aboutsummaryrefslogtreecommitdiff
path: root/tools/llvm-objcopy/Object.cpp
blob: 139882778d743b8e1e35e8cfdefebf63511606a1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
//===- Object.cpp ---------------------------------------------------------===//
//
//                      The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#include "Object.h"
#include "llvm-objcopy.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/Object/ELFObjectFile.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FileOutputBuffer.h"
#include "llvm/Support/Path.h"
#include <algorithm>
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <utility>
#include <vector>

using namespace llvm;
using namespace object;
using namespace ELF;

Buffer::~Buffer() {}

void FileBuffer::allocate(size_t Size) {
  Expected<std::unique_ptr<FileOutputBuffer>> BufferOrErr =
      FileOutputBuffer::create(getName(), Size, FileOutputBuffer::F_executable);
  handleAllErrors(BufferOrErr.takeError(), [this](const ErrorInfoBase &E) {
    error("failed to open " + getName() + ": " + E.message());
  });
  Buf = std::move(*BufferOrErr);
}

Error FileBuffer::commit() { return Buf->commit(); }

uint8_t *FileBuffer::getBufferStart() {
  return reinterpret_cast<uint8_t *>(Buf->getBufferStart());
}

void MemBuffer::allocate(size_t Size) {
  Buf = WritableMemoryBuffer::getNewMemBuffer(Size, getName());
}

Error MemBuffer::commit() { return Error::success(); }

uint8_t *MemBuffer::getBufferStart() {
  return reinterpret_cast<uint8_t *>(Buf->getBufferStart());
}

std::unique_ptr<WritableMemoryBuffer> MemBuffer::releaseMemoryBuffer() {
  return std::move(Buf);
}

template <class ELFT> void ELFWriter<ELFT>::writePhdr(const Segment &Seg) {
  using Elf_Phdr = typename ELFT::Phdr;

  uint8_t *B = Buf.getBufferStart();
  B += Obj.ProgramHdrSegment.Offset + Seg.Index * sizeof(Elf_Phdr);
  Elf_Phdr &Phdr = *reinterpret_cast<Elf_Phdr *>(B);
  Phdr.p_type = Seg.Type;
  Phdr.p_flags = Seg.Flags;
  Phdr.p_offset = Seg.Offset;
  Phdr.p_vaddr = Seg.VAddr;
  Phdr.p_paddr = Seg.PAddr;
  Phdr.p_filesz = Seg.FileSize;
  Phdr.p_memsz = Seg.MemSize;
  Phdr.p_align = Seg.Align;
}

void SectionBase::removeSectionReferences(const SectionBase *Sec) {}
void SectionBase::removeSymbols(function_ref<bool(const Symbol &)> ToRemove) {}
void SectionBase::initialize(SectionTableRef SecTable) {}
void SectionBase::finalize() {}
void SectionBase::markSymbols() {}

template <class ELFT> void ELFWriter<ELFT>::writeShdr(const SectionBase &Sec) {
  uint8_t *B = Buf.getBufferStart();
  B += Sec.HeaderOffset;
  typename ELFT::Shdr &Shdr = *reinterpret_cast<typename ELFT::Shdr *>(B);
  Shdr.sh_name = Sec.NameIndex;
  Shdr.sh_type = Sec.Type;
  Shdr.sh_flags = Sec.Flags;
  Shdr.sh_addr = Sec.Addr;
  Shdr.sh_offset = Sec.Offset;
  Shdr.sh_size = Sec.Size;
  Shdr.sh_link = Sec.Link;
  Shdr.sh_info = Sec.Info;
  Shdr.sh_addralign = Sec.Align;
  Shdr.sh_entsize = Sec.EntrySize;
}

SectionVisitor::~SectionVisitor() {}

void BinarySectionWriter::visit(const SectionIndexSection &Sec) {
  error("Cannot write symbol section index table '" + Sec.Name + "' ");
}

void BinarySectionWriter::visit(const SymbolTableSection &Sec) {
  error("Cannot write symbol table '" + Sec.Name + "' out to binary");
}

void BinarySectionWriter::visit(const RelocationSection &Sec) {
  error("Cannot write relocation section '" + Sec.Name + "' out to binary");
}

void BinarySectionWriter::visit(const GnuDebugLinkSection &Sec) {
  error("Cannot write '" + Sec.Name + "' out to binary");
}

void BinarySectionWriter::visit(const GroupSection &Sec) {
  error("Cannot write '" + Sec.Name + "' out to binary");
}

void SectionWriter::visit(const Section &Sec) {
  if (Sec.Type == SHT_NOBITS)
    return;
  uint8_t *Buf = Out.getBufferStart() + Sec.Offset;
  std::copy(std::begin(Sec.Contents), std::end(Sec.Contents), Buf);
}

void Section::accept(SectionVisitor &Visitor) const { Visitor.visit(*this); }

void SectionWriter::visit(const OwnedDataSection &Sec) {
  uint8_t *Buf = Out.getBufferStart() + Sec.Offset;
  std::copy(std::begin(Sec.Data), std::end(Sec.Data), Buf);
}

void OwnedDataSection::accept(SectionVisitor &Visitor) const {
  Visitor.visit(*this);
}

void StringTableSection::addString(StringRef Name) {
  StrTabBuilder.add(Name);
  Size = StrTabBuilder.getSize();
}

uint32_t StringTableSection::findIndex(StringRef Name) const {
  return StrTabBuilder.getOffset(Name);
}

void StringTableSection::finalize() { StrTabBuilder.finalize(); }

void SectionWriter::visit(const StringTableSection &Sec) {
  Sec.StrTabBuilder.write(Out.getBufferStart() + Sec.Offset);
}

void StringTableSection::accept(SectionVisitor &Visitor) const {
  Visitor.visit(*this);
}

template <class ELFT>
void ELFSectionWriter<ELFT>::visit(const SectionIndexSection &Sec) {
  uint8_t *Buf = Out.getBufferStart() + Sec.Offset;
  auto *IndexesBuffer = reinterpret_cast<typename ELFT::Word *>(Buf);
  std::copy(std::begin(Sec.Indexes), std::end(Sec.Indexes), IndexesBuffer);
}

void SectionIndexSection::initialize(SectionTableRef SecTable) {
  Size = 0;
  setSymTab(SecTable.getSectionOfType<SymbolTableSection>(
      Link,
      "Link field value " + Twine(Link) + " in section " + Name + " is invalid",
      "Link field value " + Twine(Link) + " in section " + Name +
          " is not a symbol table"));
  Symbols->setShndxTable(this);
}

void SectionIndexSection::finalize() { Link = Symbols->Index; }

void SectionIndexSection::accept(SectionVisitor &Visitor) const {
  Visitor.visit(*this);
}

static bool isValidReservedSectionIndex(uint16_t Index, uint16_t Machine) {
  switch (Index) {
  case SHN_ABS:
  case SHN_COMMON:
    return true;
  }
  if (Machine == EM_HEXAGON) {
    switch (Index) {
    case SHN_HEXAGON_SCOMMON:
    case SHN_HEXAGON_SCOMMON_2:
    case SHN_HEXAGON_SCOMMON_4:
    case SHN_HEXAGON_SCOMMON_8:
      return true;
    }
  }
  return false;
}

// Large indexes force us to clarify exactly what this function should do. This
// function should return the value that will appear in st_shndx when written
// out.
uint16_t Symbol::getShndx() const {
  if (DefinedIn != nullptr) {
    if (DefinedIn->Index >= SHN_LORESERVE)
      return SHN_XINDEX;
    return DefinedIn->Index;
  }
  switch (ShndxType) {
  // This means that we don't have a defined section but we do need to
  // output a legitimate section index.
  case SYMBOL_SIMPLE_INDEX:
    return SHN_UNDEF;
  case SYMBOL_ABS:
  case SYMBOL_COMMON:
  case SYMBOL_HEXAGON_SCOMMON:
  case SYMBOL_HEXAGON_SCOMMON_2:
  case SYMBOL_HEXAGON_SCOMMON_4:
  case SYMBOL_HEXAGON_SCOMMON_8:
  case SYMBOL_XINDEX:
    return static_cast<uint16_t>(ShndxType);
  }
  llvm_unreachable("Symbol with invalid ShndxType encountered");
}

void SymbolTableSection::assignIndices() {
  uint32_t Index = 0;
  for (auto &Sym : Symbols)
    Sym->Index = Index++;
}

void SymbolTableSection::addSymbol(StringRef Name, uint8_t Bind, uint8_t Type,
                                   SectionBase *DefinedIn, uint64_t Value,
                                   uint8_t Visibility, uint16_t Shndx,
                                   uint64_t Sz) {
  Symbol Sym;
  Sym.Name = Name;
  Sym.Binding = Bind;
  Sym.Type = Type;
  Sym.DefinedIn = DefinedIn;
  if (DefinedIn != nullptr)
    DefinedIn->HasSymbol = true;
  if (DefinedIn == nullptr) {
    if (Shndx >= SHN_LORESERVE)
      Sym.ShndxType = static_cast<SymbolShndxType>(Shndx);
    else
      Sym.ShndxType = SYMBOL_SIMPLE_INDEX;
  }
  Sym.Value = Value;
  Sym.Visibility = Visibility;
  Sym.Size = Sz;
  Sym.Index = Symbols.size();
  Symbols.emplace_back(llvm::make_unique<Symbol>(Sym));
  Size += this->EntrySize;
}

void SymbolTableSection::removeSectionReferences(const SectionBase *Sec) {
  if (SectionIndexTable == Sec)
    SectionIndexTable = nullptr;
  if (SymbolNames == Sec) {
    error("String table " + SymbolNames->Name +
          " cannot be removed because it is referenced by the symbol table " +
          this->Name);
  }
  removeSymbols([Sec](const Symbol &Sym) { return Sym.DefinedIn == Sec; });
}

void SymbolTableSection::updateSymbols(function_ref<void(Symbol &)> Callable) {
  std::for_each(std::begin(Symbols) + 1, std::end(Symbols),
                [Callable](SymPtr &Sym) { Callable(*Sym); });
  std::stable_partition(
      std::begin(Symbols), std::end(Symbols),
      [](const SymPtr &Sym) { return Sym->Binding == STB_LOCAL; });
  assignIndices();
}

void SymbolTableSection::removeSymbols(
    function_ref<bool(const Symbol &)> ToRemove) {
  Symbols.erase(
      std::remove_if(std::begin(Symbols) + 1, std::end(Symbols),
                     [ToRemove](const SymPtr &Sym) { return ToRemove(*Sym); }),
      std::end(Symbols));
  Size = Symbols.size() * EntrySize;
  assignIndices();
}

void SymbolTableSection::initialize(SectionTableRef SecTable) {
  Size = 0;
  setStrTab(SecTable.getSectionOfType<StringTableSection>(
      Link,
      "Symbol table has link index of " + Twine(Link) +
          " which is not a valid index",
      "Symbol table has link index of " + Twine(Link) +
          " which is not a string table"));
}

void SymbolTableSection::finalize() {
  // Make sure SymbolNames is finalized before getting name indexes.
  SymbolNames->finalize();

  uint32_t MaxLocalIndex = 0;
  for (auto &Sym : Symbols) {
    Sym->NameIndex = SymbolNames->findIndex(Sym->Name);
    if (Sym->Binding == STB_LOCAL)
      MaxLocalIndex = std::max(MaxLocalIndex, Sym->Index);
  }
  // Now we need to set the Link and Info fields.
  Link = SymbolNames->Index;
  Info = MaxLocalIndex + 1;
}

void SymbolTableSection::prepareForLayout() {
  // Add all potential section indexes before file layout so that the section
  // index section has the approprite size.
  if (SectionIndexTable != nullptr) {
    for (const auto &Sym : Symbols) {
      if (Sym->DefinedIn != nullptr && Sym->DefinedIn->Index >= SHN_LORESERVE)
        SectionIndexTable->addIndex(Sym->DefinedIn->Index);
      else
        SectionIndexTable->addIndex(SHN_UNDEF);
    }
  }
  // Add all of our strings to SymbolNames so that SymbolNames has the right
  // size before layout is decided.
  for (auto &Sym : Symbols)
    SymbolNames->addString(Sym->Name);
}

const Symbol *SymbolTableSection::getSymbolByIndex(uint32_t Index) const {
  if (Symbols.size() <= Index)
    error("Invalid symbol index: " + Twine(Index));
  return Symbols[Index].get();
}

Symbol *SymbolTableSection::getSymbolByIndex(uint32_t Index) {
  return const_cast<Symbol *>(
      static_cast<const SymbolTableSection *>(this)->getSymbolByIndex(Index));
}

template <class ELFT>
void ELFSectionWriter<ELFT>::visit(const SymbolTableSection &Sec) {
  uint8_t *Buf = Out.getBufferStart();
  Buf += Sec.Offset;
  typename ELFT::Sym *Sym = reinterpret_cast<typename ELFT::Sym *>(Buf);
  // Loop though symbols setting each entry of the symbol table.
  for (auto &Symbol : Sec.Symbols) {
    Sym->st_name = Symbol->NameIndex;
    Sym->st_value = Symbol->Value;
    Sym->st_size = Symbol->Size;
    Sym->st_other = Symbol->Visibility;
    Sym->setBinding(Symbol->Binding);
    Sym->setType(Symbol->Type);
    Sym->st_shndx = Symbol->getShndx();
    ++Sym;
  }
}

void SymbolTableSection::accept(SectionVisitor &Visitor) const {
  Visitor.visit(*this);
}

template <class SymTabType>
void RelocSectionWithSymtabBase<SymTabType>::removeSectionReferences(
    const SectionBase *Sec) {
  if (Symbols == Sec) {
    error("Symbol table " + Symbols->Name +
          " cannot be removed because it is "
          "referenced by the relocation "
          "section " +
          this->Name);
  }
}

template <class SymTabType>
void RelocSectionWithSymtabBase<SymTabType>::initialize(
    SectionTableRef SecTable) {
  setSymTab(SecTable.getSectionOfType<SymTabType>(
      Link,
      "Link field value " + Twine(Link) + " in section " + Name + " is invalid",
      "Link field value " + Twine(Link) + " in section " + Name +
          " is not a symbol table"));

  if (Info != SHN_UNDEF)
    setSection(SecTable.getSection(Info, "Info field value " + Twine(Info) +
                                             " in section " + Name +
                                             " is invalid"));
  else
    setSection(nullptr);
}

template <class SymTabType>
void RelocSectionWithSymtabBase<SymTabType>::finalize() {
  this->Link = Symbols->Index;
  if (SecToApplyRel != nullptr)
    this->Info = SecToApplyRel->Index;
}

template <class ELFT>
static void setAddend(Elf_Rel_Impl<ELFT, false> &Rel, uint64_t Addend) {}

template <class ELFT>
static void setAddend(Elf_Rel_Impl<ELFT, true> &Rela, uint64_t Addend) {
  Rela.r_addend = Addend;
}

template <class RelRange, class T>
static void writeRel(const RelRange &Relocations, T *Buf) {
  for (const auto &Reloc : Relocations) {
    Buf->r_offset = Reloc.Offset;
    setAddend(*Buf, Reloc.Addend);
    Buf->setSymbolAndType(Reloc.RelocSymbol->Index, Reloc.Type, false);
    ++Buf;
  }
}

template <class ELFT>
void ELFSectionWriter<ELFT>::visit(const RelocationSection &Sec) {
  uint8_t *Buf = Out.getBufferStart() + Sec.Offset;
  if (Sec.Type == SHT_REL)
    writeRel(Sec.Relocations, reinterpret_cast<Elf_Rel *>(Buf));
  else
    writeRel(Sec.Relocations, reinterpret_cast<Elf_Rela *>(Buf));
}

void RelocationSection::accept(SectionVisitor &Visitor) const {
  Visitor.visit(*this);
}

void RelocationSection::removeSymbols(
    function_ref<bool(const Symbol &)> ToRemove) {
  for (const Relocation &Reloc : Relocations)
    if (ToRemove(*Reloc.RelocSymbol))
      error("not stripping symbol `" + Reloc.RelocSymbol->Name +
            "' because it is named in a relocation");
}

void RelocationSection::markSymbols() {
  for (const Relocation &Reloc : Relocations)
    Reloc.RelocSymbol->Referenced = true;
}

void SectionWriter::visit(const DynamicRelocationSection &Sec) {
  std::copy(std::begin(Sec.Contents), std::end(Sec.Contents),
            Out.getBufferStart() + Sec.Offset);
}

void DynamicRelocationSection::accept(SectionVisitor &Visitor) const {
  Visitor.visit(*this);
}

void Section::removeSectionReferences(const SectionBase *Sec) {
  if (LinkSection == Sec) {
    error("Section " + LinkSection->Name +
          " cannot be removed because it is "
          "referenced by the section " +
          this->Name);
  }
}

void GroupSection::finalize() {
  this->Info = Sym->Index;
  this->Link = SymTab->Index;
}

void GroupSection::removeSymbols(function_ref<bool(const Symbol &)> ToRemove) {
  if (ToRemove(*Sym)) {
    error("Symbol " + Sym->Name +
          " cannot be removed because it is "
          "referenced by the section " +
          this->Name + "[" + Twine(this->Index) + "]");
  }
}

void GroupSection::markSymbols() {
  if (Sym)
    Sym->Referenced = true;
}

void Section::initialize(SectionTableRef SecTable) {
  if (Link != ELF::SHN_UNDEF) {
    LinkSection =
        SecTable.getSection(Link, "Link field value " + Twine(Link) +
                                      " in section " + Name + " is invalid");
    if (LinkSection->Type == ELF::SHT_SYMTAB)
      LinkSection = nullptr;
  }
}

void Section::finalize() { this->Link = LinkSection ? LinkSection->Index : 0; }

void GnuDebugLinkSection::init(StringRef File, StringRef Data) {
  FileName = sys::path::filename(File);
  // The format for the .gnu_debuglink starts with the file name and is
  // followed by a null terminator and then the CRC32 of the file. The CRC32
  // should be 4 byte aligned. So we add the FileName size, a 1 for the null
  // byte, and then finally push the size to alignment and add 4.
  Size = alignTo(FileName.size() + 1, 4) + 4;
  // The CRC32 will only be aligned if we align the whole section.
  Align = 4;
  Type = ELF::SHT_PROGBITS;
  Name = ".gnu_debuglink";
  // For sections not found in segments, OriginalOffset is only used to
  // establish the order that sections should go in. By using the maximum
  // possible offset we cause this section to wind up at the end.
  OriginalOffset = std::numeric_limits<uint64_t>::max();
  JamCRC crc;
  crc.update(ArrayRef<char>(Data.data(), Data.size()));
  // The CRC32 value needs to be complemented because the JamCRC dosn't
  // finalize the CRC32 value. It also dosn't negate the initial CRC32 value
  // but it starts by default at 0xFFFFFFFF which is the complement of zero.
  CRC32 = ~crc.getCRC();
}

GnuDebugLinkSection::GnuDebugLinkSection(StringRef File) : FileName(File) {
  // Read in the file to compute the CRC of it.
  auto DebugOrErr = MemoryBuffer::getFile(File);
  if (!DebugOrErr)
    error("'" + File + "': " + DebugOrErr.getError().message());
  auto Debug = std::move(*DebugOrErr);
  init(File, Debug->getBuffer());
}

template <class ELFT>
void ELFSectionWriter<ELFT>::visit(const GnuDebugLinkSection &Sec) {
  auto Buf = Out.getBufferStart() + Sec.Offset;
  char *File = reinterpret_cast<char *>(Buf);
  Elf_Word *CRC =
      reinterpret_cast<Elf_Word *>(Buf + Sec.Size - sizeof(Elf_Word));
  *CRC = Sec.CRC32;
  std::copy(std::begin(Sec.FileName), std::end(Sec.FileName), File);
}

void GnuDebugLinkSection::accept(SectionVisitor &Visitor) const {
  Visitor.visit(*this);
}

template <class ELFT>
void ELFSectionWriter<ELFT>::visit(const GroupSection &Sec) {
  ELF::Elf32_Word *Buf =
      reinterpret_cast<ELF::Elf32_Word *>(Out.getBufferStart() + Sec.Offset);
  *Buf++ = Sec.FlagWord;
  for (const auto *S : Sec.GroupMembers)
    support::endian::write32<ELFT::TargetEndianness>(Buf++, S->Index);
}

void GroupSection::accept(SectionVisitor &Visitor) const {
  Visitor.visit(*this);
}

// Returns true IFF a section is wholly inside the range of a segment
static bool sectionWithinSegment(const SectionBase &Section,
                                 const Segment &Segment) {
  // If a section is empty it should be treated like it has a size of 1. This is
  // to clarify the case when an empty section lies on a boundary between two
  // segments and ensures that the section "belongs" to the second segment and
  // not the first.
  uint64_t SecSize = Section.Size ? Section.Size : 1;
  return Segment.Offset <= Section.OriginalOffset &&
         Segment.Offset + Segment.FileSize >= Section.OriginalOffset + SecSize;
}

// Returns true IFF a segment's original offset is inside of another segment's
// range.
static bool segmentOverlapsSegment(const Segment &Child,
                                   const Segment &Parent) {

  return Parent.OriginalOffset <= Child.OriginalOffset &&
         Parent.OriginalOffset + Parent.FileSize > Child.OriginalOffset;
}

static bool compareSegmentsByOffset(const Segment *A, const Segment *B) {
  // Any segment without a parent segment should come before a segment
  // that has a parent segment.
  if (A->OriginalOffset < B->OriginalOffset)
    return true;
  if (A->OriginalOffset > B->OriginalOffset)
    return false;
  return A->Index < B->Index;
}

static bool compareSegmentsByPAddr(const Segment *A, const Segment *B) {
  if (A->PAddr < B->PAddr)
    return true;
  if (A->PAddr > B->PAddr)
    return false;
  return A->Index < B->Index;
}

template <class ELFT> void ELFBuilder<ELFT>::setParentSegment(Segment &Child) {
  for (auto &Parent : Obj.segments()) {
    // Every segment will overlap with itself but we don't want a segment to
    // be it's own parent so we avoid that situation.
    if (&Child != &Parent && segmentOverlapsSegment(Child, Parent)) {
      // We want a canonical "most parental" segment but this requires
      // inspecting the ParentSegment.
      if (compareSegmentsByOffset(&Parent, &Child))
        if (Child.ParentSegment == nullptr ||
            compareSegmentsByOffset(&Parent, Child.ParentSegment)) {
          Child.ParentSegment = &Parent;
        }
    }
  }
}

template <class ELFT> void ELFBuilder<ELFT>::readProgramHeaders() {
  uint32_t Index = 0;
  for (const auto &Phdr : unwrapOrError(ElfFile.program_headers())) {
    ArrayRef<uint8_t> Data{ElfFile.base() + Phdr.p_offset,
                           (size_t)Phdr.p_filesz};
    Segment &Seg = Obj.addSegment(Data);
    Seg.Type = Phdr.p_type;
    Seg.Flags = Phdr.p_flags;
    Seg.OriginalOffset = Phdr.p_offset;
    Seg.Offset = Phdr.p_offset;
    Seg.VAddr = Phdr.p_vaddr;
    Seg.PAddr = Phdr.p_paddr;
    Seg.FileSize = Phdr.p_filesz;
    Seg.MemSize = Phdr.p_memsz;
    Seg.Align = Phdr.p_align;
    Seg.Index = Index++;
    for (auto &Section : Obj.sections()) {
      if (sectionWithinSegment(Section, Seg)) {
        Seg.addSection(&Section);
        if (!Section.ParentSegment ||
            Section.ParentSegment->Offset > Seg.Offset) {
          Section.ParentSegment = &Seg;
        }
      }
    }
  }

  auto &ElfHdr = Obj.ElfHdrSegment;
  // Creating multiple PT_PHDR segments technically is not valid, but PT_LOAD
  // segments must not overlap, and other types fit even less.
  ElfHdr.Type = PT_PHDR;
  ElfHdr.Flags = 0;
  ElfHdr.OriginalOffset = ElfHdr.Offset = 0;
  ElfHdr.VAddr = 0;
  ElfHdr.PAddr = 0;
  ElfHdr.FileSize = ElfHdr.MemSize = sizeof(Elf_Ehdr);
  ElfHdr.Align = 0;
  ElfHdr.Index = Index++;

  const auto &Ehdr = *ElfFile.getHeader();
  auto &PrHdr = Obj.ProgramHdrSegment;
  PrHdr.Type = PT_PHDR;
  PrHdr.Flags = 0;
  // The spec requires us to have p_vaddr % p_align == p_offset % p_align.
  // Whereas this works automatically for ElfHdr, here OriginalOffset is
  // always non-zero and to ensure the equation we assign the same value to
  // VAddr as well.
  PrHdr.OriginalOffset = PrHdr.Offset = PrHdr.VAddr = Ehdr.e_phoff;
  PrHdr.PAddr = 0;
  PrHdr.FileSize = PrHdr.MemSize = Ehdr.e_phentsize * Ehdr.e_phnum;
  // The spec requires us to naturally align all the fields.
  PrHdr.Align = sizeof(Elf_Addr);
  PrHdr.Index = Index++;

  // Now we do an O(n^2) loop through the segments in order to match up
  // segments.
  for (auto &Child : Obj.segments())
    setParentSegment(Child);
  setParentSegment(ElfHdr);
  setParentSegment(PrHdr);
}

template <class ELFT>
void ELFBuilder<ELFT>::initGroupSection(GroupSection *GroupSec) {
  auto SecTable = Obj.sections();
  auto SymTab = SecTable.template getSectionOfType<SymbolTableSection>(
      GroupSec->Link,
      "Link field value " + Twine(GroupSec->Link) + " in section " +
          GroupSec->Name + " is invalid",
      "Link field value " + Twine(GroupSec->Link) + " in section " +
          GroupSec->Name + " is not a symbol table");
  auto Sym = SymTab->getSymbolByIndex(GroupSec->Info);
  if (!Sym)
    error("Info field value " + Twine(GroupSec->Info) + " in section " +
          GroupSec->Name + " is not a valid symbol index");
  GroupSec->setSymTab(SymTab);
  GroupSec->setSymbol(Sym);
  if (GroupSec->Contents.size() % sizeof(ELF::Elf32_Word) ||
      GroupSec->Contents.empty())
    error("The content of the section " + GroupSec->Name + " is malformed");
  const ELF::Elf32_Word *Word =
      reinterpret_cast<const ELF::Elf32_Word *>(GroupSec->Contents.data());
  const ELF::Elf32_Word *End =
      Word + GroupSec->Contents.size() / sizeof(ELF::Elf32_Word);
  GroupSec->setFlagWord(*Word++);
  for (; Word != End; ++Word) {
    uint32_t Index = support::endian::read32<ELFT::TargetEndianness>(Word);
    GroupSec->addMember(SecTable.getSection(
        Index, "Group member index " + Twine(Index) + " in section " +
                   GroupSec->Name + " is invalid"));
  }
}

template <class ELFT>
void ELFBuilder<ELFT>::initSymbolTable(SymbolTableSection *SymTab) {
  const Elf_Shdr &Shdr = *unwrapOrError(ElfFile.getSection(SymTab->Index));
  StringRef StrTabData = unwrapOrError(ElfFile.getStringTableForSymtab(Shdr));
  ArrayRef<Elf_Word> ShndxData;

  auto Symbols = unwrapOrError(ElfFile.symbols(&Shdr));
  for (const auto &Sym : Symbols) {
    SectionBase *DefSection = nullptr;
    StringRef Name = unwrapOrError(Sym.getName(StrTabData));

    if (Sym.st_shndx == SHN_XINDEX) {
      if (SymTab->getShndxTable() == nullptr)
        error("Symbol '" + Name +
              "' has index SHN_XINDEX but no SHT_SYMTAB_SHNDX section exists.");
      if (ShndxData.data() == nullptr) {
        const Elf_Shdr &ShndxSec =
            *unwrapOrError(ElfFile.getSection(SymTab->getShndxTable()->Index));
        ShndxData = unwrapOrError(
            ElfFile.template getSectionContentsAsArray<Elf_Word>(&ShndxSec));
        if (ShndxData.size() != Symbols.size())
          error("Symbol section index table does not have the same number of "
                "entries as the symbol table.");
      }
      Elf_Word Index = ShndxData[&Sym - Symbols.begin()];
      DefSection = Obj.sections().getSection(
          Index,
          "Symbol '" + Name + "' has invalid section index " +
              Twine(Index));
    } else if (Sym.st_shndx >= SHN_LORESERVE) {
      if (!isValidReservedSectionIndex(Sym.st_shndx, Obj.Machine)) {
        error(
            "Symbol '" + Name +
            "' has unsupported value greater than or equal to SHN_LORESERVE: " +
            Twine(Sym.st_shndx));
      }
    } else if (Sym.st_shndx != SHN_UNDEF) {
      DefSection = Obj.sections().getSection(
          Sym.st_shndx, "Symbol '" + Name +
                            "' is defined has invalid section index " +
                            Twine(Sym.st_shndx));
    }

    SymTab->addSymbol(Name, Sym.getBinding(), Sym.getType(), DefSection,
                      Sym.getValue(), Sym.st_other, Sym.st_shndx, Sym.st_size);
  }
}

template <class ELFT>
static void getAddend(uint64_t &ToSet, const Elf_Rel_Impl<ELFT, false> &Rel) {}

template <class ELFT>
static void getAddend(uint64_t &ToSet, const Elf_Rel_Impl<ELFT, true> &Rela) {
  ToSet = Rela.r_addend;
}

template <class T>
static void initRelocations(RelocationSection *Relocs,
                            SymbolTableSection *SymbolTable, T RelRange) {
  for (const auto &Rel : RelRange) {
    Relocation ToAdd;
    ToAdd.Offset = Rel.r_offset;
    getAddend(ToAdd.Addend, Rel);
    ToAdd.Type = Rel.getType(false);
    ToAdd.RelocSymbol = SymbolTable->getSymbolByIndex(Rel.getSymbol(false));
    Relocs->addRelocation(ToAdd);
  }
}

SectionBase *SectionTableRef::getSection(uint32_t Index, Twine ErrMsg) {
  if (Index == SHN_UNDEF || Index > Sections.size())
    error(ErrMsg);
  return Sections[Index - 1].get();
}

template <class T>
T *SectionTableRef::getSectionOfType(uint32_t Index, Twine IndexErrMsg,
                                     Twine TypeErrMsg) {
  if (T *Sec = dyn_cast<T>(getSection(Index, IndexErrMsg)))
    return Sec;
  error(TypeErrMsg);
}

template <class ELFT>
SectionBase &ELFBuilder<ELFT>::makeSection(const Elf_Shdr &Shdr) {
  ArrayRef<uint8_t> Data;
  switch (Shdr.sh_type) {
  case SHT_REL:
  case SHT_RELA:
    if (Shdr.sh_flags & SHF_ALLOC) {
      Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
      return Obj.addSection<DynamicRelocationSection>(Data);
    }
    return Obj.addSection<RelocationSection>();
  case SHT_STRTAB:
    // If a string table is allocated we don't want to mess with it. That would
    // mean altering the memory image. There are no special link types or
    // anything so we can just use a Section.
    if (Shdr.sh_flags & SHF_ALLOC) {
      Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
      return Obj.addSection<Section>(Data);
    }
    return Obj.addSection<StringTableSection>();
  case SHT_HASH:
  case SHT_GNU_HASH:
    // Hash tables should refer to SHT_DYNSYM which we're not going to change.
    // Because of this we don't need to mess with the hash tables either.
    Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
    return Obj.addSection<Section>(Data);
  case SHT_GROUP:
    Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
    return Obj.addSection<GroupSection>(Data);
  case SHT_DYNSYM:
    Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
    return Obj.addSection<DynamicSymbolTableSection>(Data);
  case SHT_DYNAMIC:
    Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
    return Obj.addSection<DynamicSection>(Data);
  case SHT_SYMTAB: {
    auto &SymTab = Obj.addSection<SymbolTableSection>();
    Obj.SymbolTable = &SymTab;
    return SymTab;
  }
  case SHT_SYMTAB_SHNDX: {
    auto &ShndxSection = Obj.addSection<SectionIndexSection>();
    Obj.SectionIndexTable = &ShndxSection;
    return ShndxSection;
  }
  case SHT_NOBITS:
    return Obj.addSection<Section>(Data);
  default:
    Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
    return Obj.addSection<Section>(Data);
  }
}

template <class ELFT> void ELFBuilder<ELFT>::readSectionHeaders() {
  uint32_t Index = 0;
  for (const auto &Shdr : unwrapOrError(ElfFile.sections())) {
    if (Index == 0) {
      ++Index;
      continue;
    }
    auto &Sec = makeSection(Shdr);
    Sec.Name = unwrapOrError(ElfFile.getSectionName(&Shdr));
    Sec.Type = Shdr.sh_type;
    Sec.Flags = Shdr.sh_flags;
    Sec.Addr = Shdr.sh_addr;
    Sec.Offset = Shdr.sh_offset;
    Sec.OriginalOffset = Shdr.sh_offset;
    Sec.Size = Shdr.sh_size;
    Sec.Link = Shdr.sh_link;
    Sec.Info = Shdr.sh_info;
    Sec.Align = Shdr.sh_addralign;
    Sec.EntrySize = Shdr.sh_entsize;
    Sec.Index = Index++;
  }

  // If a section index table exists we'll need to initialize it before we
  // initialize the symbol table because the symbol table might need to
  // reference it.
  if (Obj.SectionIndexTable)
    Obj.SectionIndexTable->initialize(Obj.sections());

  // Now that all of the sections have been added we can fill out some extra
  // details about symbol tables. We need the symbol table filled out before
  // any relocations.
  if (Obj.SymbolTable) {
    Obj.SymbolTable->initialize(Obj.sections());
    initSymbolTable(Obj.SymbolTable);
  }

  // Now that all sections and symbols have been added we can add
  // relocations that reference symbols and set the link and info fields for
  // relocation sections.
  for (auto &Section : Obj.sections()) {
    if (&Section == Obj.SymbolTable)
      continue;
    Section.initialize(Obj.sections());
    if (auto RelSec = dyn_cast<RelocationSection>(&Section)) {
      auto Shdr = unwrapOrError(ElfFile.sections()).begin() + RelSec->Index;
      if (RelSec->Type == SHT_REL)
        initRelocations(RelSec, Obj.SymbolTable,
                        unwrapOrError(ElfFile.rels(Shdr)));
      else
        initRelocations(RelSec, Obj.SymbolTable,
                        unwrapOrError(ElfFile.relas(Shdr)));
    } else if (auto GroupSec = dyn_cast<GroupSection>(&Section)) {
      initGroupSection(GroupSec);
    }
  }
}

template <class ELFT> void ELFBuilder<ELFT>::build() {
  const auto &Ehdr = *ElfFile.getHeader();

  std::copy(Ehdr.e_ident, Ehdr.e_ident + 16, Obj.Ident);
  Obj.Type = Ehdr.e_type;
  Obj.Machine = Ehdr.e_machine;
  Obj.Version = Ehdr.e_version;
  Obj.Entry = Ehdr.e_entry;
  Obj.Flags = Ehdr.e_flags;

  readSectionHeaders();
  readProgramHeaders();

  uint32_t ShstrIndex = Ehdr.e_shstrndx;
  if (ShstrIndex == SHN_XINDEX)
    ShstrIndex = unwrapOrError(ElfFile.getSection(0))->sh_link;

  Obj.SectionNames =
      Obj.sections().template getSectionOfType<StringTableSection>(
          ShstrIndex,
          "e_shstrndx field value " + Twine(Ehdr.e_shstrndx) +
              " in elf header " + " is invalid",
          "e_shstrndx field value " + Twine(Ehdr.e_shstrndx) +
              " in elf header " + " is not a string table");
}

// A generic size function which computes sizes of any random access range.
template <class R> size_t size(R &&Range) {
  return static_cast<size_t>(std::end(Range) - std::begin(Range));
}

Writer::~Writer() {}

Reader::~Reader() {}

ElfType ELFReader::getElfType() const {
  if (isa<ELFObjectFile<ELF32LE>>(Bin))
    return ELFT_ELF32LE;
  if (isa<ELFObjectFile<ELF64LE>>(Bin))
    return ELFT_ELF64LE;
  if (isa<ELFObjectFile<ELF32BE>>(Bin))
    return ELFT_ELF32BE;
  if (isa<ELFObjectFile<ELF64BE>>(Bin))
    return ELFT_ELF64BE;
  llvm_unreachable("Invalid ELFType");
}

std::unique_ptr<Object> ELFReader::create() const {
  auto Obj = llvm::make_unique<Object>();
  if (auto *o = dyn_cast<ELFObjectFile<ELF32LE>>(Bin)) {
    ELFBuilder<ELF32LE> Builder(*o, *Obj);
    Builder.build();
    return Obj;
  } else if (auto *o = dyn_cast<ELFObjectFile<ELF64LE>>(Bin)) {
    ELFBuilder<ELF64LE> Builder(*o, *Obj);
    Builder.build();
    return Obj;
  } else if (auto *o = dyn_cast<ELFObjectFile<ELF32BE>>(Bin)) {
    ELFBuilder<ELF32BE> Builder(*o, *Obj);
    Builder.build();
    return Obj;
  } else if (auto *o = dyn_cast<ELFObjectFile<ELF64BE>>(Bin)) {
    ELFBuilder<ELF64BE> Builder(*o, *Obj);
    Builder.build();
    return Obj;
  }
  error("Invalid file type");
}

template <class ELFT> void ELFWriter<ELFT>::writeEhdr() {
  uint8_t *B = Buf.getBufferStart();
  Elf_Ehdr &Ehdr = *reinterpret_cast<Elf_Ehdr *>(B);
  std::copy(Obj.Ident, Obj.Ident + 16, Ehdr.e_ident);
  Ehdr.e_type = Obj.Type;
  Ehdr.e_machine = Obj.Machine;
  Ehdr.e_version = Obj.Version;
  Ehdr.e_entry = Obj.Entry;
  Ehdr.e_phoff = Obj.ProgramHdrSegment.Offset;
  Ehdr.e_flags = Obj.Flags;
  Ehdr.e_ehsize = sizeof(Elf_Ehdr);
  Ehdr.e_phentsize = sizeof(Elf_Phdr);
  Ehdr.e_phnum = size(Obj.segments());
  Ehdr.e_shentsize = sizeof(Elf_Shdr);
  if (WriteSectionHeaders) {
    Ehdr.e_shoff = Obj.SHOffset;
    // """
    // If the number of sections is greater than or equal to
    // SHN_LORESERVE (0xff00), this member has the value zero and the actual
    // number of section header table entries is contained in the sh_size field
    // of the section header at index 0.
    // """
    auto Shnum = size(Obj.sections()) + 1;
    if (Shnum >= SHN_LORESERVE)
      Ehdr.e_shnum = 0;
    else
      Ehdr.e_shnum = Shnum;
    // """
    // If the section name string table section index is greater than or equal
    // to SHN_LORESERVE (0xff00), this member has the value SHN_XINDEX (0xffff)
    // and the actual index of the section name string table section is
    // contained in the sh_link field of the section header at index 0.
    // """
    if (Obj.SectionNames->Index >= SHN_LORESERVE)
      Ehdr.e_shstrndx = SHN_XINDEX;
    else
      Ehdr.e_shstrndx = Obj.SectionNames->Index;
  } else {
    Ehdr.e_shoff = 0;
    Ehdr.e_shnum = 0;
    Ehdr.e_shstrndx = 0;
  }
}

template <class ELFT> void ELFWriter<ELFT>::writePhdrs() {
  for (auto &Seg : Obj.segments())
    writePhdr(Seg);
}

template <class ELFT> void ELFWriter<ELFT>::writeShdrs() {
  uint8_t *B = Buf.getBufferStart() + Obj.SHOffset;
  // This reference serves to write the dummy section header at the begining
  // of the file. It is not used for anything else
  Elf_Shdr &Shdr = *reinterpret_cast<Elf_Shdr *>(B);
  Shdr.sh_name = 0;
  Shdr.sh_type = SHT_NULL;
  Shdr.sh_flags = 0;
  Shdr.sh_addr = 0;
  Shdr.sh_offset = 0;
  // See writeEhdr for why we do this.
  uint64_t Shnum = size(Obj.sections()) + 1;
  if (Shnum >= SHN_LORESERVE)
    Shdr.sh_size = Shnum;
  else
    Shdr.sh_size = 0;
  // See writeEhdr for why we do this.
  if (Obj.SectionNames != nullptr && Obj.SectionNames->Index >= SHN_LORESERVE)
    Shdr.sh_link = Obj.SectionNames->Index;
  else
    Shdr.sh_link = 0;
  Shdr.sh_info = 0;
  Shdr.sh_addralign = 0;
  Shdr.sh_entsize = 0;

  for (auto &Sec : Obj.sections())
    writeShdr(Sec);
}

template <class ELFT> void ELFWriter<ELFT>::writeSectionData() {
  for (auto &Sec : Obj.sections())
    Sec.accept(*SecWriter);
}

void Object::removeSections(std::function<bool(const SectionBase &)> ToRemove) {

  auto Iter = std::stable_partition(
      std::begin(Sections), std::end(Sections), [=](const SecPtr &Sec) {
        if (ToRemove(*Sec))
          return false;
        if (auto RelSec = dyn_cast<RelocationSectionBase>(Sec.get())) {
          if (auto ToRelSec = RelSec->getSection())
            return !ToRemove(*ToRelSec);
        }
        return true;
      });
  if (SymbolTable != nullptr && ToRemove(*SymbolTable))
    SymbolTable = nullptr;
  if (SectionNames != nullptr && ToRemove(*SectionNames))
    SectionNames = nullptr;
  if (SectionIndexTable != nullptr && ToRemove(*SectionIndexTable))
    SectionIndexTable = nullptr;
  // Now make sure there are no remaining references to the sections that will
  // be removed. Sometimes it is impossible to remove a reference so we emit
  // an error here instead.
  for (auto &RemoveSec : make_range(Iter, std::end(Sections))) {
    for (auto &Segment : Segments)
      Segment->removeSection(RemoveSec.get());
    for (auto &KeepSec : make_range(std::begin(Sections), Iter))
      KeepSec->removeSectionReferences(RemoveSec.get());
  }
  // Now finally get rid of them all togethor.
  Sections.erase(Iter, std::end(Sections));
}

void Object::removeSymbols(function_ref<bool(const Symbol &)> ToRemove) {
  if (!SymbolTable)
    return;

  for (const SecPtr &Sec : Sections)
    Sec->removeSymbols(ToRemove);
}

void Object::sortSections() {
  // Put all sections in offset order. Maintain the ordering as closely as
  // possible while meeting that demand however.
  auto CompareSections = [](const SecPtr &A, const SecPtr &B) {
    return A->OriginalOffset < B->OriginalOffset;
  };
  std::stable_sort(std::begin(this->Sections), std::end(this->Sections),
                   CompareSections);
}

static uint64_t alignToAddr(uint64_t Offset, uint64_t Addr, uint64_t Align) {
  // Calculate Diff such that (Offset + Diff) & -Align == Addr & -Align.
  if (Align == 0)
    Align = 1;
  auto Diff =
      static_cast<int64_t>(Addr % Align) - static_cast<int64_t>(Offset % Align);
  // We only want to add to Offset, however, so if Diff < 0 we can add Align and
  // (Offset + Diff) & -Align == Addr & -Align will still hold.
  if (Diff < 0)
    Diff += Align;
  return Offset + Diff;
}

// Orders segments such that if x = y->ParentSegment then y comes before x.
static void OrderSegments(std::vector<Segment *> &Segments) {
  std::stable_sort(std::begin(Segments), std::end(Segments),
                   compareSegmentsByOffset);
}

// This function finds a consistent layout for a list of segments starting from
// an Offset. It assumes that Segments have been sorted by OrderSegments and
// returns an Offset one past the end of the last segment.
static uint64_t LayoutSegments(std::vector<Segment *> &Segments,
                               uint64_t Offset) {
  assert(std::is_sorted(std::begin(Segments), std::end(Segments),
                        compareSegmentsByOffset));
  // The only way a segment should move is if a section was between two
  // segments and that section was removed. If that section isn't in a segment
  // then it's acceptable, but not ideal, to simply move it to after the
  // segments. So we can simply layout segments one after the other accounting
  // for alignment.
  for (auto &Segment : Segments) {
    // We assume that segments have been ordered by OriginalOffset and Index
    // such that a parent segment will always come before a child segment in
    // OrderedSegments. This means that the Offset of the ParentSegment should
    // already be set and we can set our offset relative to it.
    if (Segment->ParentSegment != nullptr) {
      auto Parent = Segment->ParentSegment;
      Segment->Offset =
          Parent->Offset + Segment->OriginalOffset - Parent->OriginalOffset;
    } else {
      Offset = alignToAddr(Offset, Segment->VAddr, Segment->Align);
      Segment->Offset = Offset;
    }
    Offset = std::max(Offset, Segment->Offset + Segment->FileSize);
  }
  return Offset;
}

// This function finds a consistent layout for a list of sections. It assumes
// that the ->ParentSegment of each section has already been laid out. The
// supplied starting Offset is used for the starting offset of any section that
// does not have a ParentSegment. It returns either the offset given if all
// sections had a ParentSegment or an offset one past the last section if there
// was a section that didn't have a ParentSegment.
template <class Range>
static uint64_t LayoutSections(Range Sections, uint64_t Offset) {
  // Now the offset of every segment has been set we can assign the offsets
  // of each section. For sections that are covered by a segment we should use
  // the segment's original offset and the section's original offset to compute
  // the offset from the start of the segment. Using the offset from the start
  // of the segment we can assign a new offset to the section. For sections not
  // covered by segments we can just bump Offset to the next valid location.
  uint32_t Index = 1;
  for (auto &Section : Sections) {
    Section.Index = Index++;
    if (Section.ParentSegment != nullptr) {
      auto Segment = *Section.ParentSegment;
      Section.Offset =
          Segment.Offset + (Section.OriginalOffset - Segment.OriginalOffset);
    } else {
      Offset = alignTo(Offset, Section.Align == 0 ? 1 : Section.Align);
      Section.Offset = Offset;
      if (Section.Type != SHT_NOBITS)
        Offset += Section.Size;
    }
  }
  return Offset;
}

template <class ELFT> void ELFWriter<ELFT>::assignOffsets() {
  // We need a temporary list of segments that has a special order to it
  // so that we know that anytime ->ParentSegment is set that segment has
  // already had its offset properly set.
  std::vector<Segment *> OrderedSegments;
  for (auto &Segment : Obj.segments())
    OrderedSegments.push_back(&Segment);
  OrderedSegments.push_back(&Obj.ElfHdrSegment);
  OrderedSegments.push_back(&Obj.ProgramHdrSegment);
  OrderSegments(OrderedSegments);
  // Offset is used as the start offset of the first segment to be laid out.
  // Since the ELF Header (ElfHdrSegment) must be at the start of the file,
  // we start at offset 0.
  uint64_t Offset = 0;
  Offset = LayoutSegments(OrderedSegments, Offset);
  Offset = LayoutSections(Obj.sections(), Offset);
  // If we need to write the section header table out then we need to align the
  // Offset so that SHOffset is valid.
  if (WriteSectionHeaders)
    Offset = alignTo(Offset, sizeof(typename ELFT::Addr));
  Obj.SHOffset = Offset;
}

template <class ELFT> size_t ELFWriter<ELFT>::totalSize() const {
  // We already have the section header offset so we can calculate the total
  // size by just adding up the size of each section header.
  auto NullSectionSize = WriteSectionHeaders ? sizeof(Elf_Shdr) : 0;
  return Obj.SHOffset + size(Obj.sections()) * sizeof(Elf_Shdr) +
         NullSectionSize;
}

template <class ELFT> void ELFWriter<ELFT>::write() {
  writeEhdr();
  writePhdrs();
  writeSectionData();
  if (WriteSectionHeaders)
    writeShdrs();
  if (auto E = Buf.commit())
    reportError(Buf.getName(), errorToErrorCode(std::move(E)));
}

template <class ELFT> void ELFWriter<ELFT>::finalize() {
  // It could happen that SectionNames has been removed and yet the user wants
  // a section header table output. We need to throw an error if a user tries
  // to do that.
  if (Obj.SectionNames == nullptr && WriteSectionHeaders)
    error("Cannot write section header table because section header string "
          "table was removed.");

  Obj.sortSections();

  // We need to assign indexes before we perform layout because we need to know
  // if we need large indexes or not. We can assign indexes first and check as
  // we go to see if we will actully need large indexes.
  bool NeedsLargeIndexes = false;
  if (size(Obj.sections()) >= SHN_LORESERVE) {
    auto Sections = Obj.sections();
    NeedsLargeIndexes =
        std::any_of(Sections.begin() + SHN_LORESERVE, Sections.end(),
                    [](const SectionBase &Sec) { return Sec.HasSymbol; });
    // TODO: handle case where only one section needs the large index table but
    // only needs it because the large index table hasn't been removed yet.
  }

  if (NeedsLargeIndexes) {
    // This means we definitely need to have a section index table but if we
    // already have one then we should use it instead of making a new one.
    if (Obj.SymbolTable != nullptr && Obj.SectionIndexTable == nullptr) {
      // Addition of a section to the end does not invalidate the indexes of
      // other sections and assigns the correct index to the new section.
      auto &Shndx = Obj.addSection<SectionIndexSection>();
      Obj.SymbolTable->setShndxTable(&Shndx);
      Shndx.setSymTab(Obj.SymbolTable);
    }
  } else {
    // Since we don't need SectionIndexTable we should remove it and all
    // references to it.
    if (Obj.SectionIndexTable != nullptr) {
      Obj.removeSections([this](const SectionBase &Sec) {
        return &Sec == Obj.SectionIndexTable;
      });
    }
  }

  // Make sure we add the names of all the sections. Importantly this must be
  // done after we decide to add or remove SectionIndexes.
  if (Obj.SectionNames != nullptr)
    for (const auto &Section : Obj.sections()) {
      Obj.SectionNames->addString(Section.Name);
    }

  // Before we can prepare for layout the indexes need to be finalized.
  uint64_t Index = 0;
  for (auto &Sec : Obj.sections())
    Sec.Index = Index++;

  // The symbol table does not update all other sections on update. For
  // instance, symbol names are not added as new symbols are added. This means
  // that some sections, like .strtab, don't yet have their final size.
  if (Obj.SymbolTable != nullptr)
    Obj.SymbolTable->prepareForLayout();

  assignOffsets();

  // Finalize SectionNames first so that we can assign name indexes.
  if (Obj.SectionNames != nullptr)
    Obj.SectionNames->finalize();
  // Finally now that all offsets and indexes have been set we can finalize any
  // remaining issues.
  uint64_t Offset = Obj.SHOffset + sizeof(Elf_Shdr);
  for (auto &Section : Obj.sections()) {
    Section.HeaderOffset = Offset;
    Offset += sizeof(Elf_Shdr);
    if (WriteSectionHeaders)
      Section.NameIndex = Obj.SectionNames->findIndex(Section.Name);
    Section.finalize();
  }

  Buf.allocate(totalSize());
  SecWriter = llvm::make_unique<ELFSectionWriter<ELFT>>(Buf);
}

void BinaryWriter::write() {
  for (auto &Section : Obj.sections()) {
    if ((Section.Flags & SHF_ALLOC) == 0)
      continue;
    Section.accept(*SecWriter);
  }
  if (auto E = Buf.commit())
    reportError(Buf.getName(), errorToErrorCode(std::move(E)));
}

void BinaryWriter::finalize() {
  // TODO: Create a filter range to construct OrderedSegments from so that this
  // code can be deduped with assignOffsets above. This should also solve the
  // todo below for LayoutSections.
  // We need a temporary list of segments that has a special order to it
  // so that we know that anytime ->ParentSegment is set that segment has
  // already had it's offset properly set. We only want to consider the segments
  // that will affect layout of allocated sections so we only add those.
  std::vector<Segment *> OrderedSegments;
  for (auto &Section : Obj.sections()) {
    if ((Section.Flags & SHF_ALLOC) != 0 && Section.ParentSegment != nullptr) {
      OrderedSegments.push_back(Section.ParentSegment);
    }
  }

  // For binary output, we're going to use physical addresses instead of
  // virtual addresses, since a binary output is used for cases like ROM
  // loading and physical addresses are intended for ROM loading.
  // However, if no segment has a physical address, we'll fallback to using
  // virtual addresses for all.
  if (std::all_of(std::begin(OrderedSegments), std::end(OrderedSegments),
                  [](const Segment *Segment) { return Segment->PAddr == 0; }))
    for (const auto &Segment : OrderedSegments)
      Segment->PAddr = Segment->VAddr;

  std::stable_sort(std::begin(OrderedSegments), std::end(OrderedSegments),
                   compareSegmentsByPAddr);

  // Because we add a ParentSegment for each section we might have duplicate
  // segments in OrderedSegments. If there were duplicates then LayoutSegments
  // would do very strange things.
  auto End =
      std::unique(std::begin(OrderedSegments), std::end(OrderedSegments));
  OrderedSegments.erase(End, std::end(OrderedSegments));

  uint64_t Offset = 0;

  // Modify the first segment so that there is no gap at the start. This allows
  // our layout algorithm to proceed as expected while not out writing out the
  // gap at the start.
  if (!OrderedSegments.empty()) {
    auto Seg = OrderedSegments[0];
    auto Sec = Seg->firstSection();
    auto Diff = Sec->OriginalOffset - Seg->OriginalOffset;
    Seg->OriginalOffset += Diff;
    // The size needs to be shrunk as well.
    Seg->FileSize -= Diff;
    // The PAddr needs to be increased to remove the gap before the first
    // section.
    Seg->PAddr += Diff;
    uint64_t LowestPAddr = Seg->PAddr;
    for (auto &Segment : OrderedSegments) {
      Segment->Offset = Segment->PAddr - LowestPAddr;
      Offset = std::max(Offset, Segment->Offset + Segment->FileSize);
    }
  }

  // TODO: generalize LayoutSections to take a range. Pass a special range
  // constructed from an iterator that skips values for which a predicate does
  // not hold. Then pass such a range to LayoutSections instead of constructing
  // AllocatedSections here.
  std::vector<SectionBase *> AllocatedSections;
  for (auto &Section : Obj.sections()) {
    if ((Section.Flags & SHF_ALLOC) == 0)
      continue;
    AllocatedSections.push_back(&Section);
  }
  LayoutSections(make_pointee_range(AllocatedSections), Offset);

  // Now that every section has been laid out we just need to compute the total
  // file size. This might not be the same as the offset returned by
  // LayoutSections, because we want to truncate the last segment to the end of
  // its last section, to match GNU objcopy's behaviour.
  TotalSize = 0;
  for (const auto &Section : AllocatedSections) {
    if (Section->Type != SHT_NOBITS)
      TotalSize = std::max(TotalSize, Section->Offset + Section->Size);
  }

  Buf.allocate(TotalSize);
  SecWriter = llvm::make_unique<BinarySectionWriter>(Buf);
}

namespace llvm {

template class ELFBuilder<ELF64LE>;
template class ELFBuilder<ELF64BE>;
template class ELFBuilder<ELF32LE>;
template class ELFBuilder<ELF32BE>;

template class ELFWriter<ELF64LE>;
template class ELFWriter<ELF64BE>;
template class ELFWriter<ELF32LE>;
template class ELFWriter<ELF32BE>;
} // end namespace llvm