/* * Copyright (c) 2013-2014, ARM Limited and Contributors. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * Neither the name of ARM nor the names of its contributors may be used * to endorse or promote products derived from this software without specific * prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include "psci_private.h" /* * SPD power management operations, expected to be supplied by the registered * SPD on successful SP initialization */ const spd_pm_ops_t *psci_spd_pm; /******************************************************************************* * Grand array that holds the platform's topology information for state * management of affinity instances. Each node (aff_map_node) in the array * corresponds to an affinity instance e.g. cluster, cpu within an mpidr ******************************************************************************/ aff_map_node_t psci_aff_map[PSCI_NUM_AFFS] __attribute__ ((section("tzfw_coherent_mem"))); /******************************************************************************* * Pointer to functions exported by the platform to complete power mgmt. ops ******************************************************************************/ const plat_pm_ops_t *psci_plat_pm_ops; /******************************************************************************* * This function is passed an array of pointers to affinity level nodes in the * topology tree for an mpidr. It iterates through the nodes to find the highest * affinity level which is marked as physically powered off. ******************************************************************************/ uint32_t psci_find_max_phys_off_afflvl(uint32_t start_afflvl, uint32_t end_afflvl, aff_map_node_t *mpidr_nodes[]) { uint32_t max_afflvl = PSCI_INVALID_DATA; for (; start_afflvl <= end_afflvl; start_afflvl++) { if (mpidr_nodes[start_afflvl] == NULL) continue; if (psci_get_phys_state(mpidr_nodes[start_afflvl]) == PSCI_STATE_OFF) max_afflvl = start_afflvl; } return max_afflvl; } /******************************************************************************* * This function saves the highest affinity level which is in OFF state. The * affinity instance with which the level is associated is determined by the * caller. ******************************************************************************/ void psci_set_max_phys_off_afflvl(uint32_t afflvl) { set_cpu_data(psci_svc_cpu_data.max_phys_off_afflvl, afflvl); /* * Ensure that the saved value is flushed to main memory and any * speculatively pre-fetched stale copies are invalidated from the * caches of other cpus in the same coherency domain. This ensures that * the value can be safely read irrespective of the state of the data * cache. */ flush_cpu_data(psci_svc_cpu_data.max_phys_off_afflvl); } /******************************************************************************* * This function reads the saved highest affinity level which is in OFF * state. The affinity instance with which the level is associated is determined * by the caller. ******************************************************************************/ uint32_t psci_get_max_phys_off_afflvl(void) { /* * Ensure that the last update of this value in this cpu's cache is * flushed to main memory and any speculatively pre-fetched stale copies * are invalidated from the caches of other cpus in the same coherency * domain. This ensures that the value is always read from the main * memory when it was written before the data cache was enabled. */ flush_cpu_data(psci_svc_cpu_data.max_phys_off_afflvl); return get_cpu_data(psci_svc_cpu_data.max_phys_off_afflvl); } /******************************************************************************* * Routine to return the maximum affinity level to traverse to after a cpu has * been physically powered up. It is expected to be called immediately after * reset from assembler code. ******************************************************************************/ int get_power_on_target_afflvl() { int afflvl; #if DEBUG unsigned int state; aff_map_node_t *node; /* Retrieve our node from the topology tree */ node = psci_get_aff_map_node(read_mpidr_el1() & MPIDR_AFFINITY_MASK, MPIDR_AFFLVL0); assert(node); /* * Sanity check the state of the cpu. It should be either suspend or "on * pending" */ do { state = psci_get_state(node); //wait cpu0 set this state --by wangwei }while(state != PSCI_STATE_SUSPEND && state != PSCI_STATE_ON_PENDING); assert(state == PSCI_STATE_SUSPEND || state == PSCI_STATE_ON_PENDING); #endif /* * Assume that this cpu was suspended and retrieve its target affinity * level. If it is invalid then it could only have been turned off * earlier. get_max_afflvl() will return the highest affinity level a * cpu can be turned off to. */ afflvl = psci_get_suspend_afflvl(); if (afflvl == PSCI_INVALID_DATA) afflvl = get_max_afflvl(); return afflvl; } /******************************************************************************* * Simple routine to retrieve the maximum affinity level supported by the * platform and check that it makes sense. ******************************************************************************/ int get_max_afflvl(void) { int aff_lvl; aff_lvl = plat_get_max_afflvl(); assert(aff_lvl <= MPIDR_MAX_AFFLVL && aff_lvl >= MPIDR_AFFLVL0); return aff_lvl; } /******************************************************************************* * Simple routine to set the id of an affinity instance at a given level in the * mpidr. ******************************************************************************/ unsigned long mpidr_set_aff_inst(unsigned long mpidr, unsigned char aff_inst, int aff_lvl) { unsigned long aff_shift; assert(aff_lvl <= MPIDR_AFFLVL3); /* * Decide the number of bits to shift by depending upon * the affinity level */ aff_shift = get_afflvl_shift(aff_lvl); /* Clear the existing affinity instance & set the new one*/ mpidr &= ~(MPIDR_AFFLVL_MASK << aff_shift); mpidr |= aff_inst << aff_shift; return mpidr; } /******************************************************************************* * This function sanity checks a range of affinity levels. ******************************************************************************/ int psci_check_afflvl_range(int start_afflvl, int end_afflvl) { /* Sanity check the parameters passed */ if (end_afflvl > MPIDR_MAX_AFFLVL) return PSCI_E_INVALID_PARAMS; if (start_afflvl < MPIDR_AFFLVL0) return PSCI_E_INVALID_PARAMS; if (end_afflvl < start_afflvl) return PSCI_E_INVALID_PARAMS; return PSCI_E_SUCCESS; } /******************************************************************************* * This function is passed an array of pointers to affinity level nodes in the * topology tree for an mpidr and the state which each node should transition * to. It updates the state of each node between the specified affinity levels. ******************************************************************************/ void psci_do_afflvl_state_mgmt(uint32_t start_afflvl, uint32_t end_afflvl, aff_map_node_t *mpidr_nodes[], uint32_t state) { uint32_t level; for (level = start_afflvl; level <= end_afflvl; level++) { if (mpidr_nodes[level] == NULL) continue; psci_set_state(mpidr_nodes[level], state); } } /******************************************************************************* * This function is passed an array of pointers to affinity level nodes in the * topology tree for an mpidr. It picks up locks for each affinity level bottom * up in the range specified. ******************************************************************************/ void psci_acquire_afflvl_locks(int start_afflvl, int end_afflvl, aff_map_node_t *mpidr_nodes[]) { int level; for (level = start_afflvl; level <= end_afflvl; level++) { if (mpidr_nodes[level] == NULL) continue; bakery_lock_get(&mpidr_nodes[level]->lock); } } /******************************************************************************* * This function is passed an array of pointers to affinity level nodes in the * topology tree for an mpidr. It releases the lock for each affinity level top * down in the range specified. ******************************************************************************/ void psci_release_afflvl_locks(int start_afflvl, int end_afflvl, aff_map_node_t *mpidr_nodes[]) { int level; for (level = end_afflvl; level >= start_afflvl; level--) { if (mpidr_nodes[level] == NULL) continue; bakery_lock_release(&mpidr_nodes[level]->lock); } } /******************************************************************************* * Simple routine to determine whether an affinity instance at a given level * in an mpidr exists or not. ******************************************************************************/ int psci_validate_mpidr(unsigned long mpidr, int level) { aff_map_node_t *node; node = psci_get_aff_map_node(mpidr, level); if (node && (node->state & PSCI_AFF_PRESENT)) return PSCI_E_SUCCESS; else return PSCI_E_INVALID_PARAMS; } /******************************************************************************* * This function determines the full entrypoint information for the requested * PSCI entrypoint on power on/resume and saves this in the non-secure CPU * cpu_context, ready for when the core boots. ******************************************************************************/ int psci_save_ns_entry(uint64_t mpidr, uint64_t entrypoint, uint64_t context_id, uint32_t ns_scr_el3, uint32_t ns_sctlr_el1) { uint32_t ep_attr, mode, sctlr, daif, ee; entry_point_info_t ep; sctlr = ns_scr_el3 & SCR_HCE_BIT ? read_sctlr_el2() : ns_sctlr_el1; ee = 0; ep_attr = NON_SECURE | EP_ST_DISABLE; if (sctlr & SCTLR_EE_BIT) { ep_attr |= EP_EE_BIG; ee = 1; } SET_PARAM_HEAD(&ep, PARAM_EP, VERSION_1, ep_attr); ep.pc = entrypoint; memset(&ep.args, 0, sizeof(ep.args)); ep.args.arg0 = context_id; /* * Figure out whether the cpu enters the non-secure address space * in aarch32 or aarch64 */ if (ns_scr_el3 & SCR_RW_BIT) { /* * Check whether a Thumb entry point has been provided for an * aarch64 EL */ if (entrypoint & 0x1) return PSCI_E_INVALID_PARAMS; mode = ns_scr_el3 & SCR_HCE_BIT ? MODE_EL2 : MODE_EL1; ep.spsr = SPSR_64(mode, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS); } else { mode = ns_scr_el3 & SCR_HCE_BIT ? MODE32_hyp : MODE32_svc; /* * TODO: Choose async. exception bits if HYP mode is not * implemented according to the values of SCR.{AW, FW} bits */ daif = DAIF_ABT_BIT | DAIF_IRQ_BIT | DAIF_FIQ_BIT; ep.spsr = SPSR_MODE32(mode, entrypoint & 0x1, ee, daif); } /* initialise an entrypoint to set up the CPU context */ cm_init_context(mpidr, &ep); return PSCI_E_SUCCESS; } /******************************************************************************* * This function takes a pointer to an affinity node in the topology tree and * returns its state. State of a non-leaf node needs to be calculated. ******************************************************************************/ unsigned short psci_get_state(aff_map_node_t *node) { assert(node->level >= MPIDR_AFFLVL0 && node->level <= MPIDR_MAX_AFFLVL); /* A cpu node just contains the state which can be directly returned */ if (node->level == MPIDR_AFFLVL0) return (node->state >> PSCI_STATE_SHIFT) & PSCI_STATE_MASK; /* * For an affinity level higher than a cpu, the state has to be * calculated. It depends upon the value of the reference count * which is managed by each node at the next lower affinity level * e.g. for a cluster, each cpu increments/decrements the reference * count. If the reference count is 0 then the affinity level is * OFF else ON. */ if (node->ref_count) return PSCI_STATE_ON; else return PSCI_STATE_OFF; } /******************************************************************************* * This function takes a pointer to an affinity node in the topology tree and * a target state. State of a non-leaf node needs to be converted to a reference * count. State of a leaf node can be set directly. ******************************************************************************/ void psci_set_state(aff_map_node_t *node, unsigned short state) { assert(node->level >= MPIDR_AFFLVL0 && node->level <= MPIDR_MAX_AFFLVL); /* * For an affinity level higher than a cpu, the state is used * to decide whether the reference count is incremented or * decremented. Entry into the ON_PENDING state does not have * effect. */ if (node->level > MPIDR_AFFLVL0) { switch (state) { case PSCI_STATE_ON: node->ref_count++; break; case PSCI_STATE_OFF: case PSCI_STATE_SUSPEND: node->ref_count--; break; case PSCI_STATE_ON_PENDING: /* * An affinity level higher than a cpu will not undergo * a state change when it is about to be turned on */ return; default: assert(0); } } else { node->state &= ~(PSCI_STATE_MASK << PSCI_STATE_SHIFT); node->state |= (state & PSCI_STATE_MASK) << PSCI_STATE_SHIFT; } } /******************************************************************************* * An affinity level could be on, on_pending, suspended or off. These are the * logical states it can be in. Physically either it is off or on. When it is in * the state on_pending then it is about to be turned on. It is not possible to * tell whether that's actually happenned or not. So we err on the side of * caution & treat the affinity level as being turned off. ******************************************************************************/ unsigned short psci_get_phys_state(aff_map_node_t *node) { unsigned int state; state = psci_get_state(node); return get_phys_state(state); } /******************************************************************************* * This function takes an array of pointers to affinity instance nodes in the * topology tree and calls the physical power on handler for the corresponding * affinity levels ******************************************************************************/ static int psci_call_power_on_handlers(aff_map_node_t *mpidr_nodes[], int start_afflvl, int end_afflvl, afflvl_power_on_finisher_t *pon_handlers) { int rc = PSCI_E_INVALID_PARAMS, level; aff_map_node_t *node; for (level = end_afflvl; level >= start_afflvl; level--) { node = mpidr_nodes[level]; if (node == NULL) continue; /* * If we run into any trouble while powering up an * affinity instance, then there is no recovery path * so simply return an error and let the caller take * care of the situation. */ rc = pon_handlers[level](node); if (rc != PSCI_E_SUCCESS) break; } return rc; } /******************************************************************************* * Generic handler which is called when a cpu is physically powered on. It * traverses through all the affinity levels performing generic, architectural, * platform setup and state management e.g. for a cluster that's been powered * on, it will call the platform specific code which will enable coherency at * the interconnect level. For a cpu it could mean turning on the MMU etc. * * The state of all the relevant affinity levels is changed after calling the * affinity level specific handlers as their actions would depend upon the state * the affinity level is exiting from. * * The affinity level specific handlers are called in descending order i.e. from * the highest to the lowest affinity level implemented by the platform because * to turn on affinity level X it is neccesary to turn on affinity level X + 1 * first. ******************************************************************************/ void psci_afflvl_power_on_finish(int start_afflvl, int end_afflvl, afflvl_power_on_finisher_t *pon_handlers) { mpidr_aff_map_nodes_t mpidr_nodes; int rc; unsigned int max_phys_off_afflvl; /* * Collect the pointers to the nodes in the topology tree for * each affinity instance in the mpidr. If this function does * not return successfully then either the mpidr or the affinity * levels are incorrect. Either case is an irrecoverable error. */ rc = psci_get_aff_map_nodes(read_mpidr_el1() & MPIDR_AFFINITY_MASK, start_afflvl, end_afflvl, mpidr_nodes); if (rc != PSCI_E_SUCCESS) panic(); /* * This function acquires the lock corresponding to each affinity * level so that by the time all locks are taken, the system topology * is snapshot and state management can be done safely. */ psci_acquire_afflvl_locks(start_afflvl, end_afflvl, mpidr_nodes); max_phys_off_afflvl = psci_find_max_phys_off_afflvl(start_afflvl, end_afflvl, mpidr_nodes); assert(max_phys_off_afflvl != PSCI_INVALID_DATA); /* * Stash the highest affinity level that will come out of the OFF or * SUSPEND states. */ psci_set_max_phys_off_afflvl(max_phys_off_afflvl); /* Perform generic, architecture and platform specific handling */ rc = psci_call_power_on_handlers(mpidr_nodes, start_afflvl, end_afflvl, pon_handlers); if (rc != PSCI_E_SUCCESS) panic(); /* * This function updates the state of each affinity instance * corresponding to the mpidr in the range of affinity levels * specified. */ psci_do_afflvl_state_mgmt(start_afflvl, end_afflvl, mpidr_nodes, PSCI_STATE_ON); /* * Invalidate the entry for the highest affinity level stashed earlier. * This ensures that any reads of this variable outside the power * up/down sequences return PSCI_INVALID_DATA */ psci_set_max_phys_off_afflvl(PSCI_INVALID_DATA); /* * This loop releases the lock corresponding to each affinity level * in the reverse order to which they were acquired. */ psci_release_afflvl_locks(start_afflvl, end_afflvl, mpidr_nodes); } /******************************************************************************* * This function initializes the set of hooks that PSCI invokes as part of power * management operation. The power management hooks are expected to be provided * by the SPD, after it finishes all its initialization ******************************************************************************/ void psci_register_spd_pm_hook(const spd_pm_ops_t *pm) { psci_spd_pm = pm; } /******************************************************************************* * This function prints the state of all affinity instances present in the * system ******************************************************************************/ void psci_print_affinity_map(void) { #if LOG_LEVEL >= LOG_LEVEL_INFO aff_map_node_t *node; unsigned int idx; /* This array maps to the PSCI_STATE_X definitions in psci.h */ static const char *psci_state_str[] = { "ON", "OFF", "ON_PENDING", "SUSPEND" }; INFO("PSCI Affinity Map:\n"); for (idx = 0; idx < PSCI_NUM_AFFS ; idx++) { node = &psci_aff_map[idx]; if (!(node->state & PSCI_AFF_PRESENT)) { continue; } INFO(" AffInst: Level %u, MPID 0x%lx, State %s\n", node->level, node->mpidr, psci_state_str[psci_get_state(node)]); } #endif }