summaryrefslogtreecommitdiff
path: root/plat/nvidia/tegra/soc/t186/plat_psci_handlers.c
blob: 44b99dc46d9f1e8a1b2210d60e6bd32385750c2d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
/*
 * Copyright (c) 2015-2016, ARM Limited and Contributors. All rights reserved.
 *
 * SPDX-License-Identifier: BSD-3-Clause
 */

#include <arch.h>
#include <arch_helpers.h>
#include <assert.h>
#include <bl_common.h>
#include <context.h>
#include <context_mgmt.h>
#include <debug.h>
#include <denver.h>
#include <mce.h>
#include <platform.h>
#include <psci.h>
#include <smmu.h>
#include <string.h>
#include <t18x_ari.h>
#include <tegra_private.h>

extern void prepare_cpu_pwr_dwn(void);
extern void tegra186_cpu_reset_handler(void);
extern uint32_t __tegra186_cpu_reset_handler_end,
		__tegra186_smmu_context;

/* state id mask */
#define TEGRA186_STATE_ID_MASK		0xF
/* constants to get power state's wake time */
#define TEGRA186_WAKE_TIME_MASK		0x0FFFFFF0
#define TEGRA186_WAKE_TIME_SHIFT	4
/* default core wake mask for CPU_SUSPEND */
#define TEGRA186_CORE_WAKE_MASK		0x180c
/* context size to save during system suspend */
#define TEGRA186_SE_CONTEXT_SIZE	3

static uint32_t se_regs[TEGRA186_SE_CONTEXT_SIZE];
static struct t18x_psci_percpu_data {
	unsigned int wake_time;
} __aligned(CACHE_WRITEBACK_GRANULE) percpu_data[PLATFORM_CORE_COUNT];

/* System power down state */
uint32_t tegra186_system_powerdn_state = TEGRA_ARI_MISC_CCPLEX_SHUTDOWN_POWER_OFF;

int32_t tegra_soc_validate_power_state(unsigned int power_state,
					psci_power_state_t *req_state)
{
	int state_id = psci_get_pstate_id(power_state) & TEGRA186_STATE_ID_MASK;
	int cpu = plat_my_core_pos();

	/* save the core wake time (in TSC ticks)*/
	percpu_data[cpu].wake_time = (power_state & TEGRA186_WAKE_TIME_MASK)
			<< TEGRA186_WAKE_TIME_SHIFT;

	/*
	 * Clean percpu_data[cpu] to DRAM. This needs to be done to ensure that
	 * the correct value is read in tegra_soc_pwr_domain_suspend(), which
	 * is called with caches disabled. It is possible to read a stale value
	 * from DRAM in that function, because the L2 cache is not flushed
	 * unless the cluster is entering CC6/CC7.
	 */
	clean_dcache_range((uint64_t)&percpu_data[cpu],
			sizeof(percpu_data[cpu]));

	/* Sanity check the requested state id */
	switch (state_id) {
	case PSTATE_ID_CORE_IDLE:
	case PSTATE_ID_CORE_POWERDN:

		/* Core powerdown request */
		req_state->pwr_domain_state[MPIDR_AFFLVL0] = state_id;
		req_state->pwr_domain_state[MPIDR_AFFLVL1] = state_id;

		break;

	default:
		ERROR("%s: unsupported state id (%d)\n", __func__, state_id);
		return PSCI_E_INVALID_PARAMS;
	}

	return PSCI_E_SUCCESS;
}

int tegra_soc_pwr_domain_suspend(const psci_power_state_t *target_state)
{
	const plat_local_state_t *pwr_domain_state;
	unsigned int stateid_afflvl0, stateid_afflvl2;
	int cpu = plat_my_core_pos();
	plat_params_from_bl2_t *params_from_bl2 = bl31_get_plat_params();
	mce_cstate_info_t cstate_info = { 0 };
	uint64_t smmu_ctx_base;
	uint32_t val;

	/* get the state ID */
	pwr_domain_state = target_state->pwr_domain_state;
	stateid_afflvl0 = pwr_domain_state[MPIDR_AFFLVL0] &
		TEGRA186_STATE_ID_MASK;
	stateid_afflvl2 = pwr_domain_state[PLAT_MAX_PWR_LVL] &
		TEGRA186_STATE_ID_MASK;

	if ((stateid_afflvl0 == PSTATE_ID_CORE_IDLE) ||
	    (stateid_afflvl0 == PSTATE_ID_CORE_POWERDN)) {

		/* Enter CPU idle/powerdown */
		val = (stateid_afflvl0 == PSTATE_ID_CORE_IDLE) ?
			TEGRA_ARI_CORE_C6 : TEGRA_ARI_CORE_C7;
		(void)mce_command_handler(MCE_CMD_ENTER_CSTATE, val,
				percpu_data[cpu].wake_time, 0);

	} else if (stateid_afflvl2 == PSTATE_ID_SOC_POWERDN) {

		/* save SE registers */
		se_regs[0] = mmio_read_32(TEGRA_SE0_BASE +
				SE_MUTEX_WATCHDOG_NS_LIMIT);
		se_regs[1] = mmio_read_32(TEGRA_RNG1_BASE +
				RNG_MUTEX_WATCHDOG_NS_LIMIT);
		se_regs[2] = mmio_read_32(TEGRA_PKA1_BASE +
				PKA_MUTEX_WATCHDOG_NS_LIMIT);

		/* save 'Secure Boot' Processor Feature Config Register */
		val = mmio_read_32(TEGRA_MISC_BASE + MISCREG_PFCFG);
		mmio_write_32(TEGRA_SCRATCH_BASE + SECURE_SCRATCH_RSV6, val);

		/* save SMMU context to TZDRAM */
		smmu_ctx_base = params_from_bl2->tzdram_base +
			((uintptr_t)&__tegra186_smmu_context -
			 (uintptr_t)tegra186_cpu_reset_handler);
		tegra_smmu_save_context((uintptr_t)smmu_ctx_base);

		/* Prepare for system suspend */
		cstate_info.cluster = TEGRA_ARI_CLUSTER_CC7;
		cstate_info.system = TEGRA_ARI_SYSTEM_SC7;
		cstate_info.system_state_force = 1;
		cstate_info.update_wake_mask = 1;
		mce_update_cstate_info(&cstate_info);

		/* Loop until system suspend is allowed */
		do {
			val = mce_command_handler(MCE_CMD_IS_SC7_ALLOWED,
					TEGRA_ARI_CORE_C7,
					MCE_CORE_SLEEP_TIME_INFINITE,
					0);
		} while (val == 0);

		/* Instruct the MCE to enter system suspend state */
		(void)mce_command_handler(MCE_CMD_ENTER_CSTATE,
			TEGRA_ARI_CORE_C7, MCE_CORE_SLEEP_TIME_INFINITE, 0);
	}

	return PSCI_E_SUCCESS;
}

/*******************************************************************************
 * Platform handler to calculate the proper target power level at the
 * specified affinity level
 ******************************************************************************/
plat_local_state_t tegra_soc_get_target_pwr_state(unsigned int lvl,
					     const plat_local_state_t *states,
					     unsigned int ncpu)
{
	plat_local_state_t target = *states;
	int cpu = plat_my_core_pos(), ret, cluster_powerdn = 1;
	int core_pos = read_mpidr() & MPIDR_CPU_MASK;
	mce_cstate_info_t cstate_info = { 0 };

	/* get the power state at this level */
	if (lvl == MPIDR_AFFLVL1)
		target = *(states + core_pos);
	if (lvl == MPIDR_AFFLVL2)
		target = *(states + cpu);

	/* CPU suspend */
	if (lvl == MPIDR_AFFLVL1 && target == PSTATE_ID_CORE_POWERDN) {

		/* Program default wake mask */
		cstate_info.wake_mask = TEGRA186_CORE_WAKE_MASK;
		cstate_info.update_wake_mask = 1;
		mce_update_cstate_info(&cstate_info);

		/* Check if CCx state is allowed. */
		ret = mce_command_handler(MCE_CMD_IS_CCX_ALLOWED,
				TEGRA_ARI_CORE_C7, percpu_data[cpu].wake_time,
				0);
		if (ret)
			return PSTATE_ID_CORE_POWERDN;
	}

	/* CPU off */
	if (lvl == MPIDR_AFFLVL1 && target == PLAT_MAX_OFF_STATE) {

		/* find out the number of ON cpus in the cluster */
		do {
			target = *states++;
			if (target != PLAT_MAX_OFF_STATE)
				cluster_powerdn = 0;
		} while (--ncpu);

		/* Enable cluster powerdn from last CPU in the cluster */
		if (cluster_powerdn) {

			/* Enable CC7 state and turn off wake mask */
			cstate_info.cluster = TEGRA_ARI_CLUSTER_CC7;
			cstate_info.update_wake_mask = 1;
			mce_update_cstate_info(&cstate_info);

			/* Check if CCx state is allowed. */
			ret = mce_command_handler(MCE_CMD_IS_CCX_ALLOWED,
						  TEGRA_ARI_CORE_C7,
						  MCE_CORE_SLEEP_TIME_INFINITE,
						  0);
			if (ret)
				return PSTATE_ID_CORE_POWERDN;

		} else {

			/* Turn off wake_mask */
			cstate_info.update_wake_mask = 1;
			mce_update_cstate_info(&cstate_info);
		}
	}

	/* System Suspend */
	if (((lvl == MPIDR_AFFLVL2) || (lvl == MPIDR_AFFLVL1)) &&
	    (target == PSTATE_ID_SOC_POWERDN))
		return PSTATE_ID_SOC_POWERDN;

	/* default state */
	return PSCI_LOCAL_STATE_RUN;
}

int tegra_soc_pwr_domain_power_down_wfi(const psci_power_state_t *target_state)
{
	const plat_local_state_t *pwr_domain_state =
		target_state->pwr_domain_state;
	plat_params_from_bl2_t *params_from_bl2 = bl31_get_plat_params();
	unsigned int stateid_afflvl2 = pwr_domain_state[PLAT_MAX_PWR_LVL] &
		TEGRA186_STATE_ID_MASK;
	uint64_t val;

	if (stateid_afflvl2 == PSTATE_ID_SOC_POWERDN) {
		/*
		 * The TZRAM loses power when we enter system suspend. To
		 * allow graceful exit from system suspend, we need to copy
		 * BL3-1 over to TZDRAM.
		 */
		val = params_from_bl2->tzdram_base +
			((uintptr_t)&__tegra186_cpu_reset_handler_end -
			 (uintptr_t)tegra186_cpu_reset_handler);
		memcpy16((void *)(uintptr_t)val, (void *)(uintptr_t)BL31_BASE,
			 (uintptr_t)&__BL31_END__ - (uintptr_t)BL31_BASE);
	}

	return PSCI_E_SUCCESS;
}

int tegra_soc_pwr_domain_on(u_register_t mpidr)
{
	int target_cpu = mpidr & MPIDR_CPU_MASK;
	int target_cluster = (mpidr & MPIDR_CLUSTER_MASK) >>
			MPIDR_AFFINITY_BITS;

	if (target_cluster > MPIDR_AFFLVL1) {
		ERROR("%s: unsupported CPU (0x%lx)\n", __func__, mpidr);
		return PSCI_E_NOT_PRESENT;
	}

	/* construct the target CPU # */
	target_cpu |= (target_cluster << 2);

	mce_command_handler(MCE_CMD_ONLINE_CORE, target_cpu, 0, 0);

	return PSCI_E_SUCCESS;
}

int tegra_soc_pwr_domain_on_finish(const psci_power_state_t *target_state)
{
	int stateid_afflvl2 = target_state->pwr_domain_state[PLAT_MAX_PWR_LVL];
	int stateid_afflvl0 = target_state->pwr_domain_state[MPIDR_AFFLVL0];
	mce_cstate_info_t cstate_info = { 0 };

	/*
	 * Reset power state info for CPUs when onlining, we set
	 * deepest power when offlining a core but that may not be
	 * requested by non-secure sw which controls idle states. It
	 * will re-init this info from non-secure software when the
	 * core come online.
	 */
	if (stateid_afflvl0 == PLAT_MAX_OFF_STATE) {

		cstate_info.cluster = TEGRA_ARI_CLUSTER_CC1;
		cstate_info.update_wake_mask = 1;
		mce_update_cstate_info(&cstate_info);
	}

	/*
	 * Check if we are exiting from deep sleep and restore SE
	 * context if we are.
	 */
	if (stateid_afflvl2 == PSTATE_ID_SOC_POWERDN) {

		mmio_write_32(TEGRA_SE0_BASE + SE_MUTEX_WATCHDOG_NS_LIMIT,
			se_regs[0]);
		mmio_write_32(TEGRA_RNG1_BASE + RNG_MUTEX_WATCHDOG_NS_LIMIT,
			se_regs[1]);
		mmio_write_32(TEGRA_PKA1_BASE + PKA_MUTEX_WATCHDOG_NS_LIMIT,
			se_regs[2]);

		/* Init SMMU */
		tegra_smmu_init();

		/*
		 * Reset power state info for the last core doing SC7
		 * entry and exit, we set deepest power state as CC7
		 * and SC7 for SC7 entry which may not be requested by
		 * non-secure SW which controls idle states.
		 */
		cstate_info.cluster = TEGRA_ARI_CLUSTER_CC7;
		cstate_info.system = TEGRA_ARI_SYSTEM_SC1;
		cstate_info.update_wake_mask = 1;
		mce_update_cstate_info(&cstate_info);
	}

	return PSCI_E_SUCCESS;
}

int tegra_soc_pwr_domain_off(const psci_power_state_t *target_state)
{
	int impl = (read_midr() >> MIDR_IMPL_SHIFT) & MIDR_IMPL_MASK;

	/* Disable Denver's DCO operations */
	if (impl == DENVER_IMPL)
		denver_disable_dco();

	/* Turn off CPU */
	(void)mce_command_handler(MCE_CMD_ENTER_CSTATE, TEGRA_ARI_CORE_C7,
			MCE_CORE_SLEEP_TIME_INFINITE, 0);

	return PSCI_E_SUCCESS;
}

__dead2 void tegra_soc_prepare_system_off(void)
{
	mce_cstate_info_t cstate_info = { 0 };
	uint32_t val;

	if (tegra186_system_powerdn_state == TEGRA_ARI_MISC_CCPLEX_SHUTDOWN_POWER_OFF) {

		/* power off the entire system */
		mce_enter_ccplex_state(tegra186_system_powerdn_state);

	} else if (tegra186_system_powerdn_state == TEGRA_ARI_SYSTEM_SC8) {

		/* Prepare for quasi power down */
		cstate_info.cluster = TEGRA_ARI_CLUSTER_CC7;
		cstate_info.system = TEGRA_ARI_SYSTEM_SC8;
		cstate_info.system_state_force = 1;
		cstate_info.update_wake_mask = 1;
		mce_update_cstate_info(&cstate_info);

		/* loop until other CPUs power down */
		do {
			val = mce_command_handler(MCE_CMD_IS_SC7_ALLOWED,
					TEGRA_ARI_CORE_C7,
					MCE_CORE_SLEEP_TIME_INFINITE,
					0);
		} while (val == 0);

		/* Enter quasi power down state */
		(void)mce_command_handler(MCE_CMD_ENTER_CSTATE,
			TEGRA_ARI_CORE_C7, MCE_CORE_SLEEP_TIME_INFINITE, 0);

		/* disable GICC */
		tegra_gic_cpuif_deactivate();

		/* power down core */
		prepare_cpu_pwr_dwn();

		/* flush L1/L2 data caches */
		dcsw_op_all(DCCISW);

	} else {
		ERROR("%s: unsupported power down state (%d)\n", __func__,
			tegra186_system_powerdn_state);
	}

	wfi();

	/* wait for the system to power down */
	for (;;) {
		;
	}
}

int tegra_soc_prepare_system_reset(void)
{
	mce_enter_ccplex_state(TEGRA_ARI_MISC_CCPLEX_SHUTDOWN_REBOOT);

	return PSCI_E_SUCCESS;
}