/* * (C) Copyright 2009 * Magnus Lilja * * (C) Copyright 2008 * Maxim Artamonov, * * (C) Copyright 2006-2008 * Stefan Roese, DENX Software Engineering, sr at denx.de. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA */ #include #include #include #include #include static struct fsl_nfc_regs *const nfc = (void *)NFC_BASE_ADDR; static void nfc_wait_ready(void) { uint32_t tmp; while (!(readw(&nfc->config2) & NFC_INT)) ; /* Reset interrupt flag */ tmp = readw(&nfc->config2); tmp &= ~NFC_INT; writew(tmp, &nfc->config2); } static void nfc_nand_init(void) { #if defined(MXC_NFC_V2_1) int ecc_per_page = CONFIG_SYS_NAND_PAGE_SIZE / 512; int config1; writew(CONFIG_SYS_NAND_SPARE_SIZE / 2, &nfc->spare_area_size); /* unlocking RAM Buff */ writew(0x2, &nfc->config); /* hardware ECC checking and correct */ config1 = readw(&nfc->config1) | NFC_ECC_EN | NFC_INT_MSK | NFC_ONE_CYCLE | NFC_FP_INT; /* * if spare size is larger that 16 bytes per 512 byte hunk * then use 8 symbol correction instead of 4 */ if (CONFIG_SYS_NAND_SPARE_SIZE / ecc_per_page > 16) config1 &= ~NFC_4_8N_ECC; else config1 |= NFC_4_8N_ECC; writew(config1, &nfc->config1); #elif defined(MXC_NFC_V1) /* unlocking RAM Buff */ writew(0x2, &nfc->config); /* hardware ECC checking and correct */ writew(NFC_ECC_EN | NFC_INT_MSK, &nfc->config1); #endif } static void nfc_nand_command(unsigned short command) { writew(command, &nfc->flash_cmd); writew(NFC_CMD, &nfc->config2); nfc_wait_ready(); } static void nfc_nand_address(unsigned short address) { writew(address, &nfc->flash_addr); writew(NFC_ADDR, &nfc->config2); nfc_wait_ready(); } static void nfc_nand_page_address(unsigned int page_address) { unsigned int page_count; nfc_nand_address(0x00); /* code only for large page flash */ if (CONFIG_SYS_NAND_PAGE_SIZE > 512) nfc_nand_address(0x00); page_count = CONFIG_SYS_NAND_SIZE / CONFIG_SYS_NAND_PAGE_SIZE; if (page_address <= page_count) { page_count--; /* transform 0x01000000 to 0x00ffffff */ do { nfc_nand_address(page_address & 0xff); page_address = page_address >> 8; page_count = page_count >> 8; } while (page_count); } nfc_nand_address(0x00); } static void nfc_nand_data_output(void) { #ifdef NAND_MXC_2K_MULTI_CYCLE int i; #endif writew(0, &nfc->buf_addr); writew(NFC_OUTPUT, &nfc->config2); nfc_wait_ready(); #ifdef NAND_MXC_2K_MULTI_CYCLE /* * This NAND controller requires multiple input commands * for pages larger than 512 bytes. */ for (i = 1; i < CONFIG_SYS_NAND_PAGE_SIZE / 512; i++) { writew(i, &nfc->buf_addr); writew(NFC_OUTPUT, &nfc->config2); nfc_wait_ready(); } #endif } static int nfc_nand_check_ecc(void) { #if defined(MXC_NFC_V1) u16 ecc_status = readw(&nfc->ecc_status_result); return (ecc_status & 0x3) == 2 || (ecc_status >> 2) == 2; #elif defined(MXC_NFC_V2_1) u32 ecc_status = readl(&nfc->ecc_status_result); int ecc_per_page = CONFIG_SYS_NAND_PAGE_SIZE / 512; int err_limit = CONFIG_SYS_NAND_SPARE_SIZE / ecc_per_page > 16 ? 8 : 4; int subpages = CONFIG_SYS_NAND_PAGE_SIZE / 512; do { if ((ecc_status & 0xf) > err_limit) return 1; ecc_status >>= 4; } while (--subpages); return 0; #endif } static void nfc_nand_read_page(unsigned int page_address) { writew(0, &nfc->buf_addr); /* read in first 0 buffer */ nfc_nand_command(NAND_CMD_READ0); nfc_nand_page_address(page_address); if (CONFIG_SYS_NAND_PAGE_SIZE > 512) nfc_nand_command(NAND_CMD_READSTART); nfc_nand_data_output(); /* fill the main buffer 0 */ } static int nfc_read_page(unsigned int page_address, unsigned char *buf) { int i; u32 *src; u32 *dst; nfc_nand_read_page(page_address); if (nfc_nand_check_ecc()) return -1; src = (u32 *)&nfc->main_area[0][0]; dst = (u32 *)buf; /* main copy loop from NAND-buffer to SDRAM memory */ for (i = 0; i < CONFIG_SYS_NAND_PAGE_SIZE / 4; i++) { writel(readl(src), dst); src++; dst++; } return 0; } static int is_badblock(int pagenumber) { int page = pagenumber; u32 badblock; u32 *src; /* Check the first two pages for bad block markers */ for (page = pagenumber; page < pagenumber + 2; page++) { nfc_nand_read_page(page); src = (u32 *)&nfc->spare_area[0][0]; /* * IMPORTANT NOTE: The nand flash controller uses a non- * standard layout for large page devices. This can * affect the position of the bad block marker. */ /* Get the bad block marker */ badblock = readl(&src[CONFIG_SYS_NAND_BAD_BLOCK_POS / 4]); badblock >>= 8 * (CONFIG_SYS_NAND_BAD_BLOCK_POS % 4); badblock &= 0xff; /* bad block marker verify */ if (badblock != 0xff) return 1; /* potential bad block */ } return 0; } static int nand_load(unsigned int from, unsigned int size, unsigned char *buf) { int i; unsigned int page; unsigned int maxpages = CONFIG_SYS_NAND_SIZE / CONFIG_SYS_NAND_PAGE_SIZE; nfc_nand_init(); /* Convert to page number */ page = from / CONFIG_SYS_NAND_PAGE_SIZE; i = 0; while (i < size / CONFIG_SYS_NAND_PAGE_SIZE) { if (nfc_read_page(page, buf) < 0) return -1; page++; i++; buf = buf + CONFIG_SYS_NAND_PAGE_SIZE; /* * Check if we have crossed a block boundary, and if so * check for bad block. */ if (!(page % CONFIG_SYS_NAND_PAGE_COUNT)) { /* * Yes, new block. See if this block is good. If not, * loop until we find a good block. */ while (is_badblock(page)) { page = page + CONFIG_SYS_NAND_PAGE_COUNT; /* Check i we've reached the end of flash. */ if (page >= maxpages) return -1; } } } return 0; } #if defined(CONFIG_ARM) void board_init_f (ulong bootflag) { relocate_code (CONFIG_SYS_TEXT_BASE - TOTAL_MALLOC_LEN, NULL, CONFIG_SYS_TEXT_BASE); } #endif /* * The main entry for NAND booting. It's necessary that SDRAM is already * configured and available since this code loads the main U-Boot image * from NAND into SDRAM and starts it from there. */ void nand_boot(void) { __attribute__((noreturn)) void (*uboot)(void); /* * CONFIG_SYS_NAND_U_BOOT_OFFS and CONFIG_SYS_NAND_U_BOOT_SIZE must * be aligned to full pages */ if (!nand_load(CONFIG_SYS_NAND_U_BOOT_OFFS, CONFIG_SYS_NAND_U_BOOT_SIZE, (uchar *)CONFIG_SYS_NAND_U_BOOT_DST)) { /* Copy from NAND successful, start U-boot */ uboot = (void *)CONFIG_SYS_NAND_U_BOOT_START; uboot(); } else { /* Unrecoverable error when copying from NAND */ hang(); } } /* * Called in case of an exception. */ void hang(void) { /* Loop forever */ while (1) ; }