summaryrefslogtreecommitdiff
path: root/unittests/Analysis/LoopPassManagerTest.cpp
blob: 3cbe203e14df2a1fa7536e14a41ca9f3c1901ec4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
//===- llvm/unittest/Analysis/LoopPassManagerTest.cpp - LPM tests ---------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#include "gtest/gtest.h"
#include "llvm/Analysis/LoopPassManager.h"
#include "llvm/AsmParser/Parser.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/Support/SourceMgr.h"

using namespace llvm;

namespace {

class TestLoopAnalysis {
  /// \brief Private static data to provide unique ID.
  static char PassID;

  int &Runs;

public:
  struct Result {
    Result(int Count) : BlockCount(Count) {}
    int BlockCount;
  };

  /// \brief Returns an opaque, unique ID for this pass type.
  static void *ID() { return (void *)&PassID; }

  /// \brief Returns the name of the analysis.
  static StringRef name() { return "TestLoopAnalysis"; }

  TestLoopAnalysis(int &Runs) : Runs(Runs) {}

  /// \brief Run the analysis pass over the loop and return a result.
  Result run(Loop &L, AnalysisManager<Loop> &AM) {
    ++Runs;
    int Count = 0;

    for (auto I = L.block_begin(), E = L.block_end(); I != E; ++I)
      ++Count;
    return Result(Count);
  }
};

char TestLoopAnalysis::PassID;

class TestLoopPass {
  std::vector<StringRef> &VisitedLoops;
  int &AnalyzedBlockCount;
  bool OnlyUseCachedResults;

public:
  TestLoopPass(std::vector<StringRef> &VisitedLoops, int &AnalyzedBlockCount,
               bool OnlyUseCachedResults = false)
      : VisitedLoops(VisitedLoops), AnalyzedBlockCount(AnalyzedBlockCount),
        OnlyUseCachedResults(OnlyUseCachedResults) {}

  PreservedAnalyses run(Loop &L, AnalysisManager<Loop> &AM) {
    VisitedLoops.push_back(L.getName());

    if (OnlyUseCachedResults) {
      // Hack to force the use of the cached interface.
      if (auto *AR = AM.getCachedResult<TestLoopAnalysis>(L))
        AnalyzedBlockCount += AR->BlockCount;
    } else {
      // Typical path just runs the analysis as needed.
      auto &AR = AM.getResult<TestLoopAnalysis>(L);
      AnalyzedBlockCount += AR.BlockCount;
    }

    return PreservedAnalyses::all();
  }

  static StringRef name() { return "TestLoopPass"; }
};

// A test loop pass that invalidates the analysis for loops with the given name.
class TestLoopInvalidatingPass {
  StringRef Name;

public:
  TestLoopInvalidatingPass(StringRef LoopName) : Name(LoopName) {}

  PreservedAnalyses run(Loop &L, AnalysisManager<Loop> &AM) {
    return L.getName() == Name ? PreservedAnalyses::none()
                               : PreservedAnalyses::all();
  }

  static StringRef name() { return "TestLoopInvalidatingPass"; }
};

std::unique_ptr<Module> parseIR(LLVMContext &C, const char *IR) {
  SMDiagnostic Err;
  return parseAssemblyString(IR, Err, C);
}

class LoopPassManagerTest : public ::testing::Test {
protected:
  LLVMContext Context;
  std::unique_ptr<Module> M;

public:
  LoopPassManagerTest()
      : M(parseIR(Context, "define void @f() {\n"
                           "entry:\n"
                           "  br label %loop.0\n"
                           "loop.0:\n"
                           "  br i1 undef, label %loop.0.0, label %end\n"
                           "loop.0.0:\n"
                           "  br i1 undef, label %loop.0.0, label %loop.0.1\n"
                           "loop.0.1:\n"
                           "  br i1 undef, label %loop.0.1, label %loop.0\n"
                           "end:\n"
                           "  ret void\n"
                           "}\n"
                           "\n"
                           "define void @g() {\n"
                           "entry:\n"
                           "  br label %loop.g.0\n"
                           "loop.g.0:\n"
                           "  br i1 undef, label %loop.g.0, label %end\n"
                           "end:\n"
                           "  ret void\n"
                           "}\n")) {}
};

#define EXPECT_N_ELEMENTS_EQ(N, EXPECTED, ACTUAL)                              \
  do {                                                                         \
    EXPECT_EQ(N##UL, ACTUAL.size());                                           \
    for (int I = 0; I < N; ++I)                                                \
      EXPECT_TRUE(EXPECTED[I] == ACTUAL[I]) << "Element " << I << " is "       \
                                            << ACTUAL[I] << ". Expected "      \
                                            << EXPECTED[I] << ".";             \
  } while (0)

TEST_F(LoopPassManagerTest, Basic) {
  LoopAnalysisManager LAM(true);
  int LoopAnalysisRuns = 0;
  LAM.registerPass([&] { return TestLoopAnalysis(LoopAnalysisRuns); });

  FunctionAnalysisManager FAM(true);
  // We need DominatorTreeAnalysis for LoopAnalysis.
  FAM.registerPass([&] { return DominatorTreeAnalysis(); });
  FAM.registerPass([&] { return LoopAnalysis(); });
  FAM.registerPass([&] { return LoopAnalysisManagerFunctionProxy(LAM); });
  LAM.registerPass([&] { return FunctionAnalysisManagerLoopProxy(FAM); });

  ModuleAnalysisManager MAM(true);
  MAM.registerPass([&] { return FunctionAnalysisManagerModuleProxy(FAM); });
  FAM.registerPass([&] { return ModuleAnalysisManagerFunctionProxy(MAM); });

  ModulePassManager MPM(true);
  FunctionPassManager FPM(true);

  // Visit all of the loops.
  std::vector<StringRef> VisitedLoops1;
  int AnalyzedBlockCount1 = 0;
  {
    LoopPassManager LPM;
    LPM.addPass(TestLoopPass(VisitedLoops1, AnalyzedBlockCount1));

    FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
  }

  // Only use cached analyses.
  std::vector<StringRef> VisitedLoops2;
  int AnalyzedBlockCount2 = 0;
  {
    LoopPassManager LPM;
    LPM.addPass(TestLoopInvalidatingPass("loop.g.0"));
    LPM.addPass(TestLoopPass(VisitedLoops2, AnalyzedBlockCount2,
                             /*OnlyUseCachedResults=*/true));

    FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
  }

  MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
  MPM.run(*M, MAM);

  StringRef ExpectedLoops[] = {"loop.0.0", "loop.0.1", "loop.0", "loop.g.0"};

  // Validate the counters and order of loops visited.
  // loop.0 has 3 blocks whereas loop.0.0, loop.0.1, and loop.g.0 each have 1.
  EXPECT_N_ELEMENTS_EQ(4, ExpectedLoops, VisitedLoops1);
  EXPECT_EQ(6, AnalyzedBlockCount1);

  EXPECT_N_ELEMENTS_EQ(4, ExpectedLoops, VisitedLoops2);
  // The block from loop.g.0 won't be counted, since it wasn't cached.
  EXPECT_EQ(5, AnalyzedBlockCount2);

  // The first LPM runs the loop analysis for all four loops, the second uses
  // cached results for everything.
  EXPECT_EQ(4, LoopAnalysisRuns);
}
}