summaryrefslogtreecommitdiff
path: root/lib/XRay/Trace.cpp
blob: d2984697c8a9ea251c2de8ebe86ff4d78cff405c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
//===- Trace.cpp - XRay Trace Loading implementation. ---------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// XRay log reader implementation.
//
//===----------------------------------------------------------------------===//
#include "llvm/XRay/Trace.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/DataExtractor.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/XRay/YAMLXRayRecord.h"

using namespace llvm;
using namespace llvm::xray;
using llvm::yaml::Input;

using XRayRecordStorage =
    std::aligned_storage<sizeof(XRayRecord), alignof(XRayRecord)>::type;

// Populates the FileHeader reference by reading the first 32 bytes of the file.
Error readBinaryFormatHeader(StringRef Data, XRayFileHeader &FileHeader) {
  // FIXME: Maybe deduce whether the data is little or big-endian using some
  // magic bytes in the beginning of the file?

  // First 32 bytes of the file will always be the header. We assume a certain
  // format here:
  //
  //   (2)   uint16 : version
  //   (2)   uint16 : type
  //   (4)   uint32 : bitfield
  //   (8)   uint64 : cycle frequency
  //   (16)  -      : padding

  DataExtractor HeaderExtractor(Data, true, 8);
  uint32_t OffsetPtr = 0;
  FileHeader.Version = HeaderExtractor.getU16(&OffsetPtr);
  FileHeader.Type = HeaderExtractor.getU16(&OffsetPtr);
  uint32_t Bitfield = HeaderExtractor.getU32(&OffsetPtr);
  FileHeader.ConstantTSC = Bitfield & 1uL;
  FileHeader.NonstopTSC = Bitfield & 1uL << 1;
  FileHeader.CycleFrequency = HeaderExtractor.getU64(&OffsetPtr);
  std::memcpy(&FileHeader.FreeFormData, Data.bytes_begin() + OffsetPtr, 16);
  if (FileHeader.Version != 1)
    return make_error<StringError>(
        Twine("Unsupported XRay file version: ") + Twine(FileHeader.Version),
        std::make_error_code(std::errc::invalid_argument));
  return Error::success();
}

Error loadNaiveFormatLog(StringRef Data, XRayFileHeader &FileHeader,
                         std::vector<XRayRecord> &Records) {
  // Check that there is at least a header
  if (Data.size() < 32)
    return make_error<StringError>(
        "Not enough bytes for an XRay log.",
        std::make_error_code(std::errc::invalid_argument));

  if (Data.size() - 32 == 0 || Data.size() % 32 != 0)
    return make_error<StringError>(
        "Invalid-sized XRay data.",
        std::make_error_code(std::errc::invalid_argument));

  if (auto E = readBinaryFormatHeader(Data, FileHeader))
    return E;

  // Each record after the header will be 32 bytes, in the following format:
  //
  //   (2)   uint16 : record type
  //   (1)   uint8  : cpu id
  //   (1)   uint8  : type
  //   (4)   sint32 : function id
  //   (8)   uint64 : tsc
  //   (4)   uint32 : thread id
  //   (12)  -      : padding
  for (auto S = Data.drop_front(32); !S.empty(); S = S.drop_front(32)) {
    DataExtractor RecordExtractor(S, true, 8);
    uint32_t OffsetPtr = 0;
    Records.emplace_back();
    auto &Record = Records.back();
    Record.RecordType = RecordExtractor.getU16(&OffsetPtr);
    Record.CPU = RecordExtractor.getU8(&OffsetPtr);
    auto Type = RecordExtractor.getU8(&OffsetPtr);
    switch (Type) {
    case 0:
      Record.Type = RecordTypes::ENTER;
      break;
    case 1:
      Record.Type = RecordTypes::EXIT;
      break;
    default:
      return make_error<StringError>(
          Twine("Unknown record type '") + Twine(int{Type}) + "'",
          std::make_error_code(std::errc::executable_format_error));
    }
    Record.FuncId = RecordExtractor.getSigned(&OffsetPtr, sizeof(int32_t));
    Record.TSC = RecordExtractor.getU64(&OffsetPtr);
    Record.TId = RecordExtractor.getU32(&OffsetPtr);
  }
  return Error::success();
}

/// When reading from a Flight Data Recorder mode log, metadata records are
/// sparse compared to packed function records, so we must maintain state as we
/// read through the sequence of entries. This allows the reader to denormalize
/// the CPUId and Thread Id onto each Function Record and transform delta
/// encoded TSC values into absolute encodings on each record.
struct FDRState {
  uint16_t CPUId;
  uint16_t ThreadId;
  uint64_t BaseTSC;
  /// Encode some of the state transitions for the FDR log reader as explicit
  /// checks. These are expectations for the next Record in the stream.
  enum class Token {
    NEW_BUFFER_RECORD_OR_EOF,
    WALLCLOCK_RECORD,
    NEW_CPU_ID_RECORD,
    FUNCTION_SEQUENCE,
    SCAN_TO_END_OF_THREAD_BUF,
  };
  Token Expects;
  // Each threads buffer may have trailing garbage to scan over, so we track our
  // progress.
  uint64_t CurrentBufferSize;
  uint64_t CurrentBufferConsumed;
};

Twine fdrStateToTwine(const FDRState::Token &state) {
  switch (state) {
  case FDRState::Token::NEW_BUFFER_RECORD_OR_EOF:
    return "NEW_BUFFER_RECORD_OR_EOF";
  case FDRState::Token::WALLCLOCK_RECORD:
    return "WALLCLOCK_RECORD";
  case FDRState::Token::NEW_CPU_ID_RECORD:
    return "NEW_CPU_ID_RECORD";
  case FDRState::Token::FUNCTION_SEQUENCE:
    return "FUNCTION_SEQUENCE";
  case FDRState::Token::SCAN_TO_END_OF_THREAD_BUF:
    return "SCAN_TO_END_OF_THREAD_BUF";
  }
  return "UNKNOWN";
}

/// State transition when a NewBufferRecord is encountered.
Error processFDRNewBufferRecord(FDRState &State, uint8_t RecordFirstByte,
                                DataExtractor &RecordExtractor) {

  if (State.Expects != FDRState::Token::NEW_BUFFER_RECORD_OR_EOF)
    return make_error<StringError>(
        "Malformed log. Read New Buffer record kind out of sequence",
        std::make_error_code(std::errc::executable_format_error));
  uint32_t OffsetPtr = 1; // 1 byte into record.
  State.ThreadId = RecordExtractor.getU16(&OffsetPtr);
  State.Expects = FDRState::Token::WALLCLOCK_RECORD;
  return Error::success();
}

/// State transition when an EndOfBufferRecord is encountered.
Error processFDREndOfBufferRecord(FDRState &State, uint8_t RecordFirstByte,
                                  DataExtractor &RecordExtractor) {
  if (State.Expects == FDRState::Token::NEW_BUFFER_RECORD_OR_EOF)
    return make_error<StringError>(
        "Malformed log. Received EOB message without current buffer.",
        std::make_error_code(std::errc::executable_format_error));
  State.Expects = FDRState::Token::SCAN_TO_END_OF_THREAD_BUF;
  return Error::success();
}

/// State transition when a NewCPUIdRecord is encountered.
Error processFDRNewCPUIdRecord(FDRState &State, uint8_t RecordFirstByte,
                               DataExtractor &RecordExtractor) {
  if (State.Expects != FDRState::Token::FUNCTION_SEQUENCE &&
      State.Expects != FDRState::Token::NEW_CPU_ID_RECORD)
    return make_error<StringError>(
        "Malformed log. Read NewCPUId record kind out of sequence",
        std::make_error_code(std::errc::executable_format_error));
  uint32_t OffsetPtr = 1; // Read starting after the first byte.
  State.CPUId = RecordExtractor.getU16(&OffsetPtr);
  State.BaseTSC = RecordExtractor.getU64(&OffsetPtr);
  State.Expects = FDRState::Token::FUNCTION_SEQUENCE;
  return Error::success();
}

/// State transition when a TSCWrapRecord (overflow detection) is encountered.
Error processFDRTSCWrapRecord(FDRState &State, uint8_t RecordFirstByte,
                              DataExtractor &RecordExtractor) {
  if (State.Expects != FDRState::Token::FUNCTION_SEQUENCE)
    return make_error<StringError>(
        "Malformed log. Read TSCWrap record kind out of sequence",
        std::make_error_code(std::errc::executable_format_error));
  uint32_t OffsetPtr = 1; // Read starting after the first byte.
  State.BaseTSC = RecordExtractor.getU64(&OffsetPtr);
  return Error::success();
}

/// State transition when a WallTimeMarkerRecord is encountered.
Error processFDRWallTimeRecord(FDRState &State, uint8_t RecordFirstByte,
                               DataExtractor &RecordExtractor) {
  if (State.Expects != FDRState::Token::WALLCLOCK_RECORD)
    return make_error<StringError>(
        "Malformed log. Read Wallclock record kind out of sequence",
        std::make_error_code(std::errc::executable_format_error));
  // We don't encode the wall time into any of the records.
  // XRayRecords are concerned with the TSC instead.
  State.Expects = FDRState::Token::NEW_CPU_ID_RECORD;
  return Error::success();
}

/// Advances the state machine for reading the FDR record type by reading one
/// Metadata Record and updating the State appropriately based on the kind of
/// record encountered. The RecordKind is encoded in the first byte of the
/// Record, which the caller should pass in because they have already read it
/// to determine that this is a metadata record as opposed to a function record.
Error processFDRMetadataRecord(FDRState &State, uint8_t RecordFirstByte,
                               DataExtractor &RecordExtractor) {
  // The remaining 7 bits are the RecordKind enum.
  uint8_t RecordKind = RecordFirstByte >> 1;
  switch (RecordKind) {
  case 0: // NewBuffer
    if (auto E =
            processFDRNewBufferRecord(State, RecordFirstByte, RecordExtractor))
      return E;
    break;
  case 1: // EndOfBuffer
    if (auto E = processFDREndOfBufferRecord(State, RecordFirstByte,
                                             RecordExtractor))
      return E;
    break;
  case 2: // NewCPUId
    if (auto E =
            processFDRNewCPUIdRecord(State, RecordFirstByte, RecordExtractor))
      return E;
    break;
  case 3: // TSCWrap
    if (auto E =
            processFDRTSCWrapRecord(State, RecordFirstByte, RecordExtractor))
      return E;
    break;
  case 4: // WallTimeMarker
    if (auto E =
            processFDRWallTimeRecord(State, RecordFirstByte, RecordExtractor))
      return E;
    break;
  default:
    // Widen the record type to uint16_t to prevent conversion to char.
    return make_error<StringError>(
        Twine("Illegal metadata record type: ")
            .concat(Twine(static_cast<unsigned>(RecordKind))),
        std::make_error_code(std::errc::executable_format_error));
  }
  return Error::success();
}

/// Reads a function record from an FDR format log, appending a new XRayRecord
/// to the vector being populated and updating the State with a new value
/// reference value to interpret TSC deltas.
///
/// The XRayRecord constructed includes information from the function record
/// processed here as well as Thread ID and CPU ID formerly extracted into
/// State.
Error processFDRFunctionRecord(FDRState &State, uint8_t RecordFirstByte,
                               DataExtractor &RecordExtractor,
                               std::vector<XRayRecord> &Records) {
  switch (State.Expects) {
  case FDRState::Token::NEW_BUFFER_RECORD_OR_EOF:
    return make_error<StringError>(
        "Malformed log. Received Function Record before new buffer setup.",
        std::make_error_code(std::errc::executable_format_error));
  case FDRState::Token::WALLCLOCK_RECORD:
    return make_error<StringError>(
        "Malformed log. Received Function Record when expecting wallclock.",
        std::make_error_code(std::errc::executable_format_error));
  case FDRState::Token::NEW_CPU_ID_RECORD:
    return make_error<StringError>(
        "Malformed log. Received Function Record before first CPU record.",
        std::make_error_code(std::errc::executable_format_error));
  default:
    Records.emplace_back();
    auto &Record = Records.back();
    Record.RecordType = 0; // Record is type NORMAL.
    // Strip off record type bit and use the next three bits.
    uint8_t RecordType = (RecordFirstByte >> 1) & 0x07;
    switch (RecordType) {
    case static_cast<uint8_t>(RecordTypes::ENTER):
      Record.Type = RecordTypes::ENTER;
      break;
    case static_cast<uint8_t>(RecordTypes::EXIT):
    case 2: // TAIL_EXIT is not yet defined in RecordTypes.
      Record.Type = RecordTypes::EXIT;
      break;
    default:
      // When initializing the error, convert to uint16_t so that the record
      // type isn't interpreted as a char.
      return make_error<StringError>(
          Twine("Illegal function record type: ")
              .concat(Twine(static_cast<unsigned>(RecordType))),
          std::make_error_code(std::errc::executable_format_error));
    }
    Record.CPU = State.CPUId;
    Record.TId = State.ThreadId;
    // Back up to read first 32 bits, including the 8 we pulled RecordType
    // and RecordKind out of. The remaining 28 are FunctionId.
    uint32_t OffsetPtr = 0;
    // Despite function Id being a signed int on XRayRecord,
    // when it is written to an FDR format, the top bits are truncated,
    // so it is effectively an unsigned value. When we shift off the
    // top four bits, we want the shift to be logical, so we read as
    // uint32_t.
    uint32_t FuncIdBitField = RecordExtractor.getU32(&OffsetPtr);
    Record.FuncId = FuncIdBitField >> 4;
    // FunctionRecords have a 32 bit delta from the previous absolute TSC
    // or TSC delta. If this would overflow, we should read a TSCWrap record
    // with an absolute TSC reading.
    uint64_t new_tsc = State.BaseTSC + RecordExtractor.getU32(&OffsetPtr);
    State.BaseTSC = new_tsc;
    Record.TSC = new_tsc;
  }
  return Error::success();
}

/// Reads a log in FDR mode for version 1 of this binary format. FDR mode is
/// defined as part of the compiler-rt project in xray_fdr_logging.h, and such
/// a log consists of the familiar 32 bit XRayHeader, followed by sequences of
/// of interspersed 16 byte Metadata Records and 8 byte Function Records.
///
/// The following is an attempt to document the grammar of the format, which is
/// parsed by this function for little-endian machines. Since the format makes
/// use of BitFields, when we support big-Endian architectures, we will need to
/// adjust not only the endianness parameter to llvm's RecordExtractor, but also
/// the bit twiddling logic, which is consistent with the little-endian
/// convention that BitFields within a struct will first be packed into the
/// least significant bits the address they belong to.
///
/// We expect a format complying with the grammar in the following pseudo-EBNF.
///
/// FDRLog: XRayFileHeader ThreadBuffer*
/// XRayFileHeader: 32 bits to identify the log as FDR with machine metadata.
/// ThreadBuffer: BufSize NewBuffer WallClockTime NewCPUId FunctionSequence EOB
/// BufSize: 8 byte unsigned integer indicating how large the buffer is.
/// NewBuffer: 16 byte metadata record with Thread Id.
/// WallClockTime: 16 byte metadata record with human readable time.
/// NewCPUId: 16 byte metadata record with CPUId and a 64 bit TSC reading.
/// EOB: 16 byte record in a thread buffer plus mem garbage to fill BufSize.
/// FunctionSequence: NewCPUId | TSCWrap | FunctionRecord
/// TSCWrap: 16 byte metadata record with a full 64 bit TSC reading.
/// FunctionRecord: 8 byte record with FunctionId, entry/exit, and TSC delta.
Error loadFDRLog(StringRef Data, XRayFileHeader &FileHeader,
                 std::vector<XRayRecord> &Records) {
  if (Data.size() < 32)
    return make_error<StringError>(
        "Not enough bytes for an XRay log.",
        std::make_error_code(std::errc::invalid_argument));

  // For an FDR log, there are records sized 16 and 8 bytes.
  // There actually may be no records if no non-trivial functions are
  // instrumented.
  if (Data.size() % 8 != 0)
    return make_error<StringError>(
        "Invalid-sized XRay data.",
        std::make_error_code(std::errc::invalid_argument));

  if (auto E = readBinaryFormatHeader(Data, FileHeader))
    return E;

  uint64_t BufferSize = 0;
  {
    StringRef ExtraDataRef(FileHeader.FreeFormData, 16);
    DataExtractor ExtraDataExtractor(ExtraDataRef, true, 8);
    uint32_t ExtraDataOffset = 0;
    BufferSize = ExtraDataExtractor.getU64(&ExtraDataOffset);
  }
  FDRState State{0,          0, 0, FDRState::Token::NEW_BUFFER_RECORD_OR_EOF,
                 BufferSize, 0};
  // RecordSize will tell the loop how far to seek ahead based on the record
  // type that we have just read.
  size_t RecordSize = 0;
  for (auto S = Data.drop_front(32); !S.empty(); S = S.drop_front(RecordSize)) {
    DataExtractor RecordExtractor(S, true, 8);
    uint32_t OffsetPtr = 0;
    if (State.Expects == FDRState::Token::SCAN_TO_END_OF_THREAD_BUF) {
      RecordSize = State.CurrentBufferSize - State.CurrentBufferConsumed;
      if (S.size() < State.CurrentBufferSize - State.CurrentBufferConsumed) {
        return make_error<StringError>(
            Twine("Incomplete thread buffer. Expected ") +
                Twine(State.CurrentBufferSize - State.CurrentBufferConsumed) +
                " remaining bytes but found " + Twine(S.size()),
            make_error_code(std::errc::invalid_argument));
      }
      State.CurrentBufferConsumed = 0;
      State.Expects = FDRState::Token::NEW_BUFFER_RECORD_OR_EOF;
      continue;
    }
    uint8_t BitField = RecordExtractor.getU8(&OffsetPtr);
    bool isMetadataRecord = BitField & 0x01uL;
    if (isMetadataRecord) {
      RecordSize = 16;
      if (auto E = processFDRMetadataRecord(State, BitField, RecordExtractor))
        return E;
      State.CurrentBufferConsumed += RecordSize;
    } else { // Process Function Record
      RecordSize = 8;
      if (auto E = processFDRFunctionRecord(State, BitField, RecordExtractor,
                                            Records))
        return E;
      State.CurrentBufferConsumed += RecordSize;
    }
  }
  // There are two conditions
  if (State.Expects != FDRState::Token::NEW_BUFFER_RECORD_OR_EOF &&
      !(State.Expects == FDRState::Token::SCAN_TO_END_OF_THREAD_BUF &&
        State.CurrentBufferSize == State.CurrentBufferConsumed))
    return make_error<StringError>(
        Twine("Encountered EOF with unexpected state expectation ") +
            fdrStateToTwine(State.Expects) +
            ". Remaining expected bytes in thread buffer total " +
            Twine(State.CurrentBufferSize - State.CurrentBufferConsumed),
        std::make_error_code(std::errc::executable_format_error));

  return Error::success();
}

Error loadYAMLLog(StringRef Data, XRayFileHeader &FileHeader,
                  std::vector<XRayRecord> &Records) {
  // Load the documents from the MappedFile.
  YAMLXRayTrace Trace;
  Input In(Data);
  In >> Trace;
  if (In.error())
    return make_error<StringError>("Failed loading YAML Data.", In.error());

  FileHeader.Version = Trace.Header.Version;
  FileHeader.Type = Trace.Header.Type;
  FileHeader.ConstantTSC = Trace.Header.ConstantTSC;
  FileHeader.NonstopTSC = Trace.Header.NonstopTSC;
  FileHeader.CycleFrequency = Trace.Header.CycleFrequency;

  if (FileHeader.Version != 1)
    return make_error<StringError>(
        Twine("Unsupported XRay file version: ") + Twine(FileHeader.Version),
        std::make_error_code(std::errc::invalid_argument));

  Records.clear();
  std::transform(Trace.Records.begin(), Trace.Records.end(),
                 std::back_inserter(Records), [&](const YAMLXRayRecord &R) {
                   return XRayRecord{R.RecordType, R.CPU, R.Type,
                                     R.FuncId,     R.TSC, R.TId};
                 });
  return Error::success();
}

Expected<Trace> llvm::xray::loadTraceFile(StringRef Filename, bool Sort) {
  int Fd;
  if (auto EC = sys::fs::openFileForRead(Filename, Fd)) {
    return make_error<StringError>(
        Twine("Cannot read log from '") + Filename + "'", EC);
  }

  // Attempt to get the filesize.
  uint64_t FileSize;
  if (auto EC = sys::fs::file_size(Filename, FileSize)) {
    return make_error<StringError>(
        Twine("Cannot read log from '") + Filename + "'", EC);
  }
  if (FileSize < 4) {
    return make_error<StringError>(
        Twine("File '") + Filename + "' too small for XRay.",
        std::make_error_code(std::errc::executable_format_error));
  }

  // Attempt to mmap the file.
  std::error_code EC;
  sys::fs::mapped_file_region MappedFile(
      Fd, sys::fs::mapped_file_region::mapmode::readonly, FileSize, 0, EC);
  if (EC) {
    return make_error<StringError>(
        Twine("Cannot read log from '") + Filename + "'", EC);
  }

  // Attempt to detect the file type using file magic. We have a slight bias
  // towards the binary format, and we do this by making sure that the first 4
  // bytes of the binary file is some combination of the following byte
  // patterns:
  //
  //   0x0001 0x0000 - version 1, "naive" format
  //   0x0001 0x0001 - version 1, "flight data recorder" format
  //
  // YAML files dont' typically have those first four bytes as valid text so we
  // try loading assuming YAML if we don't find these bytes.
  //
  // Only if we can't load either the binary or the YAML format will we yield an
  // error.
  StringRef Magic(MappedFile.data(), 4);
  DataExtractor HeaderExtractor(Magic, true, 8);
  uint32_t OffsetPtr = 0;
  uint16_t Version = HeaderExtractor.getU16(&OffsetPtr);
  uint16_t Type = HeaderExtractor.getU16(&OffsetPtr);

  enum BinaryFormatType { NAIVE_FORMAT = 0, FLIGHT_DATA_RECORDER_FORMAT = 1 };

  Trace T;
  if (Version == 1 && Type == NAIVE_FORMAT) {
    if (auto E =
            loadNaiveFormatLog(StringRef(MappedFile.data(), MappedFile.size()),
                               T.FileHeader, T.Records))
      return std::move(E);
  } else if (Version == 1 && Type == FLIGHT_DATA_RECORDER_FORMAT) {
    if (auto E = loadFDRLog(StringRef(MappedFile.data(), MappedFile.size()),
                            T.FileHeader, T.Records))
      return std::move(E);
  } else {
    if (auto E = loadYAMLLog(StringRef(MappedFile.data(), MappedFile.size()),
                             T.FileHeader, T.Records))
      return std::move(E);
  }

  if (Sort)
    std::sort(T.Records.begin(), T.Records.end(),
              [&](const XRayRecord &L, const XRayRecord &R) {
                return L.TSC < R.TSC;
              });

  return std::move(T);
}