summaryrefslogtreecommitdiff
path: root/lib/Target/X86/X86FixupSetCC.cpp
blob: a86eb997635e569adf0e7c3026e3aae3d6e2bb4e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
//===---- X86FixupSetCC.cpp - optimize usage of LEA instructions ----------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a pass that fixes zero-extension of setcc patterns.
// X86 setcc instructions are modeled to have no input arguments, and a single
// GR8 output argument. This is consistent with other similar instructions
// (e.g. movb), but means it is impossible to directly generate a setcc into
// the lower GR8 of a specified GR32.
// This means that ISel must select (zext (setcc)) into something like
// seta %al; movzbl %al, %eax.
// Unfortunately, this can cause a stall due to the partial register write
// performed by the setcc. Instead, we can use:
// xor %eax, %eax; seta %al
// This both avoids the stall, and encodes shorter.
//===----------------------------------------------------------------------===//

#include "X86.h"
#include "X86InstrInfo.h"
#include "X86Subtarget.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"

using namespace llvm;

#define DEBUG_TYPE "x86-fixup-setcc"

STATISTIC(NumSubstZexts, "Number of setcc + zext pairs substituted");

namespace {
class X86FixupSetCCPass : public MachineFunctionPass {
public:
  X86FixupSetCCPass() : MachineFunctionPass(ID) {}

  StringRef getPassName() const override { return "X86 Fixup SetCC"; }

  bool runOnMachineFunction(MachineFunction &MF) override;

private:
  // Find the preceding instruction that imp-defs eflags.
  MachineInstr *findFlagsImpDef(MachineBasicBlock *MBB,
                                MachineBasicBlock::reverse_iterator MI);

  // Return true if MI imp-uses eflags.
  bool impUsesFlags(MachineInstr *MI);

  // Return true if this is the opcode of a SetCC instruction with a register
  // output.
  bool isSetCCr(unsigned Opode);

  MachineRegisterInfo *MRI;
  const X86InstrInfo *TII;

  enum { SearchBound = 16 };

  static char ID;
};

char X86FixupSetCCPass::ID = 0;
}

FunctionPass *llvm::createX86FixupSetCC() { return new X86FixupSetCCPass(); }

bool X86FixupSetCCPass::isSetCCr(unsigned Opcode) {
  switch (Opcode) {
  default:
    return false;
  case X86::SETOr:
  case X86::SETNOr:
  case X86::SETBr:
  case X86::SETAEr:
  case X86::SETEr:
  case X86::SETNEr:
  case X86::SETBEr:
  case X86::SETAr:
  case X86::SETSr:
  case X86::SETNSr:
  case X86::SETPr:
  case X86::SETNPr:
  case X86::SETLr:
  case X86::SETGEr:
  case X86::SETLEr:
  case X86::SETGr:
    return true;
  }
}

// We expect the instruction *immediately* before the setcc to imp-def
// EFLAGS (because of scheduling glue). To make this less brittle w.r.t
// scheduling, look backwards until we hit the beginning of the
// basic-block, or a small bound (to avoid quadratic behavior).
MachineInstr *
X86FixupSetCCPass::findFlagsImpDef(MachineBasicBlock *MBB,
                                   MachineBasicBlock::reverse_iterator MI) {
  // FIXME: Should this be instr_rend(), and MI be reverse_instr_iterator?
  auto MBBStart = MBB->rend();
  for (int i = 0; (i < SearchBound) && (MI != MBBStart); ++i, ++MI)
    for (auto &Op : MI->implicit_operands())
      if ((Op.getReg() == X86::EFLAGS) && (Op.isDef()))
        return &*MI;

  return nullptr;
}

bool X86FixupSetCCPass::impUsesFlags(MachineInstr *MI) {
  for (auto &Op : MI->implicit_operands())
    if ((Op.getReg() == X86::EFLAGS) && (Op.isUse()))
      return true;

  return false;
}

bool X86FixupSetCCPass::runOnMachineFunction(MachineFunction &MF) {
  bool Changed = false;
  MRI = &MF.getRegInfo();
  TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();

  SmallVector<MachineInstr*, 4> ToErase;

  for (auto &MBB : MF) {
    for (auto &MI : MBB) {
      // Find a setcc that is used by a zext.
      // This doesn't have to be the only use, the transformation is safe
      // regardless.
      if (!isSetCCr(MI.getOpcode()))
        continue;

      MachineInstr *ZExt = nullptr;
      for (auto &Use : MRI->use_instructions(MI.getOperand(0).getReg()))
        if (Use.getOpcode() == X86::MOVZX32rr8)
          ZExt = &Use;

      if (!ZExt)
        continue;

      // Find the preceding instruction that imp-defs eflags.
      MachineInstr *FlagsDefMI = findFlagsImpDef(
          MI.getParent(), MachineBasicBlock::reverse_iterator(&MI));
      if (!FlagsDefMI)
        continue;

      // We'd like to put something that clobbers eflags directly before
      // FlagsDefMI. This can't hurt anything after FlagsDefMI, because
      // it, itself, by definition, clobbers eflags. But it may happen that
      // FlagsDefMI also *uses* eflags, in which case the transformation is
      // invalid.
      if (impUsesFlags(FlagsDefMI))
        continue;

      ++NumSubstZexts;
      Changed = true;

      // On 32-bit, we need to be careful to force an ABCD register.
      const TargetRegisterClass *RC = MF.getSubtarget<X86Subtarget>().is64Bit()
                                          ? &X86::GR32RegClass
                                          : &X86::GR32_ABCDRegClass;
      unsigned ZeroReg = MRI->createVirtualRegister(RC);
      unsigned InsertReg = MRI->createVirtualRegister(RC);

      // Initialize a register with 0. This must go before the eflags def
      BuildMI(MBB, FlagsDefMI, MI.getDebugLoc(), TII->get(X86::MOV32r0),
              ZeroReg);

      // X86 setcc only takes an output GR8, so fake a GR32 input by inserting
      // the setcc result into the low byte of the zeroed register.
      BuildMI(*ZExt->getParent(), ZExt, ZExt->getDebugLoc(),
              TII->get(X86::INSERT_SUBREG), InsertReg)
          .addReg(ZeroReg)
          .addReg(MI.getOperand(0).getReg())
          .addImm(X86::sub_8bit);
      MRI->replaceRegWith(ZExt->getOperand(0).getReg(), InsertReg);
      ToErase.push_back(ZExt);
    }
  }

  for (auto &I : ToErase)
    I->eraseFromParent();

  return Changed;
}