summaryrefslogtreecommitdiff
path: root/net/sunrpc/xprtrdma/xprt_rdma.h
diff options
context:
space:
mode:
authorChuck Lever <chuck.lever@oracle.com>2017-10-20 10:48:12 -0400
committerAnna Schumaker <Anna.Schumaker@Netapp.com>2017-11-17 13:47:56 -0500
commitae72950abf99fb250aca972b3451b6e06a096c68 (patch)
tree101982d10909e16b45ff8491881e6490b5b18635 /net/sunrpc/xprtrdma/xprt_rdma.h
parenta062a2a3efc5fece106d96d4a5165f3f23b5cbda (diff)
xprtrdma: Add data structure to manage RDMA Send arguments
Problem statement: Recently Sagi Grimberg <sagi@grimberg.me> observed that kernel RDMA- enabled storage initiators don't handle delayed Send completion correctly. If Send completion is delayed beyond the end of a ULP transaction, the ULP may release resources that are still being used by the HCA to complete a long-running Send operation. This is a common design trait amongst our initiators. Most Send operations are faster than the ULP transaction they are part of. Waiting for a completion for these is typically unnecessary. Infrequently, a network partition or some other problem crops up where an ordering problem can occur. In NFS parlance, the RPC Reply arrives and completes the RPC, but the HCA is still retrying the Send WR that conveyed the RPC Call. In this case, the HCA can try to use memory that has been invalidated or DMA unmapped, and the connection is lost. If that memory has been re-used for something else (possibly not related to NFS), and the Send retransmission exposes that data on the wire. Thus we cannot assume that it is safe to release Send-related resources just because a ULP reply has arrived. After some analysis, we have determined that the completion housekeeping will not be difficult for xprtrdma: - Inline Send buffers are registered via the local DMA key, and are already left DMA mapped for the lifetime of a transport connection, thus no additional handling is necessary for those - Gathered Sends involving page cache pages _will_ need to DMA unmap those pages after the Send completes. But like inline send buffers, they are registered via the local DMA key, and thus will not need to be invalidated In addition, RPC completion will need to wait for Send completion in the latter case. However, nearly always, the Send that conveys the RPC Call will have completed long before the RPC Reply arrives, and thus no additional latency will be accrued. Design notes: In this patch, the rpcrdma_sendctx object is introduced, and a lock-free circular queue is added to manage a set of them per transport. The RPC client's send path already prevents sending more than one RPC Call at the same time. This allows us to treat the consumer side of the queue (rpcrdma_sendctx_get_locked) as if there is a single consumer thread. The producer side of the queue (rpcrdma_sendctx_put_locked) is invoked only from the Send completion handler, which is a single thread of execution (soft IRQ). The only care that needs to be taken is with the tail index, which is shared between the producer and consumer. Only the producer updates the tail index. The consumer compares the head with the tail to ensure that the a sendctx that is in use is never handed out again (or, expressed more conventionally, the queue is empty). When the sendctx queue empties completely, there are enough Sends outstanding that posting more Send operations can result in a Send Queue overflow. In this case, the ULP is told to wait and try again. This introduces strong Send Queue accounting to xprtrdma. As a final touch, Jason Gunthorpe <jgunthorpe@obsidianresearch.com> suggested a mechanism that does not require signaling every Send. We signal once every N Sends, and perform SGE unmapping of N Send operations during that one completion. Reported-by: Sagi Grimberg <sagi@grimberg.me> Suggested-by: Jason Gunthorpe <jgunthorpe@obsidianresearch.com> Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Diffstat (limited to 'net/sunrpc/xprtrdma/xprt_rdma.h')
-rw-r--r--net/sunrpc/xprtrdma/xprt_rdma.h38
1 files changed, 33 insertions, 5 deletions
diff --git a/net/sunrpc/xprtrdma/xprt_rdma.h b/net/sunrpc/xprtrdma/xprt_rdma.h
index 0b8ca5e5c706..537cfabe47d1 100644
--- a/net/sunrpc/xprtrdma/xprt_rdma.h
+++ b/net/sunrpc/xprtrdma/xprt_rdma.h
@@ -93,6 +93,8 @@ enum {
*/
struct rpcrdma_ep {
+ unsigned int rep_send_count;
+ unsigned int rep_send_batch;
atomic_t rep_cqcount;
int rep_cqinit;
int rep_connected;
@@ -232,6 +234,27 @@ struct rpcrdma_rep {
struct ib_recv_wr rr_recv_wr;
};
+/* struct rpcrdma_sendctx - DMA mapped SGEs to unmap after Send completes
+ */
+struct rpcrdma_xprt;
+struct rpcrdma_sendctx {
+ struct ib_send_wr sc_wr;
+ struct ib_cqe sc_cqe;
+ struct rpcrdma_xprt *sc_xprt;
+ unsigned int sc_unmap_count;
+ struct ib_sge sc_sges[];
+};
+
+/* Limit the number of SGEs that can be unmapped during one
+ * Send completion. This caps the amount of work a single
+ * completion can do before returning to the provider.
+ *
+ * Setting this to zero disables Send completion batching.
+ */
+enum {
+ RPCRDMA_MAX_SEND_BATCH = 7,
+};
+
/*
* struct rpcrdma_mw - external memory region metadata
*
@@ -343,19 +366,16 @@ enum {
struct rpcrdma_buffer;
struct rpcrdma_req {
struct list_head rl_list;
- unsigned int rl_mapped_sges;
unsigned int rl_connect_cookie;
struct rpcrdma_buffer *rl_buffer;
struct rpcrdma_rep *rl_reply;
struct xdr_stream rl_stream;
struct xdr_buf rl_hdrbuf;
- struct ib_send_wr rl_send_wr;
- struct ib_sge rl_send_sge[RPCRDMA_MAX_SEND_SGES];
+ struct rpcrdma_sendctx *rl_sendctx;
struct rpcrdma_regbuf *rl_rdmabuf; /* xprt header */
struct rpcrdma_regbuf *rl_sendbuf; /* rq_snd_buf */
struct rpcrdma_regbuf *rl_recvbuf; /* rq_rcv_buf */
- struct ib_cqe rl_cqe;
struct list_head rl_all;
bool rl_backchannel;
@@ -402,6 +422,11 @@ struct rpcrdma_buffer {
struct list_head rb_mws;
struct list_head rb_all;
+ unsigned long rb_sc_head;
+ unsigned long rb_sc_tail;
+ unsigned long rb_sc_last;
+ struct rpcrdma_sendctx **rb_sc_ctxs;
+
spinlock_t rb_lock; /* protect buf lists */
int rb_send_count, rb_recv_count;
struct list_head rb_send_bufs;
@@ -456,6 +481,7 @@ struct rpcrdma_stats {
unsigned long mrs_recovered;
unsigned long mrs_orphaned;
unsigned long mrs_allocated;
+ unsigned long empty_sendctx_q;
/* accessed when receiving a reply */
unsigned long long total_rdma_reply;
@@ -557,6 +583,8 @@ struct rpcrdma_rep *rpcrdma_create_rep(struct rpcrdma_xprt *);
void rpcrdma_destroy_req(struct rpcrdma_req *);
int rpcrdma_buffer_create(struct rpcrdma_xprt *);
void rpcrdma_buffer_destroy(struct rpcrdma_buffer *);
+struct rpcrdma_sendctx *rpcrdma_sendctx_get_locked(struct rpcrdma_buffer *buf);
+void rpcrdma_sendctx_put_locked(struct rpcrdma_sendctx *sc);
struct rpcrdma_mw *rpcrdma_get_mw(struct rpcrdma_xprt *);
void rpcrdma_put_mw(struct rpcrdma_xprt *, struct rpcrdma_mw *);
@@ -617,7 +645,7 @@ int rpcrdma_prepare_send_sges(struct rpcrdma_xprt *r_xprt,
struct rpcrdma_req *req, u32 hdrlen,
struct xdr_buf *xdr,
enum rpcrdma_chunktype rtype);
-void rpcrdma_unmap_sges(struct rpcrdma_ia *, struct rpcrdma_req *);
+void rpcrdma_unmap_sendctx(struct rpcrdma_sendctx *sc);
int rpcrdma_marshal_req(struct rpcrdma_xprt *r_xprt, struct rpc_rqst *rqst);
void rpcrdma_set_max_header_sizes(struct rpcrdma_xprt *);
void rpcrdma_complete_rqst(struct rpcrdma_rep *rep);