYMBOL_GPL(usb_ep_dequeue);
+
+/**
+ * usb_ep_set_halt - sets the endpoint halt feature.
+ * @ep: the non-isochronous endpoint being stalled
+ *
+ * Use this to stall an endpoint, perhaps as an error report.
+ * Except for control endpoints,
+ * the endpoint stays halted (will not stream any data) until the host
+ * clears this feature; drivers may need to empty the endpoint's request
+ * queue first, to make sure no inappropriate transfers happen.
+ *
+ * Note that while an endpoint CLEAR_FEATURE will be invisible to the
+ * gadget driver, a SET_INTERFACE will not be. To reset endpoints for the
+ * current altsetting, see usb_ep_clear_halt(). When switching altsettings,
+ * it's simplest to use usb_ep_enable() or usb_ep_disable() for the endpoints.
+ *
+ * Returns zero, or a negative error code. On success, this call sets
+ * underlying hardware state that blocks data transfers.
+ * Attempts to halt IN endpoints will fail (returning -EAGAIN) if any
+ * transfer requests are still queued, or if the controller hardware
+ * (usually a FIFO) still holds bytes that the host hasn't collected.
+ */
+int usb_ep_set_halt(struct usb_ep *ep)
+{
+ return ep->ops->set_halt(ep, 1);
+}
+EXPORT_SYMBOL_GPL(usb_ep_set_halt);
+
+/**
+ * usb_ep_clear_halt - clears endpoint halt, and resets toggle
+ * @ep:the bulk or interrupt endpoint being reset
+ *
+ * Use this when responding to the standard usb "set interface" request,
+ * for endpoints that aren't reconfigured, after clearing any other state
+ * in the endpoint's i/o queue.
+ *
+ * Returns zero, or a negative error code. On success, this call clears
+ * the underlying hardware state reflecting endpoint halt and data toggle.
+ * Note that some hardware can't support this request (like pxa2xx_udc),
+ * and accordingly can't correctly implement interface altsettings.
+ */
+int usb_ep_clear_halt(struct usb_ep *ep)
+{
+ return ep->ops->set_halt(ep, 0);
+}
+EXPORT_SYMBOL_GPL(usb_ep_clear_halt);
+
+/**
+ * usb_ep_set_wedge - sets the halt feature and ignores clear requests
+ * @ep: the endpoint being wedged
+ *
+ * Use this to stall an endpoint and ignore CLEAR_FEATURE(HALT_ENDPOINT)
+ * requests. If the gadget driver clears the halt status, it will
+ * automatically unwedge the endpoint.
+ *
+ * Returns zero on success, else negative errno.
+ */
+int usb_ep_set_wedge(struct usb_ep *ep)
+{
+ if (ep->ops->set_wedge)
+ return ep->ops->set_wedge(ep);
+ else
+ return ep->ops->set_halt(ep, 1);
+}
+EXPORT_SYMBOL_GPL(usb_ep_set_wedge);
+
+/**
+ * usb_ep_fifo_status - returns number of bytes in fifo, or error
+ * @ep: the endpoint whose fifo status is being checked.
+ *
+ * FIFO endpoints may have "unclaimed data" in them in certain cases,
+ * such as after aborted transfers. Hosts may not have collected all
+ * the IN data written by the gadget driver (and reported by a request
+ * completion). The gadget driver may not have collected all the data
+ * written OUT to it by the host. Drivers that need precise handling for
+ * fault reporting or recovery may need to use this call.
+ *
+ * This returns the number of such bytes in the fifo, or a negative
+ * errno if the endpoint doesn't use a FIFO or doesn't support such
+ * precise handling.
+ */
+int usb_ep_fifo_status(struct usb_ep *ep)
+{
+ if (ep->ops->fifo_status)
+ return ep->ops->fifo_status(ep);
+ else
+ return -EOPNOTSUPP;
+}
+EXPORT_SYMBOL_GPL(usb_ep_fifo_status);
+
+/**
+ * usb_ep_fifo_flush - flushes contents of a fifo
+ * @ep: the endpoint whose fifo is being flushed.
+ *
+ * This call may be used to flush the "unclaimed data" that may exist in
+ * an endpoint fifo after abnormal transaction terminations. The call
+ * must never be used except when endpoint is not being used for any
+ * protocol translation.
+ */
+void usb_ep_fifo_flush(struct usb_ep *ep)
+{
+ if (ep->ops->fifo_flush)
+ ep->ops->fifo_flush(ep);
+}
+EXPORT_SYMBOL_GPL(usb_ep_fifo_flush);
+
+/* ------------------------------------------------------------------------- */
+
+/**
+ * usb_gadget_frame_number - returns the current frame number
+ * @gadget: controller that reports the frame number
+ *
+ * Returns the usb frame number, normally eleven bits from a SOF packet,
+ * or negative errno if this device doesn't support this capability.
+ */
+int usb_gadget_frame_number(struct usb_gadget *gadget)
+{
+ return gadget->ops->get_frame(gadget);
+}
+EXPORT_SYMBOL_GPL(usb_gadget_frame_number);
+
+/**
+ * usb_gadget_wakeup - tries to wake up the host connected to this gadget
+ * @gadget: controller used to wake up the host
+ *
+ * Returns zero on success, else negative error code if the hardware
+ * doesn't support such attempts, or its support has not been enabled
+ * by the usb host. Drivers must return device descriptors that report
+ * their ability to support this, or hosts won't enable it.
+ *
+ * This may also try to use SRP to wake the host and start enumeration,
+ * even if OTG isn't otherwise in use. OTG devices may also start
+ * remote wakeup even when hosts don't explicitly enable it.
+ */
+int usb_gadget_wakeup(struct usb_gadget *gadget)
+{
+ if (!gadget->ops->wakeup)
+ return -EOPNOTSUPP;
+ return gadget->ops->wakeup(gadget);
+}
+EXPORT_SYMBOL_GPL(usb_gadget_wakeup);
+
+/**
+ * usb_gadget_set_selfpowered - sets the device selfpowered feature.
+ * @gadget:the device being declared as self-powered
+ *
+ * this affects the device status reported by the hardware driver
+ * to reflect that it now has a local power supply.
+ *
+ * returns zero on success, else negative errno.
+ */
+int usb_gadget_set_selfpowered(struct usb_gadget *gadget)
+{
+ if (!gadget->ops->set_selfpowered)
+ return -EOPNOTSUPP;
+ return gadget->ops->set_selfpowered(gadget, 1);
+}
+EXPORT_SYMBOL_GPL(usb_gadget_set_selfpowered);
+
+/**
+ * usb_gadget_clear_selfpowered - clear the device selfpowered feature.
+ * @gadget:the device being declared as bus-powered
+ *
+ * this affects the device status reported by the hardware driver.
+ * some hardware may not support bus-powered operation, in which
+ * case this feature's value can never change.
+ *
+ * returns zero on success, else negative errno.
+ */
+int usb_gadget_clear_selfpowered(struct usb_gadget *gadget)
+{
+ if (!gadget->ops->set_selfpowered)
+ return -EOPNOTSUPP;
+ return gadget->ops->set_selfpowered(gadget, 0);
+}
+EXPORT_SYMBOL_GPL(usb_gadget_clear_selfpowered);
+
+/**
+ * usb_gadget_vbus_connect - Notify controller that VBUS is powered
+ * @gadget:The device which now has VBUS power.
+ * Context: can sleep
+ *
+ * This call is used by a driver for an external transceiver (or GPIO)
+ * that detects a VBUS power session starting. Common responses include
+ * resuming the controller, activating the D+ (or D-) pullup to let the
+ * host detect that a USB device is attached, and starting to draw power
+ * (8mA or possibly more, especially after SET_CONFIGURATION).
+ *
+ * Returns zero on success, else negative errno.
+ */
+int usb_gadget_vbus_connect(struct usb_gadget *gadget)
+{
+ if (!gadget->ops->vbus_session)
+ return -EOPNOTSUPP;
+ return gadget->ops->vbus_session(gadget, 1);
+}
+EXPORT_SYMBOL_GPL(usb_gadget_vbus_connect);
+
+/**
+ * usb_gadget_vbus_draw - constrain controller's VBUS power usage
+ * @gadget:The device whose VBUS usage is being described
+ * @mA:How much current to draw, in milliAmperes. This should be twice
+ * the value listed in the configuration descriptor bMaxPower field.
+ *
+ * This call is used by gadget drivers during SET_CONFIGURATION calls,
+ * reporting how much power the device may consume. For example, this
+ * could affect how quickly batteries are recharged.
+ *
+ * Returns zero on success, else negative errno.
+ */
+int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA)
+{
+ if (!gadget->ops->vbus_draw)
+ return -EOPNOTSUPP;
+ return gadget->ops->vbus_draw(gadget, mA);
+}
+EXPORT_SYMBOL_GPL(usb_gadget_vbus_draw);
+
+/**
+ * usb_gadget_vbus_disconnect - notify controller about VBUS session end
+ * @gadget:the device whose VBUS supply is being described
+ * Context: can sleep
+ *
+ * This call is used by a driver for an external transceiver (or GPIO)
+ * that detects a VBUS power session ending. Common responses include
+ * reversing everything done in usb_gadget_vbus_connect().
+ *
+ * Returns zero on success, else negative errno.
+ */
+int usb_gadget_vbus_disconnect(struct usb_gadget *gadget)
+{
+ if (!gadget->ops->vbus_session)
+ return -EOPNOTSUPP;
+ return gadget->ops->vbus_session(gadget, 0);
+}
+EXPORT_SYMBOL_GPL(usb_gadget_vbus_disconnect);
+
+/**
+ * usb_gadget_connect - software-controlled connect to USB host
+ * @gadget:the peripheral being connected
+ *
+ * Enables the D+ (or potentially D-) pullup. The host will start
+ * enumerating this gadget when the pullup is active and a VBUS session
+ * is active (the link is powered). This pullup is always enabled unless
+ * usb_gadget_disconnect() has been used to disable it.
+ *
+ * Returns zero on success, else negative errno.
+ */
+int usb_gadget_connect(struct usb_gadget *gadget)
+{
+ int ret;
+
+ if (!gadget->ops->pullup)
+ return -EOPNOTSUPP;
+
+ if (gadget->deactivated) {
+ /*
+ * If gadget is deactivated we only save new state.
+ * Gadget will be connected automatically after activation.
+ */
+ gadget->connected = true;
+ return 0;
+ }
+
+ ret = gadget->ops->pullup(gadget, 1);
+ if (!ret)
+ gadget->connected = 1;
+ return ret;
+}
+EXPORT_SYMBOL_GPL(usb_gadget_connect);
+
+/**
+ * usb_gadget_disconnect - software-controlled disconnect from USB host
+ * @gadget:the peripheral being disconnected
+ *
+ * Disables the D+ (or potentially D-) pullup, which the host may see
+ * as a disconnect (when a VBUS session is active). Not all systems
+ * support software pullup controls.
+ *
+ * Returns zero on success, else negative errno.
+ */
+int usb_gadget_disconnect(struct usb_gadget *gadget)
+{
+ int ret;
+
+ if (!gadget->ops->pullup)
+ return -EOPNOTSUPP;
+
+ if (gadget->deactivated) {
+ /*
+ * If gadget is deactivated we only save new state.
+ * Gadget will stay disconnected after activation.
+ */
+ gadget->connected = false;
+ return 0;
+ }
+
+ ret = gadget->ops->pullup(gadget, 0);
+ if (!ret)
+ gadget->connected = 0;
+ return ret;
+}
+EXPORT_SYMBOL_GPL(usb_gadget_disconnect);
+
+/**
+ * usb_gadget_deactivate - deactivate function which is not ready to work
+ * @gadget: the peripheral being deactivated
+ *
+ * This routine may be used during the gadget driver bind() call to prevent
+ * the peripheral from ever being visible to the USB host, unless later
+ * usb_gadget_activate() is called. For example, user mode components may
+ * need to be activated before the system can talk to hosts.
+ *
+ * Returns zero on success, else negative errno.
+ */
+int usb_gadget_deactivate(struct usb_gadget *gadget)
+{
+ int ret;
+
+ if (gadget->deactivated)
+ return 0;
+
+ if (gadget->connected) {
+ ret = usb_gadget_disconnect(gadget);
+ if (ret)
+ return ret;
+ /*
+ * If gadget was being connected before deactivation, we want
+ * to reconnect it in usb_gadget_activate().
+ */
+ gadget->connected = true;
+ }
+ gadget->deactivated = true;
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(usb_gadget_deactivate);
+
+/**
+ * usb_gadget_activate - activate function which is not ready to work
+ * @gadget: the peripheral being activated
+ *
+ * This routine activates gadget which was previously deactivated with
+ * usb_gadget_deactivate() call. It calls usb_gadget_connect() if needed.
+ *
+ * Returns zero on success, else negative errno.
+ */
+int usb_gadget_activate(struct usb_gadget *gadget)
+{
+ if (!gadget->deactivated)
+ return 0;
+
+ gadget->deactivated = false;
+
+ /*
+ * If gadget has been connected before deactivation, or became connected
+ * while it was being deactivated, we call usb_gadget_connect().
+ */
+ if (gadget->connected)
+ return usb_gadget_connect(gadget);
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(usb_gadget_activate);
+
+/* ------------------------------------------------------------------------- */
+
#ifdef CONFIG_HAS_DMA
int usb_gadget_map_request(struct usb_gadget *gadget,
diff --git a/drivers/usb/host/Kconfig b/drivers/usb/host/Kconfig
index 95e72d75e0a0..8b83d0c1586c 100644
--- a/drivers/usb/host/Kconfig
+++ b/drivers/usb/host/Kconfig
@@ -161,7 +161,7 @@ config USB_EHCI_MXC
config USB_EHCI_HCD_OMAP
tristate "EHCI support for OMAP3 and later chips"
depends on ARCH_OMAP
- select NOP_USB_XCEIV
+ depends on NOP_USB_XCEIV
default y
---help---
Enables support for the on-chip EHCI controller on
diff --git a/drivers/usb/phy/Kconfig b/drivers/usb/phy/Kconfig
index bdb9578cc296..ad05a90e982e 100644
--- a/drivers/usb/phy/Kconfig
+++ b/drivers/usb/phy/Kconfig
@@ -29,6 +29,7 @@ config AB8500_USB
config FSL_USB2_OTG
bool "Freescale USB OTG Transceiver Driver"
depends on USB_EHCI_FSL && USB_FSL_USB2 && USB_OTG_FSM && PM
+ depends on USB_GADGET || !USB_GADGET # if USB_GADGET=m, this can't be 'y'
select USB_PHY
help
Enable this to support Freescale USB OTG transceiver.
@@ -37,6 +38,7 @@ config ISP1301_OMAP
tristate "Philips ISP1301 with OMAP OTG"
depends on I2C && ARCH_OMAP_OTG
depends on USB
+ depends on USB_GADGET || !USB_GADGET # if USB_GADGET=m, this can't be 'y'
select USB_PHY
help
If you say yes here you get support for the Philips ISP1301
@@ -51,7 +53,7 @@ config ISP1301_OMAP
config KEYSTONE_USB_PHY
tristate "Keystone USB PHY Driver"
depends on ARCH_KEYSTONE || COMPILE_TEST
- select NOP_USB_XCEIV
+ depends on NOP_USB_XCEIV
help
Enable this to support Keystone USB phy. This driver provides
interface to interact with USB 2.0 and USB 3.0 PHY that is part
@@ -59,6 +61,7 @@ config KEYSTONE_USB_PHY
config NOP_USB_XCEIV
tristate "NOP USB Transceiver Driver"
+ depends on USB_GADGET || !USB_GADGET # if USB_GADGET=m, NOP can't be built-in
select USB_PHY
help
This driver is to be used by all the usb transceiver which are either
@@ -71,9 +74,9 @@ config AM335X_CONTROL_USB
config AM335X_PHY_USB
tristate "AM335x USB PHY Driver"
depends on ARM || COMPILE_TEST
+ depends on NOP_USB_XCEIV
select USB_PHY
select AM335X_CONTROL_USB
- select NOP_USB_XCEIV
help
This driver provides PHY support for that phy which part for the
AM335x SoC.
@@ -99,6 +102,7 @@ config TWL6030_USB
config USB_GPIO_VBUS
tristate "GPIO based peripheral-only VBUS sensing 'transceiver'"
depends on GPIOLIB || COMPILE_TEST
+ depends on USB_GADGET || !USB_GADGET # if USB_GADGET=m, this can't be 'y'
select USB_PHY
help
Provides simple GPIO VBUS sensing for controllers with an
@@ -119,6 +123,7 @@ config OMAP_OTG
config TAHVO_USB
tristate "Tahvo USB transceiver driver"
depends on MFD_RETU && EXTCON
+ depends on USB_GADGET || !USB_GADGET # if USB_GADGET=m, this can't be 'y'
select USB_PHY
help
Enable this to support USB transceiver on Tahvo. This is used
@@ -147,6 +152,7 @@ config USB_ISP1301
config USB_MSM_OTG
tristate "Qualcomm on-chip USB OTG controller support"
depends on (USB || USB_GADGET) && (ARCH_QCOM || COMPILE_TEST)
+ depends on USB_GADGET || !USB_GADGET # if USB_GADGET=m, this can't be 'y'
depends on RESET_CONTROLLER
depends on REGULATOR
depends on EXTCON
@@ -177,6 +183,7 @@ config USB_QCOM_8X16_PHY
config USB_MV_OTG
tristate "Marvell USB OTG support"
depends on USB_EHCI_MV && USB_MV_UDC && PM && USB_OTG
+ depends on USB_GADGET || !USB_GADGET # if USB_GADGET=m, this can't be 'y'
select USB_PHY
help
Say Y here if you want to build Marvell USB OTG transciever
diff --git a/include/linux/usb/gadget.h b/include/linux/usb/gadget.h
index 3d583a10b926..cd49606a1e9e 100644
--- a/include/linux/usb/gadget.h
+++ b/include/linux/usb/gadget.h
@@ -228,304 +228,50 @@ struct usb_ep {
/*-------------------------------------------------------------------------*/
-/**
- * usb_ep_set_maxpacket_limit - set maximum packet size limit for endpoint
- * @ep:the endpoint being configured
- * @maxpacket_limit:value of maximum packet size limit
- *
- * This function should be used only in UDC drivers to initialize endpoint
- * (usually in probe function).
- */
+#if IS_ENABLED(CONFIG_USB_GADGET)
+void usb_ep_set_maxpacket_limit(struct usb_ep *ep, unsigned maxpacket_limit);
+int usb_ep_enable(struct usb_ep *ep);
+int usb_ep_disable(struct usb_ep *ep);
+struct usb_request *usb_ep_alloc_request(struct usb_ep *ep, gfp_t gfp_flags);
+void usb_ep_free_request(struct usb_ep *ep, struct usb_request *req);
+int usb_ep_queue(struct usb_ep *ep, struct usb_request *req, gfp_t gfp_flags);
+int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req);
+int usb_ep_set_halt(struct usb_ep *ep);
+int usb_ep_clear_halt(struct usb_ep *ep);
+int usb_ep_set_wedge(struct usb_ep *ep);
+int usb_ep_fifo_status(struct usb_ep *ep);
+void usb_ep_fifo_flush(struct usb_ep *ep);
+#else
static inline void usb_ep_set_maxpacket_limit(struct usb_ep *ep,
unsigned maxpacket_limit)
-{
- ep->maxpacket_limit = maxpacket_limit;
- ep->maxpacket = maxpacket_limit;
-}
-
-/**
- * usb_ep_enable - configure endpoint, making it usable
- * @ep:the endpoint being configured. may not be the endpoint named "ep0".
- * drivers discover endpoints through the ep_list of a usb_gadget.
- *
- * When configurations are set, or when interface settings change, the driver
- * will enable or disable the relevant endpoints. while it is enabled, an
- * endpoint may be used for i/o until the driver receives a disconnect() from
- * the host or until the endpoint is disabled.
- *
- * the ep0 implementation (which calls this routine) must ensure that the
- * hardware capabilities of each endpoint match the descriptor provided
- * for it. for example, an endpoint named "ep2in-bulk" would be usable
- * for interrupt transfers as well as bulk, but it likely couldn't be used
- * for iso transfers or for endpoint 14. some endpoints are fully
- * configurable, with more generic names like "ep-a". (remember that for
- * USB, "in" means "towards the USB master".)
- *
- * returns zero, or a negative error code.
- */
+{ }
static inline int usb_ep_enable(struct usb_ep *ep)
-{
- int ret;
-
- if (ep->enabled)
- return 0;
-
- ret = ep->ops->enable(ep, ep->desc);
- if (ret)
- return ret;
-
- ep->enabled = true;
-
- return 0;
-}
-
-/**
- * usb_ep_disable - endpoint is no longer usable
- * @ep:the endpoint being unconfigured. may not be the endpoint named "ep0".
- *
- * no other task may be using this endpoint when this is called.
- * any pending and uncompleted requests will complete with status
- * indicating disconnect (-ESHUTDOWN) before this call returns.
- * gadget drivers must call usb_ep_enable() again before queueing
- * requests to the endpoint.
- *
- * returns zero, or a negative error code.
- */
+{ return 0; }
static inline int usb_ep_disable(struct usb_ep *ep)
-{
- int ret;
-
- if (!ep->enabled)
- return 0;
-
- ret = ep->ops->disable(ep);
- if (ret)
- return ret;
-
- ep->enabled = false;
-
- return 0;
-}
-
-/**
- * usb_ep_alloc_request - allocate a request object to use with this endpoint
- * @ep:the endpoint to be used with with the request
- * @gfp_flags:GFP_* flags to use
- *
- * Request objects must be allocated with this call, since they normally
- * need controller-specific setup and may even need endpoint-specific
- * resources such as allocation of DMA descriptors.
- * Requests may be submitted with usb_ep_queue(), and receive a single
- * completion callback. Free requests with usb_ep_free_request(), when
- * they are no longer needed.
- *
- * Returns the request, or null if one could not be allocated.
- */
+{ return 0; }
static inline struct usb_request *usb_ep_alloc_request(struct usb_ep *ep,
gfp_t gfp_flags)
-{
- return ep->ops->alloc_request(ep, gfp_flags);
-}
-
-/**
- * usb_ep_free_request - frees a request object
- * @ep:the endpoint associated with the request
- * @req:the request being freed
- *
- * Reverses the effect of usb_ep_alloc_request().
- * Caller guarantees the request is not queued, and that it will
- * no longer be requeued (or otherwise used).
- */
+{ return NULL; }
static inline void usb_ep_free_request(struct usb_ep *ep,
struct usb_request *req)
-{
- ep->ops->free_request(ep, req);
-}
+{ }
-/**
- * usb_ep_queue - queues (submits) an I/O request to an endpoint.
- * @ep:the endpoint associated with the request
- * @req:the request being submitted
- * @gfp_flags: GFP_* flags to use in case the lower level driver couldn't
- * pre-allocate all necessary memory with the request.
- *
- * This tells the device controller to perform the specified request through
- * that endpoint (reading or writing a buffer). When the request completes,
- * including being canceled by usb_ep_dequeue(), the request's completion
- * routine is called to return the request to the driver. Any endpoint
- * (except control endpoints like ep0) may have more than one transfer
- * request queued; they complete in FIFO order. Once a gadget driver
- * submits a request, that request may not be examined or modified until it
- * is given back to that driver through the completion callback.
- *
- * Each request is turned into one or more packets. The controller driver
- * never merges adjacent requests into the same packet. OUT transfers
- * will sometimes use data that's already buffered in the hardware.
- * Drivers can rely on the fact that the first byte of the request's buffer
- * always corresponds to the first byte of some USB packet, for both
- * IN and OUT transfers.
- *
- * Bulk endpoints can queue any amount of data; the transfer is packetized
- * automatically. The last packet will be short if the request doesn't fill it
- * out completely. Zero length packets (ZLPs) should be avoided in portable
- * protocols since not all usb hardware can successfully handle zero length
- * packets. (ZLPs may be explicitly written, and may be implicitly written if
- * the request 'zero' flag is set.) Bulk endpoints may also be used
- * for interrupt transfers; but the reverse is not true, and some endpoints
- * won't support every interrupt transfer. (Such as 768 byte packets.)
- *
- * Interrupt-only endpoints are less functional than bulk endpoints, for
- * example by not supporting queueing or not handling buffers that are
- * larger than the endpoint's maxpacket size. They may also treat data
- * toggle differently.
- *
- * Control endpoints ... after getting a setup() callback, the driver queues
- * one response (even if it would be zero length). That enables the
- * status ack, after transferring data as specified in the response. Setup
- * functions may return negative error codes to generate protocol stalls.
- * (Note that some USB device controllers disallow protocol stall responses
- * in some cases.) When control responses are deferred (the response is
- * written after the setup callback returns), then usb_ep_set_halt() may be
- * used on ep0 to trigger protocol stalls. Depending on the controller,
- * it may not be possible to trigger a status-stage protocol stall when the
- * data stage is over, that is, from within the response's completion
- * routine.
- *
- * For periodic endpoints, like interrupt or isochronous ones, the usb host
- * arranges to poll once per interval, and the gadget driver usually will
- * have queued some data to transfer at that time.
- *
- * Returns zero, or a negative error code. Endpoints that are not enabled
- * report errors; errors will also be
- * reported when the usb peripheral is disconnected.
- */
static inline int usb_ep_queue(struct usb_ep *ep,
struct usb_request *req, gfp_t gfp_flags)
-{
- return ep->ops->queue(ep, req, gfp_flags);
-}
-
-/**
- * usb_ep_dequeue - dequeues (cancels, unlinks) an I/O request from an endpoint
- * @ep:the endpoint associated with the request
- * @req:the request being canceled
- *
- * If the request is still active on the endpoint, it is dequeued and its
- * completion routine is called (with status -ECONNRESET); else a negative
- * error code is returned. This is guaranteed to happen before the call to
- * usb_ep_dequeue() returns.
- *
- * Note that some hardware can't clear out write fifos (to unlink the request
- * at the head of the queue) except as part of disconnecting from usb. Such
- * restrictions prevent drivers from supporting configuration changes,
- * even to configuration zero (a "chapter 9" requirement).
- */
+{ return 0; }
static inline int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
-{
- return ep->ops->dequeue(ep, req);
-}
-
-/**
- * usb_ep_set_halt - sets the endpoint halt feature.
- * @ep: the non-isochronous endpoint being stalled
- *
- * Use this to stall an endpoint, perhaps as an error report.
- * Except for control endpoints,
- * the endpoint stays halted (will not stream any data) until the host
- * clears this feature; drivers may need to empty the endpoint's request
- * queue first, to make sure no inappropriate transfers happen.
- *
- * Note that while an endpoint CLEAR_FEATURE will be invisible to the
- * gadget driver, a SET_INTERFACE will not be. To reset endpoints for the
- * current altsetting, see usb_ep_clear_halt(). When switching altsettings,
- * it's simplest to use usb_ep_enable() or usb_ep_disable() for the endpoints.
- *
- * Returns zero, or a negative error code. On success, this call sets
- * underlying hardware state that blocks data transfers.
- * Attempts to halt IN endpoints will fail (returning -EAGAIN) if any
- * transfer requests are still queued, or if the controller hardware
- * (usually a FIFO) still holds bytes that the host hasn't collected.
- */
+{ return 0; }
static inline int usb_ep_set_halt(struct usb_ep *ep)
-{
- return ep->ops->set_halt(ep, 1);
-}
-
-/**
- * usb_ep_clear_halt - clears endpoint halt, and resets toggle
- * @ep:the bulk or interrupt endpoint being reset
- *
- * Use this when responding to the standard usb "set interface" request,
- * for endpoints that aren't reconfigured, after clearing any other state
- * in the endpoint's i/o queue.
- *
- * Returns zero, or a negative error code. On success, this call clears
- * the underlying hardware state reflecting endpoint halt and data toggle.
- * Note that some hardware can't support this request (like pxa2xx_udc),
- * and accordingly can't correctly implement interface altsettings.
- */
+{ return 0; }
static inline int usb_ep_clear_halt(struct usb_ep *ep)
-{
- return ep->ops->set_halt(ep, 0);
-}
-
-/**
- * usb_ep_set_wedge - sets the halt feature and ignores clear requests
- * @ep: the endpoint being wedged
- *
- * Use this to stall an endpoint and ignore CLEAR_FEATURE(HALT_ENDPOINT)
- * requests. If the gadget driver clears the halt status, it will
- * automatically unwedge the endpoint.
- *
- * Returns zero on success, else negative errno.
- */
-static inline int
-usb_ep_set_wedge(struct usb_ep *ep)
-{
- if (ep->ops->set_wedge)
- return ep->ops->set_wedge(ep);
- else
- return ep->ops->set_halt(ep, 1);
-}
-
-/**
- * usb_ep_fifo_status - returns number of bytes in fifo, or error
- * @ep: the endpoint whose fifo status is being checked.
- *
- * FIFO endpoints may have "unclaimed data" in them in certain cases,
- * such as after aborted transfers. Hosts may not have collected all
- * the IN data written by the gadget driver (and reported by a request
- * completion). The gadget driver may not have collected all the data
- * written OUT to it by the host. Drivers that need precise handling for
- * fault reporting or recovery may need to use this call.
- *
- * This returns the number of such bytes in the fifo, or a negative
- * errno if the endpoint doesn't use a FIFO or doesn't support such
- * precise handling.
- */
+{ return 0; }
+static inline int usb_ep_set_wedge(struct usb_ep *ep)
+{ return 0; }
static inline int usb_ep_fifo_status(struct usb_ep *ep)
-{
- if (ep->ops->fifo_status)
- return ep->ops->fifo_status(ep);
- else
- return -EOPNOTSUPP;
-}
-
-/**
- * usb_ep_fifo_flush - flushes contents of a fifo
- * @ep: the endpoint whose fifo is being flushed.
- *
- * This call may be used to flush the "unclaimed data" that may exist in
- * an endpoint fifo after abnormal transaction terminations. The call
- * must never be used except when endpoint is not being used for any
- * protocol translation.
- */
+{ return 0; }
static inline void usb_ep_fifo_flush(struct usb_ep *ep)
-{
- if (ep->ops->fifo_flush)
- ep->ops->fifo_flush(ep);
-}
-
+{ }
+#endif /* USB_GADGET */
/*-------------------------------------------------------------------------*/
@@ -741,251 +487,44 @@ static inline int gadget_is_otg(struct usb_gadget *g)
#endif
}
-/**
- * usb_gadget_frame_number - returns the current frame number
- * @gadget: controller that reports the frame number
- *
- * Returns the usb frame number, normally eleven bits from a SOF packet,
- * or negative errno if this device doesn't support this capability.
- */
-static inline int usb_gadget_frame_number(struct usb_gadget *gadget)
-{
- return gadget->ops->get_frame(gadget);
-}
+/*-------------------------------------------------------------------------*/
-/**
- * usb_gadget_wakeup - tries to wake up the host connected to this gadget
- * @gadget: controller used to wake up the host
- *
- * Returns zero on success, else negative error code if the hardware
- * doesn't support such attempts, or its support has not been enabled
- * by the usb host. Drivers must return device descriptors that report
- * their ability to support this, or hosts won't enable it.
- *
- * This may also try to use SRP to wake the host and start enumeration,
- * even if OTG isn't otherwise in use. OTG devices may also start
- * remote wakeup even when hosts don't explicitly enable it.
- */
+#if IS_ENABLED(CONFIG_USB_GADGET)
+int usb_gadget_frame_number(struct usb_gadget *gadget);
+int usb_gadget_wakeup(struct usb_gadget *gadget);
+int usb_gadget_set_selfpowered(struct usb_gadget *gadget);
+int usb_gadget_clear_selfpowered(struct usb_gadget *gadget);
+int usb_gadget_vbus_connect(struct usb_gadget *gadget);
+int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA);
+int usb_gadget_vbus_disconnect(struct usb_gadget *gadget);
+int usb_gadget_connect(struct usb_gadget *gadget);
+int usb_gadget_disconnect(struct usb_gadget *gadget);
+int usb_gadget_deactivate(struct usb_gadget *gadget);
+int usb_gadget_activate(struct usb_gadget *gadget);
+#else
+static inline int usb_gadget_frame_number(struct usb_gadget *gadget)
+{ return 0; }
static inline int usb_gadget_wakeup(struct usb_gadget *gadget)
-{
- if (!gadget->ops->wakeup)
- return -EOPNOTSUPP;
- return gadget->ops->wakeup(gadget);
-}
-
-/**
- * usb_gadget_set_selfpowered - sets the device selfpowered feature.
- * @gadget:the device being declared as self-powered
- *
- * this affects the device status reported by the hardware driver
- * to reflect that it now has a local power supply.
- *
- * returns zero on success, else negative errno.
- */
+{ return 0; }
static inline int usb_gadget_set_selfpowered(struct usb_gadget *gadget)
-{
- if (!gadget->ops->set_selfpowered)
- return -EOPNOTSUPP;
- return gadget->ops->set_selfpowered(gadget, 1);
-}
-
-/**
- * usb_gadget_clear_selfpowered - clear the device selfpowered feature.
- * @gadget:the device being declared as bus-powered
- *
- * this affects the device status reported by the hardware driver.
- * some hardware may not support bus-powered operation, in which
- * case this feature's value can never change.
- *
- * returns zero on success, else negative errno.
- */
+{ return 0; }
static inline int usb_gadget_clear_selfpowered(struct usb_gadget *gadget)
-{
- if (!gadget->ops->set_selfpowered)
- return -EOPNOTSUPP;
- return gadget->ops->set_selfpowered(gadget, 0);
-}
-
-/**
- * usb_gadget_vbus_connect - Notify controller that VBUS is powered
- * @gadget:The device which now has VBUS power.
- * Context: can sleep
- *
- * This call is used by a driver for an external transceiver (or GPIO)
- * that detects a VBUS power session starting. Common responses include
- * resuming the controller, activating the D+ (or D-) pullup to let the
- * host detect that a USB device is attached, and starting to draw power
- * (8mA or possibly more, especially after SET_CONFIGURATION).
- *
- * Returns zero on success, else negative errno.
- */
+{ return 0; }
static inline int usb_gadget_vbus_connect(struct usb_gadget *gadget)
-{
- if (!gadget->ops->vbus_session)
- return -EOPNOTSUPP;
- return gadget->ops->vbus_session(gadget, 1);
-}
-
-/**
- * usb_gadget_vbus_draw - constrain controller's VBUS power usage
- * @gadget:The device whose VBUS usage is being described
- * @mA:How much current to draw, in milliAmperes. This should be twice
- * the value listed in the configuration descriptor bMaxPower field.
- *
- * This call is used by gadget drivers during SET_CONFIGURATION calls,
- * reporting how much power the device may consume. For example, this
- * could affect how quickly batteries are recharged.
- *
- * Returns zero on success, else negative errno.
- */
+{ return 0; }
static inline int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA)
-{
- if (!gadget->ops->vbus_draw)
- return -EOPNOTSUPP;
- return gadget->ops->vbus_draw(gadget, mA);
-}
-
-/**
- * usb_gadget_vbus_disconnect - notify controller about VBUS session end
- * @gadget:the device whose VBUS supply is being described
- * Context: can sleep
- *
- * This call is used by a driver for an external transceiver (or GPIO)
- * that detects a VBUS power session ending. Common responses include
- * reversing everything done in usb_gadget_vbus_connect().
- *
- * Returns zero on success, else negative errno.
- */
+{ return 0; }
static inline int usb_gadget_vbus_disconnect(struct usb_gadget *gadget)
-{
- if (!gadget->ops->vbus_session)
- return -EOPNOTSUPP;
- return gadget->ops->vbus_session(gadget, 0);
-}
-
-/**
- * usb_gadget_connect - software-controlled connect to USB host
- * @gadget:the peripheral being connected
- *
- * Enables the D+ (or potentially D-) pullup. The host will start
- * enumerating this gadget when the pullup is active and a VBUS session
- * is active (the link is powered). This pullup is always enabled unless
- * usb_gadget_disconnect() has been used to disable it.
- *
- * Returns zero on success, else negative errno.
- */
+{ return 0; }
static inline int usb_gadget_connect(struct usb_gadget *gadget)
-{
- int ret;
-
- if (!gadget->ops->pullup)
- return -EOPNOTSUPP;
-
- if (gadget->deactivated) {
- /*
- * If gadget is deactivated we only save new state.
- * Gadget will be connected automatically after activation.
- */
- gadget->connected = true;
- return 0;
- }
-
- ret = gadget->ops->pullup(gadget, 1);
- if (!ret)
- gadget->connected = 1;
- return ret;
-}
-
-/**
- * usb_gadget_disconnect - software-controlled disconnect from USB host
- * @gadget:the peripheral being disconnected
- *
- * Disables the D+ (or potentially D-) pullup, which the host may see
- * as a disconnect (when a VBUS session is active). Not all systems
- * support software pullup controls.
- *
- * Returns zero on success, else negative errno.
- */
+{ return 0; }
static inline int usb_gadget_disconnect(struct usb_gadget *gadget)
-{
- int ret;
-
- if (!gadget->ops->pullup)
- return -EOPNOTSUPP;
-
- if (gadget->deactivated) {
- /*
- * If gadget is deactivated we only save new state.
- * Gadget will stay disconnected after activation.
- */
- gadget->connected = false;
- return 0;
- }
-
- ret = gadget->ops->pullup(gadget, 0);
- if (!ret)
- gadget->connected = 0;
- return ret;
-}
-
-/**
- * usb_gadget_deactivate - deactivate function which is not ready to work
- * @gadget: the peripheral being deactivated
- *
- * This routine may be used during the gadget driver bind() call to prevent
- * the peripheral from ever being visible to the USB host, unless later
- * usb_gadget_activate() is called. For example, user mode components may
- * need to be activated before the system can talk to hosts.
- *
- * Returns zero on success, else negative errno.
- */
+{ return 0; }
static inline int usb_gadget_deactivate(struct usb_gadget *gadget)
-{
- int ret;
-
- if (gadget->deactivated)
- return 0;
-
- if (gadget->connected) {
- ret = usb_gadget_disconnect(gadget);
- if (ret)
- return ret;
- /*
- * If gadget was being connected before deactivation, we want
- * to reconnect it in usb_gadget_activate().
- */
- gadget->connected = true;
- }
- gadget->deactivated = true;
-
- return 0;
-}
-
-/**
- * usb_gadget_activate - activate function which is not ready to work
- * @gadget: the peripheral being activated
- *
- * This routine activates gadget which was previously deactivated with
- * usb_gadget_deactivate() call. It calls usb_gadget_connect() if needed.
- *
- * Returns zero on success, else negative errno.
- */
+{ return 0; }
static inline int usb_gadget_activate(struct usb_gadget *gadget)
-{
- if (!gadget->deactivated)
- return 0;
-
- gadget->deactivated = false;
-
- /*
- * If gadget has been connected before deactivation, or became connected
- * while it was being deactivated, we call usb_gadget_connect().
- */
- if (gadget->connected)
- return usb_gadget_connect(gadget);
-
- return 0;
-}
+{ return 0; }
+#endif /* CONFIG_USB_GADGET */
/*-------------------------------------------------------------------------*/