summaryrefslogtreecommitdiff
path: root/lib/Transforms/Scalar/GVNHoist.cpp
blob: 026fab5dbd3bbd7e2225786835438887562e5018 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
//===- GVNHoist.cpp - Hoist scalar and load expressions -------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass hoists expressions from branches to a common dominator. It uses
// GVN (global value numbering) to discover expressions computing the same
// values. The primary goals of code-hoisting are:
// 1. To reduce the code size.
// 2. In some cases reduce critical path (by exposing more ILP).
//
// The algorithm factors out the reachability of values such that multiple
// queries to find reachability of values are fast. This is based on finding the
// ANTIC points in the CFG which do not change during hoisting. The ANTIC points
// are basically the dominance-frontiers in the inverse graph. So we introduce a
// data structure (CHI nodes) to keep track of values flowing out of a basic
// block. We only do this for values with multiple occurrences in the function
// as they are the potential hoistable candidates. This approach allows us to
// hoist instructions to a basic block with more than two successors, as well as
// deal with infinite loops in a trivial way.
//
// Limitations: This pass does not hoist fully redundant expressions because
// they are already handled by GVN-PRE. It is advisable to run gvn-hoist before
// and after gvn-pre because gvn-pre creates opportunities for more instructions
// to be hoisted.
//
// Hoisting may affect the performance in some cases. To mitigate that, hoisting
// is disabled in the following cases.
// 1. Scalars across calls.
// 2. geps when corresponding load/store cannot be hoisted.
//===----------------------------------------------------------------------===//

#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/IteratedDominanceFrontier.h"
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
#include "llvm/Analysis/MemorySSA.h"
#include "llvm/Analysis/MemorySSAUpdater.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Scalar/GVN.h"
#include "llvm/Transforms/Utils/Local.h"
#include <algorithm>
#include <cassert>
#include <iterator>
#include <memory>
#include <utility>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "gvn-hoist"

STATISTIC(NumHoisted, "Number of instructions hoisted");
STATISTIC(NumRemoved, "Number of instructions removed");
STATISTIC(NumLoadsHoisted, "Number of loads hoisted");
STATISTIC(NumLoadsRemoved, "Number of loads removed");
STATISTIC(NumStoresHoisted, "Number of stores hoisted");
STATISTIC(NumStoresRemoved, "Number of stores removed");
STATISTIC(NumCallsHoisted, "Number of calls hoisted");
STATISTIC(NumCallsRemoved, "Number of calls removed");

static cl::opt<int>
    MaxHoistedThreshold("gvn-max-hoisted", cl::Hidden, cl::init(-1),
                        cl::desc("Max number of instructions to hoist "
                                 "(default unlimited = -1)"));

static cl::opt<int> MaxNumberOfBBSInPath(
    "gvn-hoist-max-bbs", cl::Hidden, cl::init(4),
    cl::desc("Max number of basic blocks on the path between "
             "hoisting locations (default = 4, unlimited = -1)"));

static cl::opt<int> MaxDepthInBB(
    "gvn-hoist-max-depth", cl::Hidden, cl::init(100),
    cl::desc("Hoist instructions from the beginning of the BB up to the "
             "maximum specified depth (default = 100, unlimited = -1)"));

static cl::opt<int>
    MaxChainLength("gvn-hoist-max-chain-length", cl::Hidden, cl::init(10),
                   cl::desc("Maximum length of dependent chains to hoist "
                            "(default = 10, unlimited = -1)"));

namespace llvm {

using BBSideEffectsSet = DenseMap<const BasicBlock *, bool>;
using SmallVecInsn = SmallVector<Instruction *, 4>;
using SmallVecImplInsn = SmallVectorImpl<Instruction *>;

// Each element of a hoisting list contains the basic block where to hoist and
// a list of instructions to be hoisted.
using HoistingPointInfo = std::pair<BasicBlock *, SmallVecInsn>;

using HoistingPointList = SmallVector<HoistingPointInfo, 4>;

// A map from a pair of VNs to all the instructions with those VNs.
using VNType = std::pair<unsigned, unsigned>;

using VNtoInsns = DenseMap<VNType, SmallVector<Instruction *, 4>>;

// CHI keeps information about values flowing out of a basic block.  It is
// similar to PHI but in the inverse graph, and used for outgoing values on each
// edge. For conciseness, it is computed only for instructions with multiple
// occurrences in the CFG because they are the only hoistable candidates.
//     A (CHI[{V, B, I1}, {V, C, I2}]
//  /     \
// /       \
// B(I1)  C (I2)
// The Value number for both I1 and I2 is V, the CHI node will save the
// instruction as well as the edge where the value is flowing to.
struct CHIArg {
  VNType VN;

  // Edge destination (shows the direction of flow), may not be where the I is.
  BasicBlock *Dest;

  // The instruction (VN) which uses the values flowing out of CHI.
  Instruction *I;

  bool operator==(const CHIArg &A) { return VN == A.VN; }
  bool operator!=(const CHIArg &A) { return !(*this == A); }
};

using CHIIt = SmallVectorImpl<CHIArg>::iterator;
using CHIArgs = iterator_range<CHIIt>;
using OutValuesType = DenseMap<BasicBlock *, SmallVector<CHIArg, 2>>;
using InValuesType =
    DenseMap<BasicBlock *, SmallVector<std::pair<VNType, Instruction *>, 2>>;

// An invalid value number Used when inserting a single value number into
// VNtoInsns.
enum : unsigned { InvalidVN = ~2U };

// Records all scalar instructions candidate for code hoisting.
class InsnInfo {
  VNtoInsns VNtoScalars;

public:
  // Inserts I and its value number in VNtoScalars.
  void insert(Instruction *I, GVN::ValueTable &VN) {
    // Scalar instruction.
    unsigned V = VN.lookupOrAdd(I);
    VNtoScalars[{V, InvalidVN}].push_back(I);
  }

  const VNtoInsns &getVNTable() const { return VNtoScalars; }
};

// Records all load instructions candidate for code hoisting.
class LoadInfo {
  VNtoInsns VNtoLoads;

public:
  // Insert Load and the value number of its memory address in VNtoLoads.
  void insert(LoadInst *Load, GVN::ValueTable &VN) {
    if (Load->isSimple()) {
      unsigned V = VN.lookupOrAdd(Load->getPointerOperand());
      VNtoLoads[{V, InvalidVN}].push_back(Load);
    }
  }

  const VNtoInsns &getVNTable() const { return VNtoLoads; }
};

// Records all store instructions candidate for code hoisting.
class StoreInfo {
  VNtoInsns VNtoStores;

public:
  // Insert the Store and a hash number of the store address and the stored
  // value in VNtoStores.
  void insert(StoreInst *Store, GVN::ValueTable &VN) {
    if (!Store->isSimple())
      return;
    // Hash the store address and the stored value.
    Value *Ptr = Store->getPointerOperand();
    Value *Val = Store->getValueOperand();
    VNtoStores[{VN.lookupOrAdd(Ptr), VN.lookupOrAdd(Val)}].push_back(Store);
  }

  const VNtoInsns &getVNTable() const { return VNtoStores; }
};

// Records all call instructions candidate for code hoisting.
class CallInfo {
  VNtoInsns VNtoCallsScalars;
  VNtoInsns VNtoCallsLoads;
  VNtoInsns VNtoCallsStores;

public:
  // Insert Call and its value numbering in one of the VNtoCalls* containers.
  void insert(CallInst *Call, GVN::ValueTable &VN) {
    // A call that doesNotAccessMemory is handled as a Scalar,
    // onlyReadsMemory will be handled as a Load instruction,
    // all other calls will be handled as stores.
    unsigned V = VN.lookupOrAdd(Call);
    auto Entry = std::make_pair(V, InvalidVN);

    if (Call->doesNotAccessMemory())
      VNtoCallsScalars[Entry].push_back(Call);
    else if (Call->onlyReadsMemory())
      VNtoCallsLoads[Entry].push_back(Call);
    else
      VNtoCallsStores[Entry].push_back(Call);
  }

  const VNtoInsns &getScalarVNTable() const { return VNtoCallsScalars; }
  const VNtoInsns &getLoadVNTable() const { return VNtoCallsLoads; }
  const VNtoInsns &getStoreVNTable() const { return VNtoCallsStores; }
};

static void combineKnownMetadata(Instruction *ReplInst, Instruction *I) {
  static const unsigned KnownIDs[] = {
      LLVMContext::MD_tbaa,           LLVMContext::MD_alias_scope,
      LLVMContext::MD_noalias,        LLVMContext::MD_range,
      LLVMContext::MD_fpmath,         LLVMContext::MD_invariant_load,
      LLVMContext::MD_invariant_group};
  combineMetadata(ReplInst, I, KnownIDs);
}

// This pass hoists common computations across branches sharing common
// dominator. The primary goal is to reduce the code size, and in some
// cases reduce critical path (by exposing more ILP).
class GVNHoist {
public:
  GVNHoist(DominatorTree *DT, PostDominatorTree *PDT, AliasAnalysis *AA,
           MemoryDependenceResults *MD, MemorySSA *MSSA)
      : DT(DT), PDT(PDT), AA(AA), MD(MD), MSSA(MSSA),
        MSSAUpdater(llvm::make_unique<MemorySSAUpdater>(MSSA)) {}

  bool run(Function &F) {
    NumFuncArgs = F.arg_size();
    VN.setDomTree(DT);
    VN.setAliasAnalysis(AA);
    VN.setMemDep(MD);
    bool Res = false;
    // Perform DFS Numbering of instructions.
    unsigned BBI = 0;
    for (const BasicBlock *BB : depth_first(&F.getEntryBlock())) {
      DFSNumber[BB] = ++BBI;
      unsigned I = 0;
      for (auto &Inst : *BB)
        DFSNumber[&Inst] = ++I;
    }

    int ChainLength = 0;

    // FIXME: use lazy evaluation of VN to avoid the fix-point computation.
    while (true) {
      if (MaxChainLength != -1 && ++ChainLength >= MaxChainLength)
        return Res;

      auto HoistStat = hoistExpressions(F);
      if (HoistStat.first + HoistStat.second == 0)
        return Res;

      if (HoistStat.second > 0)
        // To address a limitation of the current GVN, we need to rerun the
        // hoisting after we hoisted loads or stores in order to be able to
        // hoist all scalars dependent on the hoisted ld/st.
        VN.clear();

      Res = true;
    }

    return Res;
  }

  // Copied from NewGVN.cpp
  // This function provides global ranking of operations so that we can place
  // them in a canonical order.  Note that rank alone is not necessarily enough
  // for a complete ordering, as constants all have the same rank.  However,
  // generally, we will simplify an operation with all constants so that it
  // doesn't matter what order they appear in.
  unsigned int rank(const Value *V) const {
    // Prefer constants to undef to anything else
    // Undef is a constant, have to check it first.
    // Prefer smaller constants to constantexprs
    if (isa<ConstantExpr>(V))
      return 2;
    if (isa<UndefValue>(V))
      return 1;
    if (isa<Constant>(V))
      return 0;
    else if (auto *A = dyn_cast<Argument>(V))
      return 3 + A->getArgNo();

    // Need to shift the instruction DFS by number of arguments + 3 to account
    // for the constant and argument ranking above.
    auto Result = DFSNumber.lookup(V);
    if (Result > 0)
      return 4 + NumFuncArgs + Result;
    // Unreachable or something else, just return a really large number.
    return ~0;
  }

private:
  GVN::ValueTable VN;
  DominatorTree *DT;
  PostDominatorTree *PDT;
  AliasAnalysis *AA;
  MemoryDependenceResults *MD;
  MemorySSA *MSSA;
  std::unique_ptr<MemorySSAUpdater> MSSAUpdater;
  DenseMap<const Value *, unsigned> DFSNumber;
  BBSideEffectsSet BBSideEffects;
  DenseSet<const BasicBlock *> HoistBarrier;
  SmallVector<BasicBlock *, 32> IDFBlocks;
  unsigned NumFuncArgs;
  const bool HoistingGeps = false;

  enum InsKind { Unknown, Scalar, Load, Store };

  // Return true when there are exception handling in BB.
  bool hasEH(const BasicBlock *BB) {
    auto It = BBSideEffects.find(BB);
    if (It != BBSideEffects.end())
      return It->second;

    if (BB->isEHPad() || BB->hasAddressTaken()) {
      BBSideEffects[BB] = true;
      return true;
    }

    if (BB->getTerminator()->mayThrow()) {
      BBSideEffects[BB] = true;
      return true;
    }

    BBSideEffects[BB] = false;
    return false;
  }

  // Return true when a successor of BB dominates A.
  bool successorDominate(const BasicBlock *BB, const BasicBlock *A) {
    for (const BasicBlock *Succ : BB->getTerminator()->successors())
      if (DT->dominates(Succ, A))
        return true;

    return false;
  }

  // Return true when I1 appears before I2 in the instructions of BB.
  bool firstInBB(const Instruction *I1, const Instruction *I2) {
    assert(I1->getParent() == I2->getParent());
    unsigned I1DFS = DFSNumber.lookup(I1);
    unsigned I2DFS = DFSNumber.lookup(I2);
    assert(I1DFS && I2DFS);
    return I1DFS < I2DFS;
  }

  // Return true when there are memory uses of Def in BB.
  bool hasMemoryUse(const Instruction *NewPt, MemoryDef *Def,
                    const BasicBlock *BB) {
    const MemorySSA::AccessList *Acc = MSSA->getBlockAccesses(BB);
    if (!Acc)
      return false;

    Instruction *OldPt = Def->getMemoryInst();
    const BasicBlock *OldBB = OldPt->getParent();
    const BasicBlock *NewBB = NewPt->getParent();
    bool ReachedNewPt = false;

    for (const MemoryAccess &MA : *Acc)
      if (const MemoryUse *MU = dyn_cast<MemoryUse>(&MA)) {
        Instruction *Insn = MU->getMemoryInst();

        // Do not check whether MU aliases Def when MU occurs after OldPt.
        if (BB == OldBB && firstInBB(OldPt, Insn))
          break;

        // Do not check whether MU aliases Def when MU occurs before NewPt.
        if (BB == NewBB) {
          if (!ReachedNewPt) {
            if (firstInBB(Insn, NewPt))
              continue;
            ReachedNewPt = true;
          }
        }
        if (MemorySSAUtil::defClobbersUseOrDef(Def, MU, *AA))
          return true;
      }

    return false;
  }

  bool hasEHhelper(const BasicBlock *BB, const BasicBlock *SrcBB,
                   int &NBBsOnAllPaths) {
    // Stop walk once the limit is reached.
    if (NBBsOnAllPaths == 0)
      return true;

    // Impossible to hoist with exceptions on the path.
    if (hasEH(BB))
      return true;

    // No such instruction after HoistBarrier in a basic block was
    // selected for hoisting so instructions selected within basic block with
    // a hoist barrier can be hoisted.
    if ((BB != SrcBB) && HoistBarrier.count(BB))
      return true;

    return false;
  }

  // Return true when there are exception handling or loads of memory Def
  // between Def and NewPt.  This function is only called for stores: Def is
  // the MemoryDef of the store to be hoisted.

  // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and
  // return true when the counter NBBsOnAllPaths reaces 0, except when it is
  // initialized to -1 which is unlimited.
  bool hasEHOrLoadsOnPath(const Instruction *NewPt, MemoryDef *Def,
                          int &NBBsOnAllPaths) {
    const BasicBlock *NewBB = NewPt->getParent();
    const BasicBlock *OldBB = Def->getBlock();
    assert(DT->dominates(NewBB, OldBB) && "invalid path");
    assert(DT->dominates(Def->getDefiningAccess()->getBlock(), NewBB) &&
           "def does not dominate new hoisting point");

    // Walk all basic blocks reachable in depth-first iteration on the inverse
    // CFG from OldBB to NewBB. These blocks are all the blocks that may be
    // executed between the execution of NewBB and OldBB. Hoisting an expression
    // from OldBB into NewBB has to be safe on all execution paths.
    for (auto I = idf_begin(OldBB), E = idf_end(OldBB); I != E;) {
      const BasicBlock *BB = *I;
      if (BB == NewBB) {
        // Stop traversal when reaching HoistPt.
        I.skipChildren();
        continue;
      }

      if (hasEHhelper(BB, OldBB, NBBsOnAllPaths))
        return true;

      // Check that we do not move a store past loads.
      if (hasMemoryUse(NewPt, Def, BB))
        return true;

      // -1 is unlimited number of blocks on all paths.
      if (NBBsOnAllPaths != -1)
        --NBBsOnAllPaths;

      ++I;
    }

    return false;
  }

  // Return true when there are exception handling between HoistPt and BB.
  // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and
  // return true when the counter NBBsOnAllPaths reaches 0, except when it is
  // initialized to -1 which is unlimited.
  bool hasEHOnPath(const BasicBlock *HoistPt, const BasicBlock *SrcBB,
                   int &NBBsOnAllPaths) {
    assert(DT->dominates(HoistPt, SrcBB) && "Invalid path");

    // Walk all basic blocks reachable in depth-first iteration on
    // the inverse CFG from BBInsn to NewHoistPt. These blocks are all the
    // blocks that may be executed between the execution of NewHoistPt and
    // BBInsn. Hoisting an expression from BBInsn into NewHoistPt has to be safe
    // on all execution paths.
    for (auto I = idf_begin(SrcBB), E = idf_end(SrcBB); I != E;) {
      const BasicBlock *BB = *I;
      if (BB == HoistPt) {
        // Stop traversal when reaching NewHoistPt.
        I.skipChildren();
        continue;
      }

      if (hasEHhelper(BB, SrcBB, NBBsOnAllPaths))
        return true;

      // -1 is unlimited number of blocks on all paths.
      if (NBBsOnAllPaths != -1)
        --NBBsOnAllPaths;

      ++I;
    }

    return false;
  }

  // Return true when it is safe to hoist a memory load or store U from OldPt
  // to NewPt.
  bool safeToHoistLdSt(const Instruction *NewPt, const Instruction *OldPt,
                       MemoryUseOrDef *U, InsKind K, int &NBBsOnAllPaths) {
    // In place hoisting is safe.
    if (NewPt == OldPt)
      return true;

    const BasicBlock *NewBB = NewPt->getParent();
    const BasicBlock *OldBB = OldPt->getParent();
    const BasicBlock *UBB = U->getBlock();

    // Check for dependences on the Memory SSA.
    MemoryAccess *D = U->getDefiningAccess();
    BasicBlock *DBB = D->getBlock();
    if (DT->properlyDominates(NewBB, DBB))
      // Cannot move the load or store to NewBB above its definition in DBB.
      return false;

    if (NewBB == DBB && !MSSA->isLiveOnEntryDef(D))
      if (auto *UD = dyn_cast<MemoryUseOrDef>(D))
        if (firstInBB(NewPt, UD->getMemoryInst()))
          // Cannot move the load or store to NewPt above its definition in D.
          return false;

    // Check for unsafe hoistings due to side effects.
    if (K == InsKind::Store) {
      if (hasEHOrLoadsOnPath(NewPt, dyn_cast<MemoryDef>(U), NBBsOnAllPaths))
        return false;
    } else if (hasEHOnPath(NewBB, OldBB, NBBsOnAllPaths))
      return false;

    if (UBB == NewBB) {
      if (DT->properlyDominates(DBB, NewBB))
        return true;
      assert(UBB == DBB);
      assert(MSSA->locallyDominates(D, U));
    }

    // No side effects: it is safe to hoist.
    return true;
  }

  // Return true when it is safe to hoist scalar instructions from all blocks in
  // WL to HoistBB.
  bool safeToHoistScalar(const BasicBlock *HoistBB, const BasicBlock *BB,
                         int &NBBsOnAllPaths) {
    return !hasEHOnPath(HoistBB, BB, NBBsOnAllPaths);
  }

  // In the inverse CFG, the dominance frontier of basic block (BB) is the
  // point where ANTIC needs to be computed for instructions which are going
  // to be hoisted. Since this point does not change during gvn-hoist,
  // we compute it only once (on demand).
  // The ides is inspired from:
  // "Partial Redundancy Elimination in SSA Form"
  // ROBERT KENNEDY, SUN CHAN, SHIN-MING LIU, RAYMOND LO, PENG TU and FRED CHOW
  // They use similar idea in the forward graph to to find fully redundant and
  // partially redundant expressions, here it is used in the inverse graph to
  // find fully anticipable instructions at merge point (post-dominator in
  // the inverse CFG).
  // Returns the edge via which an instruction in BB will get the values from.

  // Returns true when the values are flowing out to each edge.
  bool valueAnticipable(CHIArgs C, TerminatorInst *TI) const {
    if (TI->getNumSuccessors() > (unsigned)std::distance(C.begin(), C.end()))
      return false; // Not enough args in this CHI.

    for (auto CHI : C) {
      BasicBlock *Dest = CHI.Dest;
      // Find if all the edges have values flowing out of BB.
      bool Found = llvm::any_of(TI->successors(), [Dest](const BasicBlock *BB) {
          return BB == Dest; });
      if (!Found)
        return false;
    }
    return true;
  }

  // Check if it is safe to hoist values tracked by CHI in the range
  // [Begin, End) and accumulate them in Safe.
  void checkSafety(CHIArgs C, BasicBlock *BB, InsKind K,
                   SmallVectorImpl<CHIArg> &Safe) {
    int NumBBsOnAllPaths = MaxNumberOfBBSInPath;
    for (auto CHI : C) {
      Instruction *Insn = CHI.I;
      if (!Insn) // No instruction was inserted in this CHI.
        continue;
      if (K == InsKind::Scalar) {
        if (safeToHoistScalar(BB, Insn->getParent(), NumBBsOnAllPaths))
          Safe.push_back(CHI);
      } else {
        MemoryUseOrDef *UD = MSSA->getMemoryAccess(Insn);
        if (safeToHoistLdSt(BB->getTerminator(), Insn, UD, K, NumBBsOnAllPaths))
          Safe.push_back(CHI);
      }
    }
  }

  using RenameStackType = DenseMap<VNType, SmallVector<Instruction *, 2>>;

  // Push all the VNs corresponding to BB into RenameStack.
  void fillRenameStack(BasicBlock *BB, InValuesType &ValueBBs,
                       RenameStackType &RenameStack) {
    auto it1 = ValueBBs.find(BB);
    if (it1 != ValueBBs.end()) {
      // Iterate in reverse order to keep lower ranked values on the top.
      for (std::pair<VNType, Instruction *> &VI : reverse(it1->second)) {
        // Get the value of instruction I
        DEBUG(dbgs() << "\nPushing on stack: " << *VI.second);
        RenameStack[VI.first].push_back(VI.second);
      }
    }
  }

  void fillChiArgs(BasicBlock *BB, OutValuesType &CHIBBs,
                   RenameStackType &RenameStack) {
    // For each *predecessor* (because Post-DOM) of BB check if it has a CHI
    for (auto Pred : predecessors(BB)) {
      auto P = CHIBBs.find(Pred);
      if (P == CHIBBs.end()) {
        continue;
      }
      DEBUG(dbgs() << "\nLooking at CHIs in: " << Pred->getName(););
      // A CHI is found (BB -> Pred is an edge in the CFG)
      // Pop the stack until Top(V) = Ve.
      auto &VCHI = P->second;
      for (auto It = VCHI.begin(), E = VCHI.end(); It != E;) {
        CHIArg &C = *It;
        if (!C.Dest) {
          auto si = RenameStack.find(C.VN);
          // The Basic Block where CHI is must dominate the value we want to
          // track in a CHI. In the PDom walk, there can be values in the
          // stack which are not control dependent e.g., nested loop.
          if (si != RenameStack.end() && si->second.size() &&
              DT->properlyDominates(Pred, si->second.back()->getParent())) {
            C.Dest = BB;                     // Assign the edge
            C.I = si->second.pop_back_val(); // Assign the argument
            DEBUG(dbgs() << "\nCHI Inserted in BB: " << C.Dest->getName()
                         << *C.I << ", VN: " << C.VN.first << ", "
                         << C.VN.second);
          }
          // Move to next CHI of a different value
          It = std::find_if(It, VCHI.end(),
                            [It](CHIArg &A) { return A != *It; });
        } else
          ++It;
      }
    }
  }

  // Walk the post-dominator tree top-down and use a stack for each value to
  // store the last value you see. When you hit a CHI from a given edge, the
  // value to use as the argument is at the top of the stack, add the value to
  // CHI and pop.
  void insertCHI(InValuesType &ValueBBs, OutValuesType &CHIBBs) {
    auto Root = PDT->getNode(nullptr);
    if (!Root)
      return;
    // Depth first walk on PDom tree to fill the CHIargs at each PDF.
    RenameStackType RenameStack;
    for (auto Node : depth_first(Root)) {
      BasicBlock *BB = Node->getBlock();
      if (!BB)
        continue;

      // Collect all values in BB and push to stack.
      fillRenameStack(BB, ValueBBs, RenameStack);

      // Fill outgoing values in each CHI corresponding to BB.
      fillChiArgs(BB, CHIBBs, RenameStack);
    }
  }

  // Walk all the CHI-nodes to find ones which have a empty-entry and remove
  // them Then collect all the instructions which are safe to hoist and see if
  // they form a list of anticipable values. OutValues contains CHIs
  // corresponding to each basic block.
  void findHoistableCandidates(OutValuesType &CHIBBs, InsKind K,
                               HoistingPointList &HPL) {
    auto cmpVN = [](const CHIArg &A, const CHIArg &B) { return A.VN < B.VN; };

    // CHIArgs now have the outgoing values, so check for anticipability and
    // accumulate hoistable candidates in HPL.
    for (std::pair<BasicBlock *, SmallVector<CHIArg, 2>> &A : CHIBBs) {
      BasicBlock *BB = A.first;
      SmallVectorImpl<CHIArg> &CHIs = A.second;
      // Vector of PHIs contains PHIs for different instructions.
      // Sort the args according to their VNs, such that identical
      // instructions are together.
      std::stable_sort(CHIs.begin(), CHIs.end(), cmpVN);
      auto TI = BB->getTerminator();
      auto B = CHIs.begin();
      // [PreIt, PHIIt) form a range of CHIs which have identical VNs.
      auto PHIIt = std::find_if(CHIs.begin(), CHIs.end(),
                                 [B](CHIArg &A) { return A != *B; });
      auto PrevIt = CHIs.begin();
      while (PrevIt != PHIIt) {
        // Collect values which satisfy safety checks.
        SmallVector<CHIArg, 2> Safe;
        // We check for safety first because there might be multiple values in
        // the same path, some of which are not safe to be hoisted, but overall
        // each edge has at least one value which can be hoisted, making the
        // value anticipable along that path.
        checkSafety(make_range(PrevIt, PHIIt), BB, K, Safe);

        // List of safe values should be anticipable at TI.
        if (valueAnticipable(make_range(Safe.begin(), Safe.end()), TI)) {
          HPL.push_back({BB, SmallVecInsn()});
          SmallVecInsn &V = HPL.back().second;
          for (auto B : Safe)
            V.push_back(B.I);
        }

        // Check other VNs
        PrevIt = PHIIt;
        PHIIt = std::find_if(PrevIt, CHIs.end(),
                             [PrevIt](CHIArg &A) { return A != *PrevIt; });
      }
    }
  }

  // Compute insertion points for each values which can be fully anticipated at
  // a dominator. HPL contains all such values.
  void computeInsertionPoints(const VNtoInsns &Map, HoistingPointList &HPL,
                              InsKind K) {
    // Sort VNs based on their rankings
    std::vector<VNType> Ranks;
    for (const auto &Entry : Map) {
      Ranks.push_back(Entry.first);
    }

    // TODO: Remove fully-redundant expressions.
    // Get instruction from the Map, assume that all the Instructions
    // with same VNs have same rank (this is an approximation).
    std::sort(Ranks.begin(), Ranks.end(),
              [this, &Map](const VNType &r1, const VNType &r2) {
                return (rank(*Map.lookup(r1).begin()) <
                        rank(*Map.lookup(r2).begin()));
              });

    // - Sort VNs according to their rank, and start with lowest ranked VN
    // - Take a VN and for each instruction with same VN
    //   - Find the dominance frontier in the inverse graph (PDF)
    //   - Insert the chi-node at PDF
    // - Remove the chi-nodes with missing entries
    // - Remove values from CHI-nodes which do not truly flow out, e.g.,
    //   modified along the path.
    // - Collect the remaining values that are still anticipable
    SmallVector<BasicBlock *, 2> IDFBlocks;
    ReverseIDFCalculator IDFs(*PDT);
    OutValuesType OutValue;
    InValuesType InValue;
    for (const auto &R : Ranks) {
      const SmallVecInsn &V = Map.lookup(R);
      if (V.size() < 2)
        continue;
      const VNType &VN = R;
      SmallPtrSet<BasicBlock *, 2> VNBlocks;
      for (auto &I : V) {
        BasicBlock *BBI = I->getParent();
        if (!hasEH(BBI))
          VNBlocks.insert(BBI);
      }
      // Compute the Post Dominance Frontiers of each basic block
      // The dominance frontier of a live block X in the reverse
      // control graph is the set of blocks upon which X is control
      // dependent. The following sequence computes the set of blocks
      // which currently have dead terminators that are control
      // dependence sources of a block which is in NewLiveBlocks.
      IDFs.setDefiningBlocks(VNBlocks);
      IDFs.calculate(IDFBlocks);

      // Make a map of BB vs instructions to be hoisted.
      for (unsigned i = 0; i < V.size(); ++i) {
        InValue[V[i]->getParent()].push_back(std::make_pair(VN, V[i]));
      }
      // Insert empty CHI node for this VN. This is used to factor out
      // basic blocks where the ANTIC can potentially change.
      for (auto IDFB : IDFBlocks) { // TODO: Prune out useless CHI insertions.
        for (unsigned i = 0; i < V.size(); ++i) {
          CHIArg C = {VN, nullptr, nullptr};
           // Ignore spurious PDFs.
          if (DT->properlyDominates(IDFB, V[i]->getParent())) {
            OutValue[IDFB].push_back(C);
            DEBUG(dbgs() << "\nInsertion a CHI for BB: " << IDFB->getName()
                         << ", for Insn: " << *V[i]);
          }
        }
      }
    }

    // Insert CHI args at each PDF to iterate on factored graph of
    // control dependence.
    insertCHI(InValue, OutValue);
    // Using the CHI args inserted at each PDF, find fully anticipable values.
    findHoistableCandidates(OutValue, K, HPL);
  }

  // Return true when all operands of Instr are available at insertion point
  // HoistPt. When limiting the number of hoisted expressions, one could hoist
  // a load without hoisting its access function. So before hoisting any
  // expression, make sure that all its operands are available at insert point.
  bool allOperandsAvailable(const Instruction *I,
                            const BasicBlock *HoistPt) const {
    for (const Use &Op : I->operands())
      if (const auto *Inst = dyn_cast<Instruction>(&Op))
        if (!DT->dominates(Inst->getParent(), HoistPt))
          return false;

    return true;
  }

  // Same as allOperandsAvailable with recursive check for GEP operands.
  bool allGepOperandsAvailable(const Instruction *I,
                               const BasicBlock *HoistPt) const {
    for (const Use &Op : I->operands())
      if (const auto *Inst = dyn_cast<Instruction>(&Op))
        if (!DT->dominates(Inst->getParent(), HoistPt)) {
          if (const GetElementPtrInst *GepOp =
                  dyn_cast<GetElementPtrInst>(Inst)) {
            if (!allGepOperandsAvailable(GepOp, HoistPt))
              return false;
            // Gep is available if all operands of GepOp are available.
          } else {
            // Gep is not available if it has operands other than GEPs that are
            // defined in blocks not dominating HoistPt.
            return false;
          }
        }
    return true;
  }

  // Make all operands of the GEP available.
  void makeGepsAvailable(Instruction *Repl, BasicBlock *HoistPt,
                         const SmallVecInsn &InstructionsToHoist,
                         Instruction *Gep) const {
    assert(allGepOperandsAvailable(Gep, HoistPt) &&
           "GEP operands not available");

    Instruction *ClonedGep = Gep->clone();
    for (unsigned i = 0, e = Gep->getNumOperands(); i != e; ++i)
      if (Instruction *Op = dyn_cast<Instruction>(Gep->getOperand(i))) {
        // Check whether the operand is already available.
        if (DT->dominates(Op->getParent(), HoistPt))
          continue;

        // As a GEP can refer to other GEPs, recursively make all the operands
        // of this GEP available at HoistPt.
        if (GetElementPtrInst *GepOp = dyn_cast<GetElementPtrInst>(Op))
          makeGepsAvailable(ClonedGep, HoistPt, InstructionsToHoist, GepOp);
      }

    // Copy Gep and replace its uses in Repl with ClonedGep.
    ClonedGep->insertBefore(HoistPt->getTerminator());

    // Conservatively discard any optimization hints, they may differ on the
    // other paths.
    ClonedGep->dropUnknownNonDebugMetadata();

    // If we have optimization hints which agree with each other along different
    // paths, preserve them.
    for (const Instruction *OtherInst : InstructionsToHoist) {
      const GetElementPtrInst *OtherGep;
      if (auto *OtherLd = dyn_cast<LoadInst>(OtherInst))
        OtherGep = cast<GetElementPtrInst>(OtherLd->getPointerOperand());
      else
        OtherGep = cast<GetElementPtrInst>(
            cast<StoreInst>(OtherInst)->getPointerOperand());
      ClonedGep->andIRFlags(OtherGep);
    }

    // Replace uses of Gep with ClonedGep in Repl.
    Repl->replaceUsesOfWith(Gep, ClonedGep);
  }

  void updateAlignment(Instruction *I, Instruction *Repl) {
    if (auto *ReplacementLoad = dyn_cast<LoadInst>(Repl)) {
      ReplacementLoad->setAlignment(
          std::min(ReplacementLoad->getAlignment(),
                   cast<LoadInst>(I)->getAlignment()));
      ++NumLoadsRemoved;
    } else if (auto *ReplacementStore = dyn_cast<StoreInst>(Repl)) {
      ReplacementStore->setAlignment(
          std::min(ReplacementStore->getAlignment(),
                   cast<StoreInst>(I)->getAlignment()));
      ++NumStoresRemoved;
    } else if (auto *ReplacementAlloca = dyn_cast<AllocaInst>(Repl)) {
      ReplacementAlloca->setAlignment(
          std::max(ReplacementAlloca->getAlignment(),
                   cast<AllocaInst>(I)->getAlignment()));
    } else if (isa<CallInst>(Repl)) {
      ++NumCallsRemoved;
    }
  }

  // Remove all the instructions in Candidates and replace their usage with Repl.
  // Returns the number of instructions removed.
  unsigned rauw(const SmallVecInsn &Candidates, Instruction *Repl,
                MemoryUseOrDef *NewMemAcc) {
    unsigned NR = 0;
    for (Instruction *I : Candidates) {
      if (I != Repl) {
        ++NR;
        updateAlignment(I, Repl);
        if (NewMemAcc) {
          // Update the uses of the old MSSA access with NewMemAcc.
          MemoryAccess *OldMA = MSSA->getMemoryAccess(I);
          OldMA->replaceAllUsesWith(NewMemAcc);
          MSSAUpdater->removeMemoryAccess(OldMA);
        }

        Repl->andIRFlags(I);
        combineKnownMetadata(Repl, I);
        I->replaceAllUsesWith(Repl);
        // Also invalidate the Alias Analysis cache.
        MD->removeInstruction(I);
        I->eraseFromParent();
      }
    }
    return NR;
  }

  // Replace all Memory PHI usage with NewMemAcc.
  void raMPHIuw(MemoryUseOrDef *NewMemAcc) {
    SmallPtrSet<MemoryPhi *, 4> UsePhis;
    for (User *U : NewMemAcc->users())
      if (MemoryPhi *Phi = dyn_cast<MemoryPhi>(U))
        UsePhis.insert(Phi);

    for (MemoryPhi *Phi : UsePhis) {
      auto In = Phi->incoming_values();
      if (llvm::all_of(In, [&](Use &U) { return U == NewMemAcc; })) {
        Phi->replaceAllUsesWith(NewMemAcc);
        MSSAUpdater->removeMemoryAccess(Phi);
      }
    }
  }

  // Remove all other instructions and replace them with Repl.
  unsigned removeAndReplace(const SmallVecInsn &Candidates, Instruction *Repl,
                            BasicBlock *DestBB, bool MoveAccess) {
    MemoryUseOrDef *NewMemAcc = MSSA->getMemoryAccess(Repl);
    if (MoveAccess && NewMemAcc) {
        // The definition of this ld/st will not change: ld/st hoisting is
        // legal when the ld/st is not moved past its current definition.
        MSSAUpdater->moveToPlace(NewMemAcc, DestBB, MemorySSA::End);
    }

    // Replace all other instructions with Repl with memory access NewMemAcc.
    unsigned NR = rauw(Candidates, Repl, NewMemAcc);

    // Remove MemorySSA phi nodes with the same arguments.
    if (NewMemAcc)
      raMPHIuw(NewMemAcc);
    return NR;
  }

  // In the case Repl is a load or a store, we make all their GEPs
  // available: GEPs are not hoisted by default to avoid the address
  // computations to be hoisted without the associated load or store.
  bool makeGepOperandsAvailable(Instruction *Repl, BasicBlock *HoistPt,
                                const SmallVecInsn &InstructionsToHoist) const {
    // Check whether the GEP of a ld/st can be synthesized at HoistPt.
    GetElementPtrInst *Gep = nullptr;
    Instruction *Val = nullptr;
    if (auto *Ld = dyn_cast<LoadInst>(Repl)) {
      Gep = dyn_cast<GetElementPtrInst>(Ld->getPointerOperand());
    } else if (auto *St = dyn_cast<StoreInst>(Repl)) {
      Gep = dyn_cast<GetElementPtrInst>(St->getPointerOperand());
      Val = dyn_cast<Instruction>(St->getValueOperand());
      // Check that the stored value is available.
      if (Val) {
        if (isa<GetElementPtrInst>(Val)) {
          // Check whether we can compute the GEP at HoistPt.
          if (!allGepOperandsAvailable(Val, HoistPt))
            return false;
        } else if (!DT->dominates(Val->getParent(), HoistPt))
          return false;
      }
    }

    // Check whether we can compute the Gep at HoistPt.
    if (!Gep || !allGepOperandsAvailable(Gep, HoistPt))
      return false;

    makeGepsAvailable(Repl, HoistPt, InstructionsToHoist, Gep);

    if (Val && isa<GetElementPtrInst>(Val))
      makeGepsAvailable(Repl, HoistPt, InstructionsToHoist, Val);

    return true;
  }

  std::pair<unsigned, unsigned> hoist(HoistingPointList &HPL) {
    unsigned NI = 0, NL = 0, NS = 0, NC = 0, NR = 0;
    for (const HoistingPointInfo &HP : HPL) {
      // Find out whether we already have one of the instructions in HoistPt,
      // in which case we do not have to move it.
      BasicBlock *DestBB = HP.first;
      const SmallVecInsn &InstructionsToHoist = HP.second;
      Instruction *Repl = nullptr;
      for (Instruction *I : InstructionsToHoist)
        if (I->getParent() == DestBB)
          // If there are two instructions in HoistPt to be hoisted in place:
          // update Repl to be the first one, such that we can rename the uses
          // of the second based on the first.
          if (!Repl || firstInBB(I, Repl))
            Repl = I;

      // Keep track of whether we moved the instruction so we know whether we
      // should move the MemoryAccess.
      bool MoveAccess = true;
      if (Repl) {
        // Repl is already in HoistPt: it remains in place.
        assert(allOperandsAvailable(Repl, DestBB) &&
               "instruction depends on operands that are not available");
        MoveAccess = false;
      } else {
        // When we do not find Repl in HoistPt, select the first in the list
        // and move it to HoistPt.
        Repl = InstructionsToHoist.front();

        // We can move Repl in HoistPt only when all operands are available.
        // The order in which hoistings are done may influence the availability
        // of operands.
        if (!allOperandsAvailable(Repl, DestBB)) {
          // When HoistingGeps there is nothing more we can do to make the
          // operands available: just continue.
          if (HoistingGeps)
            continue;

          // When not HoistingGeps we need to copy the GEPs.
          if (!makeGepOperandsAvailable(Repl, DestBB, InstructionsToHoist))
            continue;
        }

        // Move the instruction at the end of HoistPt.
        Instruction *Last = DestBB->getTerminator();
        MD->removeInstruction(Repl);
        Repl->moveBefore(Last);

        DFSNumber[Repl] = DFSNumber[Last]++;
      }

      NR += removeAndReplace(InstructionsToHoist, Repl, DestBB, MoveAccess);

      if (isa<LoadInst>(Repl))
        ++NL;
      else if (isa<StoreInst>(Repl))
        ++NS;
      else if (isa<CallInst>(Repl))
        ++NC;
      else // Scalar
        ++NI;
    }

    NumHoisted += NL + NS + NC + NI;
    NumRemoved += NR;
    NumLoadsHoisted += NL;
    NumStoresHoisted += NS;
    NumCallsHoisted += NC;
    return {NI, NL + NC + NS};
  }

  // Hoist all expressions. Returns Number of scalars hoisted
  // and number of non-scalars hoisted.
  std::pair<unsigned, unsigned> hoistExpressions(Function &F) {
    InsnInfo II;
    LoadInfo LI;
    StoreInfo SI;
    CallInfo CI;
    for (BasicBlock *BB : depth_first(&F.getEntryBlock())) {
      int InstructionNb = 0;
      for (Instruction &I1 : *BB) {
        // If I1 cannot guarantee progress, subsequent instructions
        // in BB cannot be hoisted anyways.
        if (!isGuaranteedToTransferExecutionToSuccessor(&I1)) {
          HoistBarrier.insert(BB);
          break;
        }
        // Only hoist the first instructions in BB up to MaxDepthInBB. Hoisting
        // deeper may increase the register pressure and compilation time.
        if (MaxDepthInBB != -1 && InstructionNb++ >= MaxDepthInBB)
          break;

        // Do not value number terminator instructions.
        if (isa<TerminatorInst>(&I1))
          break;

        if (auto *Load = dyn_cast<LoadInst>(&I1))
          LI.insert(Load, VN);
        else if (auto *Store = dyn_cast<StoreInst>(&I1))
          SI.insert(Store, VN);
        else if (auto *Call = dyn_cast<CallInst>(&I1)) {
          if (auto *Intr = dyn_cast<IntrinsicInst>(Call)) {
            if (isa<DbgInfoIntrinsic>(Intr) ||
                Intr->getIntrinsicID() == Intrinsic::assume ||
                Intr->getIntrinsicID() == Intrinsic::sideeffect)
              continue;
          }
          if (Call->mayHaveSideEffects())
            break;

          if (Call->isConvergent())
            break;

          CI.insert(Call, VN);
        } else if (HoistingGeps || !isa<GetElementPtrInst>(&I1))
          // Do not hoist scalars past calls that may write to memory because
          // that could result in spills later. geps are handled separately.
          // TODO: We can relax this for targets like AArch64 as they have more
          // registers than X86.
          II.insert(&I1, VN);
      }
    }

    HoistingPointList HPL;
    computeInsertionPoints(II.getVNTable(), HPL, InsKind::Scalar);
    computeInsertionPoints(LI.getVNTable(), HPL, InsKind::Load);
    computeInsertionPoints(SI.getVNTable(), HPL, InsKind::Store);
    computeInsertionPoints(CI.getScalarVNTable(), HPL, InsKind::Scalar);
    computeInsertionPoints(CI.getLoadVNTable(), HPL, InsKind::Load);
    computeInsertionPoints(CI.getStoreVNTable(), HPL, InsKind::Store);
    return hoist(HPL);
  }
};

class GVNHoistLegacyPass : public FunctionPass {
public:
  static char ID;

  GVNHoistLegacyPass() : FunctionPass(ID) {
    initializeGVNHoistLegacyPassPass(*PassRegistry::getPassRegistry());
  }

  bool runOnFunction(Function &F) override {
    if (skipFunction(F))
      return false;
    auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
    auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
    auto &MD = getAnalysis<MemoryDependenceWrapperPass>().getMemDep();
    auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA();

    GVNHoist G(&DT, &PDT, &AA, &MD, &MSSA);
    return G.run(F);
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<DominatorTreeWrapperPass>();
    AU.addRequired<PostDominatorTreeWrapperPass>();
    AU.addRequired<AAResultsWrapperPass>();
    AU.addRequired<MemoryDependenceWrapperPass>();
    AU.addRequired<MemorySSAWrapperPass>();
    AU.addPreserved<DominatorTreeWrapperPass>();
    AU.addPreserved<MemorySSAWrapperPass>();
    AU.addPreserved<GlobalsAAWrapperPass>();
  }
};

} // end namespace llvm

PreservedAnalyses GVNHoistPass::run(Function &F, FunctionAnalysisManager &AM) {
  DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
  PostDominatorTree &PDT = AM.getResult<PostDominatorTreeAnalysis>(F);
  AliasAnalysis &AA = AM.getResult<AAManager>(F);
  MemoryDependenceResults &MD = AM.getResult<MemoryDependenceAnalysis>(F);
  MemorySSA &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
  GVNHoist G(&DT, &PDT, &AA, &MD, &MSSA);
  if (!G.run(F))
    return PreservedAnalyses::all();

  PreservedAnalyses PA;
  PA.preserve<DominatorTreeAnalysis>();
  PA.preserve<MemorySSAAnalysis>();
  PA.preserve<GlobalsAA>();
  return PA;
}

char GVNHoistLegacyPass::ID = 0;

INITIALIZE_PASS_BEGIN(GVNHoistLegacyPass, "gvn-hoist",
                      "Early GVN Hoisting of Expressions", false, false)
INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_END(GVNHoistLegacyPass, "gvn-hoist",
                    "Early GVN Hoisting of Expressions", false, false)

FunctionPass *llvm::createGVNHoistPass() { return new GVNHoistLegacyPass(); }