summaryrefslogtreecommitdiff
path: root/lib/Target/PowerPC/PPCReduceCRLogicals.cpp
blob: d6d948e9e1ee1eb898385bf8fbc512c0344343a4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
//===---- PPCReduceCRLogicals.cpp - Reduce CR Bit Logical operations ------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===---------------------------------------------------------------------===//
//
// This pass aims to reduce the number of logical operations on bits in the CR
// register. These instructions have a fairly high latency and only a single
// pipeline at their disposal in modern PPC cores. Furthermore, they have a
// tendency to occur in fairly small blocks where there's little opportunity
// to hide the latency between the CR logical operation and its user.
//
//===---------------------------------------------------------------------===//

#include "PPC.h"
#include "PPCInstrInfo.h"
#include "PPCTargetMachine.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/Support/Debug.h"

using namespace llvm;

#define DEBUG_TYPE "ppc-reduce-cr-ops"

STATISTIC(NumContainedSingleUseBinOps,
          "Number of single-use binary CR logical ops contained in a block");
STATISTIC(NumToSplitBlocks,
          "Number of binary CR logical ops that can be used to split blocks");
STATISTIC(TotalCRLogicals, "Number of CR logical ops.");
STATISTIC(TotalNullaryCRLogicals,
          "Number of nullary CR logical ops (CRSET/CRUNSET).");
STATISTIC(TotalUnaryCRLogicals, "Number of unary CR logical ops.");
STATISTIC(TotalBinaryCRLogicals, "Number of CR logical ops.");
STATISTIC(NumBlocksSplitOnBinaryCROp,
          "Number of blocks split on CR binary logical ops.");
STATISTIC(NumNotSplitIdenticalOperands,
          "Number of blocks not split due to operands being identical.");
STATISTIC(NumNotSplitChainCopies,
          "Number of blocks not split due to operands being chained copies.");
STATISTIC(NumNotSplitWrongOpcode,
          "Number of blocks not split due to the wrong opcode.");

namespace llvm {
  void initializePPCReduceCRLogicalsPass(PassRegistry&);
}

/// Given a basic block \p Successor that potentially contains PHIs, this
/// function will look for any incoming values in the PHIs that are supposed to
/// be coming from \p OrigMBB but whose definition is actually in \p NewMBB.
/// Any such PHIs will be updated to reflect reality.
static void updatePHIs(MachineBasicBlock *Successor, MachineBasicBlock *OrigMBB,
                       MachineBasicBlock *NewMBB, MachineRegisterInfo *MRI) {
  for (auto &MI : Successor->instrs()) {
    if (!MI.isPHI())
      continue;
    // This is a really ugly-looking loop, but it was pillaged directly from
    // MachineBasicBlock::transferSuccessorsAndUpdatePHIs().
    for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) {
      MachineOperand &MO = MI.getOperand(i);
      if (MO.getMBB() == OrigMBB) {
        // Check if the instruction is actualy defined in NewMBB.
        if (MI.getOperand(i - 1).isReg()) {
          MachineInstr *DefMI = MRI->getVRegDef(MI.getOperand(i - 1).getReg());
          if (DefMI->getParent() == NewMBB ||
              !OrigMBB->isSuccessor(Successor)) {
            MO.setMBB(NewMBB);
            break;
          }
        }
      }
    }
  }
}

/// Given a basic block \p Successor that potentially contains PHIs, this
/// function will look for PHIs that have an incoming value from \p OrigMBB
/// and will add the same incoming value from \p NewMBB.
/// NOTE: This should only be used if \p NewMBB is an immediate dominator of
/// \p OrigMBB.
static void addIncomingValuesToPHIs(MachineBasicBlock *Successor,
                                    MachineBasicBlock *OrigMBB,
                                    MachineBasicBlock *NewMBB,
                                    MachineRegisterInfo *MRI) {
  assert(OrigMBB->isSuccessor(NewMBB) &&
         "NewMBB must be a sucessor of OrigMBB");
  for (auto &MI : Successor->instrs()) {
    if (!MI.isPHI())
      continue;
    // This is a really ugly-looking loop, but it was pillaged directly from
    // MachineBasicBlock::transferSuccessorsAndUpdatePHIs().
    for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) {
      MachineOperand &MO = MI.getOperand(i);
      if (MO.getMBB() == OrigMBB) {
        MachineInstrBuilder MIB(*MI.getParent()->getParent(), &MI);
        MIB.addReg(MI.getOperand(i - 1).getReg()).addMBB(NewMBB);
        break;
      }
    }
  }
}

struct BlockSplitInfo {
  MachineInstr *OrigBranch;
  MachineInstr *SplitBefore;
  MachineInstr *SplitCond;
  bool InvertNewBranch;
  bool InvertOrigBranch;
  bool BranchToFallThrough;
  const MachineBranchProbabilityInfo *MBPI;
  MachineInstr *MIToDelete;
  MachineInstr *NewCond;
  bool allInstrsInSameMBB() {
    if (!OrigBranch || !SplitBefore || !SplitCond)
      return false;
    MachineBasicBlock *MBB = OrigBranch->getParent();
    if (SplitBefore->getParent() != MBB || SplitCond->getParent() != MBB)
      return false;
    if (MIToDelete && MIToDelete->getParent() != MBB)
      return false;
    if (NewCond && NewCond->getParent() != MBB)
      return false;
    return true;
  }
};

/// Splits a MachineBasicBlock to branch before \p SplitBefore. The original
/// branch is \p OrigBranch. The target of the new branch can either be the same
/// as the target of the original branch or the fallthrough successor of the
/// original block as determined by \p BranchToFallThrough. The branch
/// conditions will be inverted according to \p InvertNewBranch and
/// \p InvertOrigBranch. If an instruction that previously fed the branch is to
/// be deleted, it is provided in \p MIToDelete and \p NewCond will be used as
/// the branch condition. The branch probabilities will be set if the
/// MachineBranchProbabilityInfo isn't null.
static bool splitMBB(BlockSplitInfo &BSI) {
  assert(BSI.allInstrsInSameMBB() &&
         "All instructions must be in the same block.");

  MachineBasicBlock *ThisMBB = BSI.OrigBranch->getParent();
  MachineFunction *MF = ThisMBB->getParent();
  MachineRegisterInfo *MRI = &MF->getRegInfo();
  assert(MRI->isSSA() && "Can only do this while the function is in SSA form.");
  if (ThisMBB->succ_size() != 2) {
    LLVM_DEBUG(
        dbgs() << "Don't know how to handle blocks that don't have exactly"
               << " two succesors.\n");
    return false;
  }

  const PPCInstrInfo *TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo();
  unsigned OrigBROpcode = BSI.OrigBranch->getOpcode();
  unsigned InvertedOpcode =
      OrigBROpcode == PPC::BC
          ? PPC::BCn
          : OrigBROpcode == PPC::BCn
                ? PPC::BC
                : OrigBROpcode == PPC::BCLR ? PPC::BCLRn : PPC::BCLR;
  unsigned NewBROpcode = BSI.InvertNewBranch ? InvertedOpcode : OrigBROpcode;
  MachineBasicBlock *OrigTarget = BSI.OrigBranch->getOperand(1).getMBB();
  MachineBasicBlock *OrigFallThrough = OrigTarget == *ThisMBB->succ_begin()
                                           ? *ThisMBB->succ_rbegin()
                                           : *ThisMBB->succ_begin();
  MachineBasicBlock *NewBRTarget =
      BSI.BranchToFallThrough ? OrigFallThrough : OrigTarget;
  BranchProbability ProbToNewTarget =
      !BSI.MBPI ? BranchProbability::getUnknown()
                : BSI.MBPI->getEdgeProbability(ThisMBB, NewBRTarget);

  // Create a new basic block.
  MachineBasicBlock::iterator InsertPoint = BSI.SplitBefore;
  const BasicBlock *LLVM_BB = ThisMBB->getBasicBlock();
  MachineFunction::iterator It = ThisMBB->getIterator();
  MachineBasicBlock *NewMBB = MF->CreateMachineBasicBlock(LLVM_BB);
  MF->insert(++It, NewMBB);

  // Move everything after SplitBefore into the new block.
  NewMBB->splice(NewMBB->end(), ThisMBB, InsertPoint, ThisMBB->end());
  NewMBB->transferSuccessors(ThisMBB);

  // Add the two successors to ThisMBB. The probabilities come from the
  // existing blocks if available.
  ThisMBB->addSuccessor(NewBRTarget, ProbToNewTarget);
  ThisMBB->addSuccessor(NewMBB, ProbToNewTarget.getCompl());

  // Add the branches to ThisMBB.
  BuildMI(*ThisMBB, ThisMBB->end(), BSI.SplitBefore->getDebugLoc(),
          TII->get(NewBROpcode))
      .addReg(BSI.SplitCond->getOperand(0).getReg())
      .addMBB(NewBRTarget);
  BuildMI(*ThisMBB, ThisMBB->end(), BSI.SplitBefore->getDebugLoc(),
          TII->get(PPC::B))
      .addMBB(NewMBB);
  if (BSI.MIToDelete)
    BSI.MIToDelete->eraseFromParent();

  // Change the condition on the original branch and invert it if requested.
  auto FirstTerminator = NewMBB->getFirstTerminator();
  if (BSI.NewCond) {
    assert(FirstTerminator->getOperand(0).isReg() &&
           "Can't update condition of unconditional branch.");
    FirstTerminator->getOperand(0).setReg(BSI.NewCond->getOperand(0).getReg());
  }
  if (BSI.InvertOrigBranch)
    FirstTerminator->setDesc(TII->get(InvertedOpcode));

  // If any of the PHIs in the successors of NewMBB reference values that
  // now come from NewMBB, they need to be updated.
  for (auto *Succ : NewMBB->successors()) {
    updatePHIs(Succ, ThisMBB, NewMBB, MRI);
  }
  addIncomingValuesToPHIs(NewBRTarget, ThisMBB, NewMBB, MRI);

  LLVM_DEBUG(dbgs() << "After splitting, ThisMBB:\n"; ThisMBB->dump());
  LLVM_DEBUG(dbgs() << "NewMBB:\n"; NewMBB->dump());
  LLVM_DEBUG(dbgs() << "New branch-to block:\n"; NewBRTarget->dump());
  return true;
}

static bool isBinary(MachineInstr &MI) {
  return MI.getNumOperands() == 3;
}

static bool isNullary(MachineInstr &MI) {
  return MI.getNumOperands() == 1;
}

/// Given a CR logical operation \p CROp, branch opcode \p BROp as well as
/// a flag to indicate if the first operand of \p CROp is used as the
/// SplitBefore operand, determines whether either of the branches are to be
/// inverted as well as whether the new target should be the original
/// fall-through block.
static void
computeBranchTargetAndInversion(unsigned CROp, unsigned BROp, bool UsingDef1,
                                bool &InvertNewBranch, bool &InvertOrigBranch,
                                bool &TargetIsFallThrough) {
  // The conditions under which each of the output operands should be [un]set
  // can certainly be written much more concisely with just 3 if statements or
  // ternary expressions. However, this provides a much clearer overview to the
  // reader as to what is set for each <CROp, BROp, OpUsed> combination.
  if (BROp == PPC::BC || BROp == PPC::BCLR) {
    // Regular branches.
    switch (CROp) {
    default:
      llvm_unreachable("Don't know how to handle this CR logical.");
    case PPC::CROR:
      InvertNewBranch = false;
      InvertOrigBranch = false;
      TargetIsFallThrough = false;
      return;
    case PPC::CRAND:
      InvertNewBranch = true;
      InvertOrigBranch = false;
      TargetIsFallThrough = true;
      return;
    case PPC::CRNAND:
      InvertNewBranch = true;
      InvertOrigBranch = true;
      TargetIsFallThrough = false;
      return;
    case PPC::CRNOR:
      InvertNewBranch = false;
      InvertOrigBranch = true;
      TargetIsFallThrough = true;
      return;
    case PPC::CRORC:
      InvertNewBranch = UsingDef1;
      InvertOrigBranch = !UsingDef1;
      TargetIsFallThrough = false;
      return;
    case PPC::CRANDC:
      InvertNewBranch = !UsingDef1;
      InvertOrigBranch = !UsingDef1;
      TargetIsFallThrough = true;
      return;
    }
  } else if (BROp == PPC::BCn || BROp == PPC::BCLRn) {
    // Negated branches.
    switch (CROp) {
    default:
      llvm_unreachable("Don't know how to handle this CR logical.");
    case PPC::CROR:
      InvertNewBranch = true;
      InvertOrigBranch = false;
      TargetIsFallThrough = true;
      return;
    case PPC::CRAND:
      InvertNewBranch = false;
      InvertOrigBranch = false;
      TargetIsFallThrough = false;
      return;
    case PPC::CRNAND:
      InvertNewBranch = false;
      InvertOrigBranch = true;
      TargetIsFallThrough = true;
      return;
    case PPC::CRNOR:
      InvertNewBranch = true;
      InvertOrigBranch = true;
      TargetIsFallThrough = false;
      return;
    case PPC::CRORC:
      InvertNewBranch = !UsingDef1;
      InvertOrigBranch = !UsingDef1;
      TargetIsFallThrough = true;
      return;
    case PPC::CRANDC:
      InvertNewBranch = UsingDef1;
      InvertOrigBranch = !UsingDef1;
      TargetIsFallThrough = false;
      return;
    }
  } else
    llvm_unreachable("Don't know how to handle this branch.");
}

namespace {

class PPCReduceCRLogicals : public MachineFunctionPass {

public:
  static char ID;
  struct CRLogicalOpInfo {
    MachineInstr *MI;
    // FIXME: If chains of copies are to be handled, this should be a vector.
    std::pair<MachineInstr*, MachineInstr*> CopyDefs;
    std::pair<MachineInstr*, MachineInstr*> TrueDefs;
    unsigned IsBinary : 1;
    unsigned IsNullary : 1;
    unsigned ContainedInBlock : 1;
    unsigned FeedsISEL : 1;
    unsigned FeedsBR : 1;
    unsigned FeedsLogical : 1;
    unsigned SingleUse : 1;
    unsigned DefsSingleUse : 1;
    unsigned SubregDef1;
    unsigned SubregDef2;
    CRLogicalOpInfo() : MI(nullptr), IsBinary(0), IsNullary(0),
                        ContainedInBlock(0), FeedsISEL(0), FeedsBR(0),
                        FeedsLogical(0), SingleUse(0), DefsSingleUse(1),
                        SubregDef1(0), SubregDef2(0) { }
    void dump();
  };

private:
  const PPCInstrInfo *TII;
  MachineFunction *MF;
  MachineRegisterInfo *MRI;
  const MachineBranchProbabilityInfo *MBPI;

  // A vector to contain all the CR logical operations
  std::vector<CRLogicalOpInfo> AllCRLogicalOps;
  void initialize(MachineFunction &MFParm);
  void collectCRLogicals();
  bool handleCROp(CRLogicalOpInfo &CRI);
  bool splitBlockOnBinaryCROp(CRLogicalOpInfo &CRI);
  static bool isCRLogical(MachineInstr &MI) {
    unsigned Opc = MI.getOpcode();
    return Opc == PPC::CRAND || Opc == PPC::CRNAND || Opc == PPC::CROR ||
      Opc == PPC::CRXOR || Opc == PPC::CRNOR || Opc == PPC::CREQV ||
      Opc == PPC::CRANDC || Opc == PPC::CRORC || Opc == PPC::CRSET ||
      Opc == PPC::CRUNSET || Opc == PPC::CR6SET || Opc == PPC::CR6UNSET;
  }
  bool simplifyCode() {
    bool Changed = false;
    // Not using a range-based for loop here as the vector may grow while being
    // operated on.
    for (unsigned i = 0; i < AllCRLogicalOps.size(); i++)
      Changed |= handleCROp(AllCRLogicalOps[i]);
    return Changed;
  }

public:
  PPCReduceCRLogicals() : MachineFunctionPass(ID) {
    initializePPCReduceCRLogicalsPass(*PassRegistry::getPassRegistry());
  }

  MachineInstr *lookThroughCRCopy(unsigned Reg, unsigned &Subreg,
                                  MachineInstr *&CpDef);
  bool runOnMachineFunction(MachineFunction &MF) override {
    if (skipFunction(MF.getFunction()))
      return false;

    // If the subtarget doesn't use CR bits, there's nothing to do.
    const PPCSubtarget &STI = MF.getSubtarget<PPCSubtarget>();
    if (!STI.useCRBits())
      return false;

    initialize(MF);
    collectCRLogicals();
    return simplifyCode();
  }
  CRLogicalOpInfo createCRLogicalOpInfo(MachineInstr &MI);
  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<MachineBranchProbabilityInfo>();
    AU.addRequired<MachineDominatorTree>();
    MachineFunctionPass::getAnalysisUsage(AU);
  }
};

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void PPCReduceCRLogicals::CRLogicalOpInfo::dump() {
  dbgs() << "CRLogicalOpMI: ";
  MI->dump();
  dbgs() << "IsBinary: " << IsBinary << ", FeedsISEL: " << FeedsISEL;
  dbgs() << ", FeedsBR: " << FeedsBR << ", FeedsLogical: ";
  dbgs() << FeedsLogical << ", SingleUse: " << SingleUse;
  dbgs() << ", DefsSingleUse: " << DefsSingleUse;
  dbgs() << ", SubregDef1: " << SubregDef1 << ", SubregDef2: ";
  dbgs() << SubregDef2 << ", ContainedInBlock: " << ContainedInBlock;
  if (!IsNullary) {
    dbgs() << "\nDefs:\n";
    TrueDefs.first->dump();
  }
  if (IsBinary)
    TrueDefs.second->dump();
  dbgs() << "\n";
  if (CopyDefs.first) {
    dbgs() << "CopyDef1: ";
    CopyDefs.first->dump();
  }
  if (CopyDefs.second) {
    dbgs() << "CopyDef2: ";
    CopyDefs.second->dump();
  }
}
#endif

PPCReduceCRLogicals::CRLogicalOpInfo
PPCReduceCRLogicals::createCRLogicalOpInfo(MachineInstr &MIParam) {
  CRLogicalOpInfo Ret;
  Ret.MI = &MIParam;
  // Get the defs
  if (isNullary(MIParam)) {
    Ret.IsNullary = 1;
    Ret.TrueDefs = std::make_pair(nullptr, nullptr);
    Ret.CopyDefs = std::make_pair(nullptr, nullptr);
  } else {
    MachineInstr *Def1 = lookThroughCRCopy(MIParam.getOperand(1).getReg(),
                                           Ret.SubregDef1, Ret.CopyDefs.first);
    Ret.DefsSingleUse &=
      MRI->hasOneNonDBGUse(Def1->getOperand(0).getReg());
    Ret.DefsSingleUse &=
      MRI->hasOneNonDBGUse(Ret.CopyDefs.first->getOperand(0).getReg());
    assert(Def1 && "Must be able to find a definition of operand 1.");
    if (isBinary(MIParam)) {
      Ret.IsBinary = 1;
      MachineInstr *Def2 = lookThroughCRCopy(MIParam.getOperand(2).getReg(),
                                             Ret.SubregDef2,
                                             Ret.CopyDefs.second);
      Ret.DefsSingleUse &=
        MRI->hasOneNonDBGUse(Def2->getOperand(0).getReg());
      Ret.DefsSingleUse &=
        MRI->hasOneNonDBGUse(Ret.CopyDefs.second->getOperand(0).getReg());
      assert(Def2 && "Must be able to find a definition of operand 2.");
      Ret.TrueDefs = std::make_pair(Def1, Def2);
    } else {
      Ret.TrueDefs = std::make_pair(Def1, nullptr);
      Ret.CopyDefs.second = nullptr;
    }
  }

  Ret.ContainedInBlock = 1;
  // Get the uses
  for (MachineInstr &UseMI :
       MRI->use_nodbg_instructions(MIParam.getOperand(0).getReg())) {
    unsigned Opc = UseMI.getOpcode();
    if (Opc == PPC::ISEL || Opc == PPC::ISEL8)
      Ret.FeedsISEL = 1;
    if (Opc == PPC::BC || Opc == PPC::BCn || Opc == PPC::BCLR ||
        Opc == PPC::BCLRn)
      Ret.FeedsBR = 1;
    Ret.FeedsLogical = isCRLogical(UseMI);
    if (UseMI.getParent() != MIParam.getParent())
      Ret.ContainedInBlock = 0;
  }
  Ret.SingleUse = MRI->hasOneNonDBGUse(MIParam.getOperand(0).getReg()) ? 1 : 0;

  // We now know whether all the uses of the CR logical are in the same block.
  if (!Ret.IsNullary) {
    Ret.ContainedInBlock &=
      (MIParam.getParent() == Ret.TrueDefs.first->getParent());
    if (Ret.IsBinary)
      Ret.ContainedInBlock &=
        (MIParam.getParent() == Ret.TrueDefs.second->getParent());
  }
  LLVM_DEBUG(Ret.dump());
  if (Ret.IsBinary && Ret.ContainedInBlock && Ret.SingleUse) {
    NumContainedSingleUseBinOps++;
    if (Ret.FeedsBR && Ret.DefsSingleUse)
      NumToSplitBlocks++;
  }
  return Ret;
}

/// Looks trhough a COPY instruction to the actual definition of the CR-bit
/// register and returns the instruction that defines it.
/// FIXME: This currently handles what is by-far the most common case:
/// an instruction that defines a CR field followed by a single copy of a bit
/// from that field into a virtual register. If chains of copies need to be
/// handled, this should have a loop until a non-copy instruction is found.
MachineInstr *PPCReduceCRLogicals::lookThroughCRCopy(unsigned Reg,
                                                     unsigned &Subreg,
                                                     MachineInstr *&CpDef) {
  Subreg = -1;
  if (!TargetRegisterInfo::isVirtualRegister(Reg))
    return nullptr;
  MachineInstr *Copy = MRI->getVRegDef(Reg);
  CpDef = Copy;
  if (!Copy->isCopy())
    return Copy;
  unsigned CopySrc = Copy->getOperand(1).getReg();
  Subreg = Copy->getOperand(1).getSubReg();
  if (!TargetRegisterInfo::isVirtualRegister(CopySrc)) {
    const TargetRegisterInfo *TRI = &TII->getRegisterInfo();
    // Set the Subreg
    if (CopySrc == PPC::CR0EQ || CopySrc == PPC::CR6EQ)
      Subreg = PPC::sub_eq;
    if (CopySrc == PPC::CR0LT || CopySrc == PPC::CR6LT)
      Subreg = PPC::sub_lt;
    if (CopySrc == PPC::CR0GT || CopySrc == PPC::CR6GT)
      Subreg = PPC::sub_gt;
    if (CopySrc == PPC::CR0UN || CopySrc == PPC::CR6UN)
      Subreg = PPC::sub_un;
    // Loop backwards and return the first MI that modifies the physical CR Reg.
    MachineBasicBlock::iterator Me = Copy, B = Copy->getParent()->begin();
    while (Me != B)
      if ((--Me)->modifiesRegister(CopySrc, TRI))
        return &*Me;
    return nullptr;
  }
  return MRI->getVRegDef(CopySrc);
}

void PPCReduceCRLogicals::initialize(MachineFunction &MFParam) {
  MF = &MFParam;
  MRI = &MF->getRegInfo();
  TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo();
  MBPI = &getAnalysis<MachineBranchProbabilityInfo>();

  AllCRLogicalOps.clear();
}

/// Contains all the implemented transformations on CR logical operations.
/// For example, a binary CR logical can be used to split a block on its inputs,
/// a unary CR logical might be used to change the condition code on a
/// comparison feeding it. A nullary CR logical might simply be removable
/// if the user of the bit it [un]sets can be transformed.
bool PPCReduceCRLogicals::handleCROp(CRLogicalOpInfo &CRI) {
  // We can definitely split a block on the inputs to a binary CR operation
  // whose defs and (single) use are within the same block.
  bool Changed = false;
  if (CRI.IsBinary && CRI.ContainedInBlock && CRI.SingleUse && CRI.FeedsBR &&
      CRI.DefsSingleUse) {
    Changed = splitBlockOnBinaryCROp(CRI);
    if (Changed)
      NumBlocksSplitOnBinaryCROp++;
  }
  return Changed;
}

/// Splits a block that contains a CR-logical operation that feeds a branch
/// and whose operands are produced within the block.
/// Example:
///    %vr5<def> = CMPDI %vr2, 0; CRRC:%vr5 G8RC:%vr2
///    %vr6<def> = COPY %vr5:sub_eq; CRBITRC:%vr6 CRRC:%vr5
///    %vr7<def> = CMPDI %vr3, 0; CRRC:%vr7 G8RC:%vr3
///    %vr8<def> = COPY %vr7:sub_eq; CRBITRC:%vr8 CRRC:%vr7
///    %vr9<def> = CROR %vr6<kill>, %vr8<kill>; CRBITRC:%vr9,%vr6,%vr8
///    BC %vr9<kill>, <BB#2>; CRBITRC:%vr9
/// Becomes:
///    %vr5<def> = CMPDI %vr2, 0; CRRC:%vr5 G8RC:%vr2
///    %vr6<def> = COPY %vr5:sub_eq; CRBITRC:%vr6 CRRC:%vr5
///    BC %vr6<kill>, <BB#2>; CRBITRC:%vr6
///
///    %vr7<def> = CMPDI %vr3, 0; CRRC:%vr7 G8RC:%vr3
///    %vr8<def> = COPY %vr7:sub_eq; CRBITRC:%vr8 CRRC:%vr7
///    BC %vr9<kill>, <BB#2>; CRBITRC:%vr9
bool PPCReduceCRLogicals::splitBlockOnBinaryCROp(CRLogicalOpInfo &CRI) {
  if (CRI.CopyDefs.first == CRI.CopyDefs.second) {
    LLVM_DEBUG(dbgs() << "Unable to split as the two operands are the same\n");
    NumNotSplitIdenticalOperands++;
    return false;
  }
  if (CRI.TrueDefs.first->isCopy() || CRI.TrueDefs.second->isCopy() ||
      CRI.TrueDefs.first->isPHI() || CRI.TrueDefs.second->isPHI()) {
    LLVM_DEBUG(
        dbgs() << "Unable to split because one of the operands is a PHI or "
                  "chain of copies.\n");
    NumNotSplitChainCopies++;
    return false;
  }
  // Note: keep in sync with computeBranchTargetAndInversion().
  if (CRI.MI->getOpcode() != PPC::CROR &&
      CRI.MI->getOpcode() != PPC::CRAND &&
      CRI.MI->getOpcode() != PPC::CRNOR &&
      CRI.MI->getOpcode() != PPC::CRNAND &&
      CRI.MI->getOpcode() != PPC::CRORC &&
      CRI.MI->getOpcode() != PPC::CRANDC) {
    LLVM_DEBUG(dbgs() << "Unable to split blocks on this opcode.\n");
    NumNotSplitWrongOpcode++;
    return false;
  }
  LLVM_DEBUG(dbgs() << "Splitting the following CR op:\n"; CRI.dump());
  MachineBasicBlock::iterator Def1It = CRI.TrueDefs.first;
  MachineBasicBlock::iterator Def2It = CRI.TrueDefs.second;

  bool UsingDef1 = false;
  MachineInstr *SplitBefore = &*Def2It;
  for (auto E = CRI.MI->getParent()->end(); Def2It != E; ++Def2It) {
    if (Def1It == Def2It) { // Def2 comes before Def1.
      SplitBefore = &*Def1It;
      UsingDef1 = true;
      break;
    }
  }

  LLVM_DEBUG(dbgs() << "We will split the following block:\n";);
  LLVM_DEBUG(CRI.MI->getParent()->dump());
  LLVM_DEBUG(dbgs() << "Before instruction:\n"; SplitBefore->dump());

  // Get the branch instruction.
  MachineInstr *Branch =
    MRI->use_nodbg_begin(CRI.MI->getOperand(0).getReg())->getParent();

  // We want the new block to have no code in it other than the definition
  // of the input to the CR logical and the CR logical itself. So we move
  // those to the bottom of the block (just before the branch). Then we
  // will split before the CR logical.
  MachineBasicBlock *MBB = SplitBefore->getParent();
  auto FirstTerminator = MBB->getFirstTerminator();
  MachineBasicBlock::iterator FirstInstrToMove =
    UsingDef1 ? CRI.TrueDefs.first : CRI.TrueDefs.second;
  MachineBasicBlock::iterator SecondInstrToMove =
    UsingDef1 ? CRI.CopyDefs.first : CRI.CopyDefs.second;

  // The instructions that need to be moved are not guaranteed to be
  // contiguous. Move them individually.
  // FIXME: If one of the operands is a chain of (single use) copies, they
  // can all be moved and we can still split.
  MBB->splice(FirstTerminator, MBB, FirstInstrToMove);
  if (FirstInstrToMove != SecondInstrToMove)
    MBB->splice(FirstTerminator, MBB, SecondInstrToMove);
  MBB->splice(FirstTerminator, MBB, CRI.MI);

  unsigned Opc = CRI.MI->getOpcode();
  bool InvertOrigBranch, InvertNewBranch, TargetIsFallThrough;
  computeBranchTargetAndInversion(Opc, Branch->getOpcode(), UsingDef1,
                                  InvertNewBranch, InvertOrigBranch,
                                  TargetIsFallThrough);
  MachineInstr *SplitCond =
    UsingDef1 ? CRI.CopyDefs.second : CRI.CopyDefs.first;
  LLVM_DEBUG(dbgs() << "We will " << (InvertNewBranch ? "invert" : "copy"));
  LLVM_DEBUG(dbgs() << " the original branch and the target is the "
                    << (TargetIsFallThrough ? "fallthrough block\n"
                                            : "orig. target block\n"));
  LLVM_DEBUG(dbgs() << "Original branch instruction: "; Branch->dump());
  BlockSplitInfo BSI { Branch, SplitBefore, SplitCond, InvertNewBranch,
    InvertOrigBranch, TargetIsFallThrough, MBPI, CRI.MI,
    UsingDef1 ? CRI.CopyDefs.first : CRI.CopyDefs.second };
  bool Changed = splitMBB(BSI);
  // If we've split on a CR logical that is fed by a CR logical,
  // recompute the source CR logical as it may be usable for splitting.
  if (Changed) {
    bool Input1CRlogical =
      CRI.TrueDefs.first && isCRLogical(*CRI.TrueDefs.first);
    bool Input2CRlogical =
      CRI.TrueDefs.second && isCRLogical(*CRI.TrueDefs.second);
    if (Input1CRlogical)
      AllCRLogicalOps.push_back(createCRLogicalOpInfo(*CRI.TrueDefs.first));
    if (Input2CRlogical)
      AllCRLogicalOps.push_back(createCRLogicalOpInfo(*CRI.TrueDefs.second));
  }
  return Changed;
}

void PPCReduceCRLogicals::collectCRLogicals() {
  for (MachineBasicBlock &MBB : *MF) {
    for (MachineInstr &MI : MBB) {
      if (isCRLogical(MI)) {
        AllCRLogicalOps.push_back(createCRLogicalOpInfo(MI));
        TotalCRLogicals++;
        if (AllCRLogicalOps.back().IsNullary)
          TotalNullaryCRLogicals++;
        else if (AllCRLogicalOps.back().IsBinary)
          TotalBinaryCRLogicals++;
        else
          TotalUnaryCRLogicals++;
      }
    }
  }
}

} // end annonymous namespace

INITIALIZE_PASS_BEGIN(PPCReduceCRLogicals, DEBUG_TYPE,
                      "PowerPC Reduce CR logical Operation", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_END(PPCReduceCRLogicals, DEBUG_TYPE,
                    "PowerPC Reduce CR logical Operation", false, false)

char PPCReduceCRLogicals::ID = 0;
FunctionPass*
llvm::createPPCReduceCRLogicalsPass() { return new PPCReduceCRLogicals(); }