summaryrefslogtreecommitdiff
path: root/lib/Target/PowerPC/PPCMIPeephole.cpp
blob: 2f44b8c13a36c5a9b5982c56dec4e1f0e589dca0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
//===-------------- PPCMIPeephole.cpp - MI Peephole Cleanups -------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===---------------------------------------------------------------------===//
//
// This pass performs peephole optimizations to clean up ugly code
// sequences at the MachineInstruction layer.  It runs at the end of
// the SSA phases, following VSX swap removal.  A pass of dead code
// elimination follows this one for quick clean-up of any dead
// instructions introduced here.  Although we could do this as callbacks
// from the generic peephole pass, this would have a couple of bad
// effects:  it might remove optimization opportunities for VSX swap
// removal, and it would miss cleanups made possible following VSX
// swap removal.
//
//===---------------------------------------------------------------------===//

#include "PPC.h"
#include "PPCInstrBuilder.h"
#include "PPCInstrInfo.h"
#include "PPCTargetMachine.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Support/Debug.h"
#include "MCTargetDesc/PPCPredicates.h"

using namespace llvm;

#define DEBUG_TYPE "ppc-mi-peepholes"

STATISTIC(RemoveTOCSave, "Number of TOC saves removed");
STATISTIC(MultiTOCSaves,
          "Number of functions with multiple TOC saves that must be kept");
STATISTIC(NumEliminatedSExt, "Number of eliminated sign-extensions");
STATISTIC(NumEliminatedZExt, "Number of eliminated zero-extensions");
STATISTIC(NumOptADDLIs, "Number of optimized ADD instruction fed by LI");

static cl::opt<bool>
    EnableSExtElimination("ppc-eliminate-signext",
                          cl::desc("enable elimination of sign-extensions"),
                          cl::init(false), cl::Hidden);

static cl::opt<bool>
    EnableZExtElimination("ppc-eliminate-zeroext",
                          cl::desc("enable elimination of zero-extensions"),
                          cl::init(false), cl::Hidden);

namespace llvm {
  void initializePPCMIPeepholePass(PassRegistry&);
}

namespace {

struct PPCMIPeephole : public MachineFunctionPass {

  static char ID;
  const PPCInstrInfo *TII;
  MachineFunction *MF;
  MachineRegisterInfo *MRI;

  PPCMIPeephole() : MachineFunctionPass(ID) {
    initializePPCMIPeepholePass(*PassRegistry::getPassRegistry());
  }

private:
  MachineDominatorTree *MDT;

  // Initialize class variables.
  void initialize(MachineFunction &MFParm);

  // Perform peepholes.
  bool simplifyCode(void);

  // Perform peepholes.
  bool eliminateRedundantCompare(void);
  bool eliminateRedundantTOCSaves(std::map<MachineInstr *, bool> &TOCSaves);
  void UpdateTOCSaves(std::map<MachineInstr *, bool> &TOCSaves,
                      MachineInstr *MI);
  // Find the "true" register represented by SrcReg (following chains
  // of copies and subreg_to_reg operations).
  unsigned lookThruCopyLike(unsigned SrcReg);

public:

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<MachineDominatorTree>();
    AU.addPreserved<MachineDominatorTree>();
    MachineFunctionPass::getAnalysisUsage(AU);
  }

  // Main entry point for this pass.
  bool runOnMachineFunction(MachineFunction &MF) override {
    if (skipFunction(*MF.getFunction()))
      return false;
    initialize(MF);
    return simplifyCode();
  }
};

// Initialize class variables.
void PPCMIPeephole::initialize(MachineFunction &MFParm) {
  MF = &MFParm;
  MRI = &MF->getRegInfo();
  MDT = &getAnalysis<MachineDominatorTree>();
  TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo();
  DEBUG(dbgs() << "*** PowerPC MI peephole pass ***\n\n");
  DEBUG(MF->dump());
}

static MachineInstr *getVRegDefOrNull(MachineOperand *Op,
                                      MachineRegisterInfo *MRI) {
  assert(Op && "Invalid Operand!");
  if (!Op->isReg())
    return nullptr;

  unsigned Reg = Op->getReg();
  if (!TargetRegisterInfo::isVirtualRegister(Reg))
    return nullptr;

  return MRI->getVRegDef(Reg);
}

// This function returns number of known zero bits in output of MI
// starting from the most significant bit.
static unsigned
getKnownLeadingZeroCount(MachineInstr *MI, const PPCInstrInfo *TII) {
  unsigned Opcode = MI->getOpcode();
  if (Opcode == PPC::RLDICL || Opcode == PPC::RLDICLo ||
      Opcode == PPC::RLDCL  || Opcode == PPC::RLDCLo)
    return MI->getOperand(3).getImm();

  if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDICo) &&
       MI->getOperand(3).getImm() <= 63 - MI->getOperand(2).getImm())
    return MI->getOperand(3).getImm();

  if ((Opcode == PPC::RLWINM  || Opcode == PPC::RLWINMo ||
       Opcode == PPC::RLWNM   || Opcode == PPC::RLWNMo  ||
       Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) &&
       MI->getOperand(3).getImm() <= MI->getOperand(4).getImm())
    return 32 + MI->getOperand(3).getImm();

  if (Opcode == PPC::ANDIo) {
    uint16_t Imm = MI->getOperand(2).getImm();
    return 48 + countLeadingZeros(Imm);
  }

  if (Opcode == PPC::CNTLZW  || Opcode == PPC::CNTLZWo ||
      Opcode == PPC::CNTTZW  || Opcode == PPC::CNTTZWo ||
      Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8)
    // The result ranges from 0 to 32.
    return 58;

  if (Opcode == PPC::CNTLZD  || Opcode == PPC::CNTLZDo ||
      Opcode == PPC::CNTTZD  || Opcode == PPC::CNTTZDo)
    // The result ranges from 0 to 64.
    return 57;

  if (Opcode == PPC::LHZ   || Opcode == PPC::LHZX  ||
      Opcode == PPC::LHZ8  || Opcode == PPC::LHZX8 ||
      Opcode == PPC::LHZU  || Opcode == PPC::LHZUX ||
      Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8)
    return 48;

  if (Opcode == PPC::LBZ   || Opcode == PPC::LBZX  ||
      Opcode == PPC::LBZ8  || Opcode == PPC::LBZX8 ||
      Opcode == PPC::LBZU  || Opcode == PPC::LBZUX ||
      Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8)
    return 56;

  if (TII->isZeroExtended(*MI))
    return 32;

  return 0;
}

// This function maintains a map for the pairs <TOC Save Instr, Keep>
// Each time a new TOC save is encountered, it checks if any of the exisiting
// ones are dominated by the new one. If so, it marks the exisiting one as
// redundant by setting it's entry in the map as false. It then adds the new
// instruction to the map with either true or false depending on if any
// exisiting instructions dominated the new one.
void PPCMIPeephole::UpdateTOCSaves(
  std::map<MachineInstr *, bool> &TOCSaves, MachineInstr *MI) {
  assert(TII->isTOCSaveMI(*MI) && "Expecting a TOC save instruction here");
  bool Keep = true;
  for (auto It = TOCSaves.begin(); It != TOCSaves.end(); It++ ) {
    MachineInstr *CurrInst = It->first;
    // If new instruction dominates an exisiting one, mark exisiting one as
    // redundant.
    if (It->second && MDT->dominates(MI, CurrInst))
      It->second = false;
    // Check if the new instruction is redundant.
    if (MDT->dominates(CurrInst, MI)) {
      Keep = false;
      break;
    }
  }
  // Add new instruction to map.
  TOCSaves[MI] = Keep;
}

// Perform peephole optimizations.
bool PPCMIPeephole::simplifyCode(void) {
  bool Simplified = false;
  MachineInstr* ToErase = nullptr;
  std::map<MachineInstr *, bool> TOCSaves;

  for (MachineBasicBlock &MBB : *MF) {
    for (MachineInstr &MI : MBB) {

      // If the previous instruction was marked for elimination,
      // remove it now.
      if (ToErase) {
        ToErase->eraseFromParent();
        ToErase = nullptr;
      }

      // Ignore debug instructions.
      if (MI.isDebugValue())
        continue;

      // Per-opcode peepholes.
      switch (MI.getOpcode()) {

      default:
        break;

      case PPC::STD: {
        MachineFrameInfo &MFI = MF->getFrameInfo();
        if (MFI.hasVarSizedObjects() ||
            !MF->getSubtarget<PPCSubtarget>().isELFv2ABI())
          break;
        // When encountering a TOC save instruction, call UpdateTOCSaves
        // to add it to the TOCSaves map and mark any exisiting TOC saves
        // it dominates as redundant.
        if (TII->isTOCSaveMI(MI))
          UpdateTOCSaves(TOCSaves, &MI);
        break;
      }
      case PPC::XXPERMDI: {
        // Perform simplifications of 2x64 vector swaps and splats.
        // A swap is identified by an immediate value of 2, and a splat
        // is identified by an immediate value of 0 or 3.
        int Immed = MI.getOperand(3).getImm();

        if (Immed != 1) {

          // For each of these simplifications, we need the two source
          // regs to match.  Unfortunately, MachineCSE ignores COPY and
          // SUBREG_TO_REG, so for example we can see
          //   XXPERMDI t, SUBREG_TO_REG(s), SUBREG_TO_REG(s), immed.
          // We have to look through chains of COPY and SUBREG_TO_REG
          // to find the real source values for comparison.
          unsigned TrueReg1 = lookThruCopyLike(MI.getOperand(1).getReg());
          unsigned TrueReg2 = lookThruCopyLike(MI.getOperand(2).getReg());

          if (TrueReg1 == TrueReg2
              && TargetRegisterInfo::isVirtualRegister(TrueReg1)) {
            MachineInstr *DefMI = MRI->getVRegDef(TrueReg1);
            unsigned DefOpc = DefMI ? DefMI->getOpcode() : 0;

            // If this is a splat fed by a splatting load, the splat is
            // redundant. Replace with a copy. This doesn't happen directly due
            // to code in PPCDAGToDAGISel.cpp, but it can happen when converting
            // a load of a double to a vector of 64-bit integers.
            auto isConversionOfLoadAndSplat = [=]() -> bool {
              if (DefOpc != PPC::XVCVDPSXDS && DefOpc != PPC::XVCVDPUXDS)
                return false;
              unsigned DefReg = lookThruCopyLike(DefMI->getOperand(1).getReg());
              if (TargetRegisterInfo::isVirtualRegister(DefReg)) {
                MachineInstr *LoadMI = MRI->getVRegDef(DefReg);
                if (LoadMI && LoadMI->getOpcode() == PPC::LXVDSX)
                  return true;
              }
              return false;
            };
            if (DefMI && (Immed == 0 || Immed == 3)) {
              if (DefOpc == PPC::LXVDSX || isConversionOfLoadAndSplat()) {
                DEBUG(dbgs()
                      << "Optimizing load-and-splat/splat "
                      "to load-and-splat/copy: ");
                DEBUG(MI.dump());
                BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
                        MI.getOperand(0).getReg())
                    .add(MI.getOperand(1));
                ToErase = &MI;
                Simplified = true;
              }
            }

            // If this is a splat or a swap fed by another splat, we
            // can replace it with a copy.
            if (DefOpc == PPC::XXPERMDI) {
              unsigned FeedImmed = DefMI->getOperand(3).getImm();
              unsigned FeedReg1
                = lookThruCopyLike(DefMI->getOperand(1).getReg());
              unsigned FeedReg2
                = lookThruCopyLike(DefMI->getOperand(2).getReg());

              if ((FeedImmed == 0 || FeedImmed == 3) && FeedReg1 == FeedReg2) {
                DEBUG(dbgs()
                      << "Optimizing splat/swap or splat/splat "
                      "to splat/copy: ");
                DEBUG(MI.dump());
                BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
                        MI.getOperand(0).getReg())
                    .add(MI.getOperand(1));
                ToErase = &MI;
                Simplified = true;
              }

              // If this is a splat fed by a swap, we can simplify modify
              // the splat to splat the other value from the swap's input
              // parameter.
              else if ((Immed == 0 || Immed == 3)
                       && FeedImmed == 2 && FeedReg1 == FeedReg2) {
                DEBUG(dbgs() << "Optimizing swap/splat => splat: ");
                DEBUG(MI.dump());
                MI.getOperand(1).setReg(DefMI->getOperand(1).getReg());
                MI.getOperand(2).setReg(DefMI->getOperand(2).getReg());
                MI.getOperand(3).setImm(3 - Immed);
                Simplified = true;
              }

              // If this is a swap fed by a swap, we can replace it
              // with a copy from the first swap's input.
              else if (Immed == 2 && FeedImmed == 2 && FeedReg1 == FeedReg2) {
                DEBUG(dbgs() << "Optimizing swap/swap => copy: ");
                DEBUG(MI.dump());
                BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
                        MI.getOperand(0).getReg())
                    .add(DefMI->getOperand(1));
                ToErase = &MI;
                Simplified = true;
              }
            } else if ((Immed == 0 || Immed == 3) && DefOpc == PPC::XXPERMDIs &&
                       (DefMI->getOperand(2).getImm() == 0 ||
                        DefMI->getOperand(2).getImm() == 3)) {
              // Splat fed by another splat - switch the output of the first
              // and remove the second.
              DefMI->getOperand(0).setReg(MI.getOperand(0).getReg());
              ToErase = &MI;
              Simplified = true;
              DEBUG(dbgs() << "Removing redundant splat: ");
              DEBUG(MI.dump());
            }
          }
        }
        break;
      }
      case PPC::VSPLTB:
      case PPC::VSPLTH:
      case PPC::XXSPLTW: {
        unsigned MyOpcode = MI.getOpcode();
        unsigned OpNo = MyOpcode == PPC::XXSPLTW ? 1 : 2;
        unsigned TrueReg = lookThruCopyLike(MI.getOperand(OpNo).getReg());
        if (!TargetRegisterInfo::isVirtualRegister(TrueReg))
          break;
        MachineInstr *DefMI = MRI->getVRegDef(TrueReg);
        if (!DefMI)
          break;
        unsigned DefOpcode = DefMI->getOpcode();
        auto isConvertOfSplat = [=]() -> bool {
          if (DefOpcode != PPC::XVCVSPSXWS && DefOpcode != PPC::XVCVSPUXWS)
            return false;
          unsigned ConvReg = DefMI->getOperand(1).getReg();
          if (!TargetRegisterInfo::isVirtualRegister(ConvReg))
            return false;
          MachineInstr *Splt = MRI->getVRegDef(ConvReg);
          return Splt && (Splt->getOpcode() == PPC::LXVWSX ||
            Splt->getOpcode() == PPC::XXSPLTW);
        };
        bool AlreadySplat = (MyOpcode == DefOpcode) ||
          (MyOpcode == PPC::VSPLTB && DefOpcode == PPC::VSPLTBs) ||
          (MyOpcode == PPC::VSPLTH && DefOpcode == PPC::VSPLTHs) ||
          (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::XXSPLTWs) ||
          (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::LXVWSX) ||
          (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::MTVSRWS)||
          (MyOpcode == PPC::XXSPLTW && isConvertOfSplat());
        // If the instruction[s] that feed this splat have already splat
        // the value, this splat is redundant.
        if (AlreadySplat) {
          DEBUG(dbgs() << "Changing redundant splat to a copy: ");
          DEBUG(MI.dump());
          BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
                  MI.getOperand(0).getReg())
              .add(MI.getOperand(OpNo));
          ToErase = &MI;
          Simplified = true;
        }
        // Splat fed by a shift. Usually when we align value to splat into
        // vector element zero.
        if (DefOpcode == PPC::XXSLDWI) {
          unsigned ShiftRes = DefMI->getOperand(0).getReg();
          unsigned ShiftOp1 = DefMI->getOperand(1).getReg();
          unsigned ShiftOp2 = DefMI->getOperand(2).getReg();
          unsigned ShiftImm = DefMI->getOperand(3).getImm();
          unsigned SplatImm = MI.getOperand(2).getImm();
          if (ShiftOp1 == ShiftOp2) {
            unsigned NewElem = (SplatImm + ShiftImm) & 0x3;
            if (MRI->hasOneNonDBGUse(ShiftRes)) {
              DEBUG(dbgs() << "Removing redundant shift: ");
              DEBUG(DefMI->dump());
              ToErase = DefMI;
            }
            Simplified = true;
            DEBUG(dbgs() << "Changing splat immediate from " << SplatImm <<
                  " to " << NewElem << " in instruction: ");
            DEBUG(MI.dump());
            MI.getOperand(1).setReg(ShiftOp1);
            MI.getOperand(2).setImm(NewElem);
          }
        }
        break;
      }
      case PPC::XVCVDPSP: {
        // If this is a DP->SP conversion fed by an FRSP, the FRSP is redundant.
        unsigned TrueReg = lookThruCopyLike(MI.getOperand(1).getReg());
        if (!TargetRegisterInfo::isVirtualRegister(TrueReg))
          break;
        MachineInstr *DefMI = MRI->getVRegDef(TrueReg);

        // This can occur when building a vector of single precision or integer
        // values.
        if (DefMI && DefMI->getOpcode() == PPC::XXPERMDI) {
          unsigned DefsReg1 = lookThruCopyLike(DefMI->getOperand(1).getReg());
          unsigned DefsReg2 = lookThruCopyLike(DefMI->getOperand(2).getReg());
          if (!TargetRegisterInfo::isVirtualRegister(DefsReg1) ||
              !TargetRegisterInfo::isVirtualRegister(DefsReg2))
            break;
          MachineInstr *P1 = MRI->getVRegDef(DefsReg1);
          MachineInstr *P2 = MRI->getVRegDef(DefsReg2);

          if (!P1 || !P2)
            break;

          // Remove the passed FRSP instruction if it only feeds this MI and
          // set any uses of that FRSP (in this MI) to the source of the FRSP.
          auto removeFRSPIfPossible = [&](MachineInstr *RoundInstr) {
            if (RoundInstr->getOpcode() == PPC::FRSP &&
                MRI->hasOneNonDBGUse(RoundInstr->getOperand(0).getReg())) {
              Simplified = true;
              unsigned ConvReg1 = RoundInstr->getOperand(1).getReg();
              unsigned FRSPDefines = RoundInstr->getOperand(0).getReg();
              MachineInstr &Use = *(MRI->use_instr_begin(FRSPDefines));
              for (int i = 0, e = Use.getNumOperands(); i < e; ++i)
                if (Use.getOperand(i).isReg() &&
                    Use.getOperand(i).getReg() == FRSPDefines)
                  Use.getOperand(i).setReg(ConvReg1);
              DEBUG(dbgs() << "Removing redundant FRSP:\n");
              DEBUG(RoundInstr->dump());
              DEBUG(dbgs() << "As it feeds instruction:\n");
              DEBUG(MI.dump());
              DEBUG(dbgs() << "Through instruction:\n");
              DEBUG(DefMI->dump());
              RoundInstr->eraseFromParent();
            }
          };

          // If the input to XVCVDPSP is a vector that was built (even
          // partially) out of FRSP's, the FRSP(s) can safely be removed
          // since this instruction performs the same operation.
          if (P1 != P2) {
            removeFRSPIfPossible(P1);
            removeFRSPIfPossible(P2);
            break;
          }
          removeFRSPIfPossible(P1);
        }
        break;
      }
      case PPC::EXTSH:
      case PPC::EXTSH8:
      case PPC::EXTSH8_32_64: {
        if (!EnableSExtElimination) break;
        unsigned NarrowReg = MI.getOperand(1).getReg();
        if (!TargetRegisterInfo::isVirtualRegister(NarrowReg))
          break;

        MachineInstr *SrcMI = MRI->getVRegDef(NarrowReg);
        // If we've used a zero-extending load that we will sign-extend,
        // just do a sign-extending load.
        if (SrcMI->getOpcode() == PPC::LHZ ||
            SrcMI->getOpcode() == PPC::LHZX) {
          if (!MRI->hasOneNonDBGUse(SrcMI->getOperand(0).getReg()))
            break;
          auto is64Bit = [] (unsigned Opcode) {
            return Opcode == PPC::EXTSH8;
          };
          auto isXForm = [] (unsigned Opcode) {
            return Opcode == PPC::LHZX;
          };
          auto getSextLoadOp = [] (bool is64Bit, bool isXForm) {
            if (is64Bit)
              if (isXForm) return PPC::LHAX8;
              else         return PPC::LHA8;
            else
              if (isXForm) return PPC::LHAX;
              else         return PPC::LHA;
          };
          unsigned Opc = getSextLoadOp(is64Bit(MI.getOpcode()),
                                       isXForm(SrcMI->getOpcode()));
          DEBUG(dbgs() << "Zero-extending load\n");
          DEBUG(SrcMI->dump());
          DEBUG(dbgs() << "and sign-extension\n");
          DEBUG(MI.dump());
          DEBUG(dbgs() << "are merged into sign-extending load\n");
          SrcMI->setDesc(TII->get(Opc));
          SrcMI->getOperand(0).setReg(MI.getOperand(0).getReg());
          ToErase = &MI;
          Simplified = true;
          NumEliminatedSExt++;
        }
        break;
      }
      case PPC::EXTSW:
      case PPC::EXTSW_32:
      case PPC::EXTSW_32_64: {
        if (!EnableSExtElimination) break;
        unsigned NarrowReg = MI.getOperand(1).getReg();
        if (!TargetRegisterInfo::isVirtualRegister(NarrowReg))
          break;

        MachineInstr *SrcMI = MRI->getVRegDef(NarrowReg);
        // If we've used a zero-extending load that we will sign-extend,
        // just do a sign-extending load.
        if (SrcMI->getOpcode() == PPC::LWZ ||
            SrcMI->getOpcode() == PPC::LWZX) {
          if (!MRI->hasOneNonDBGUse(SrcMI->getOperand(0).getReg()))
            break;
          auto is64Bit = [] (unsigned Opcode) {
            return Opcode == PPC::EXTSW || Opcode == PPC::EXTSW_32_64;
          };
          auto isXForm = [] (unsigned Opcode) {
            return Opcode == PPC::LWZX;
          };
          auto getSextLoadOp = [] (bool is64Bit, bool isXForm) {
            if (is64Bit)
              if (isXForm) return PPC::LWAX;
              else         return PPC::LWA;
            else
              if (isXForm) return PPC::LWAX_32;
              else         return PPC::LWA_32;
          };
          unsigned Opc = getSextLoadOp(is64Bit(MI.getOpcode()),
                                       isXForm(SrcMI->getOpcode()));
          DEBUG(dbgs() << "Zero-extending load\n");
          DEBUG(SrcMI->dump());
          DEBUG(dbgs() << "and sign-extension\n");
          DEBUG(MI.dump());
          DEBUG(dbgs() << "are merged into sign-extending load\n");
          SrcMI->setDesc(TII->get(Opc));
          SrcMI->getOperand(0).setReg(MI.getOperand(0).getReg());
          ToErase = &MI;
          Simplified = true;
          NumEliminatedSExt++;
        } else if (MI.getOpcode() == PPC::EXTSW_32_64 &&
                   TII->isSignExtended(*SrcMI)) {
          // We can eliminate EXTSW if the input is known to be already
          // sign-extended.
          DEBUG(dbgs() << "Removing redundant sign-extension\n");
          unsigned TmpReg =
            MF->getRegInfo().createVirtualRegister(&PPC::G8RCRegClass);
          BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::IMPLICIT_DEF),
                  TmpReg);
          BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::INSERT_SUBREG),
                  MI.getOperand(0).getReg())
              .addReg(TmpReg)
              .addReg(NarrowReg)
              .addImm(PPC::sub_32);
          ToErase = &MI;
          Simplified = true;
          NumEliminatedSExt++;
        }
        break;
      }
      case PPC::RLDICL: {
        // We can eliminate RLDICL (e.g. for zero-extension)
        // if all bits to clear are already zero in the input.
        // This code assume following code sequence for zero-extension.
        //   %6 = COPY %5:sub_32; (optional)
        //   %8 = IMPLICIT_DEF;
        //   %7<def,tied1> = INSERT_SUBREG %8<tied0>, %6, sub_32;
        if (!EnableZExtElimination) break;

        if (MI.getOperand(2).getImm() != 0)
          break;

        unsigned SrcReg = MI.getOperand(1).getReg();
        if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
          break;

        MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
        if (!(SrcMI && SrcMI->getOpcode() == PPC::INSERT_SUBREG &&
              SrcMI->getOperand(0).isReg() && SrcMI->getOperand(1).isReg()))
          break;

        MachineInstr *ImpDefMI, *SubRegMI;
        ImpDefMI = MRI->getVRegDef(SrcMI->getOperand(1).getReg());
        SubRegMI = MRI->getVRegDef(SrcMI->getOperand(2).getReg());
        if (ImpDefMI->getOpcode() != PPC::IMPLICIT_DEF) break;

        SrcMI = SubRegMI;
        if (SubRegMI->getOpcode() == PPC::COPY) {
          unsigned CopyReg = SubRegMI->getOperand(1).getReg();
          if (TargetRegisterInfo::isVirtualRegister(CopyReg))
            SrcMI = MRI->getVRegDef(CopyReg);
        }

        unsigned KnownZeroCount = getKnownLeadingZeroCount(SrcMI, TII);
        if (MI.getOperand(3).getImm() <= KnownZeroCount) {
          DEBUG(dbgs() << "Removing redundant zero-extension\n");
          BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
                  MI.getOperand(0).getReg())
              .addReg(SrcReg);
          ToErase = &MI;
          Simplified = true;
          NumEliminatedZExt++;
        }
        break;
      }

      // TODO: Any instruction that has an immediate form fed only by a PHI
      // whose operands are all load immediate can be folded away. We currently
      // do this for ADD instructions, but should expand it to arithmetic and
      // binary instructions with immediate forms in the future.
      case PPC::ADD4:
      case PPC::ADD8: {
        auto isSingleUsePHI = [&](MachineOperand *PhiOp) {
          assert(PhiOp && "Invalid Operand!");
          MachineInstr *DefPhiMI = getVRegDefOrNull(PhiOp, MRI);

          return DefPhiMI && (DefPhiMI->getOpcode() == PPC::PHI) &&
                 MRI->hasOneNonDBGUse(DefPhiMI->getOperand(0).getReg());
        };

        auto dominatesAllSingleUseLIs = [&](MachineOperand *DominatorOp,
                                            MachineOperand *PhiOp) {
          assert(PhiOp && "Invalid Operand!");
          assert(DominatorOp && "Invalid Operand!");
          MachineInstr *DefPhiMI = getVRegDefOrNull(PhiOp, MRI);
          MachineInstr *DefDomMI = getVRegDefOrNull(DominatorOp, MRI);

          // Note: the vregs only show up at odd indices position of PHI Node,
          // the even indices position save the BB info.
          for (unsigned i = 1; i < DefPhiMI->getNumOperands(); i += 2) {
            MachineInstr *LiMI =
                getVRegDefOrNull(&DefPhiMI->getOperand(i), MRI);
            if (!LiMI ||
                (LiMI->getOpcode() != PPC::LI && LiMI->getOpcode() != PPC::LI8)
                || !MRI->hasOneNonDBGUse(LiMI->getOperand(0).getReg()) ||
                !MDT->dominates(DefDomMI, LiMI))
              return false;
          }

          return true;
        };

        MachineOperand Op1 = MI.getOperand(1);
        MachineOperand Op2 = MI.getOperand(2);
        if (isSingleUsePHI(&Op2) && dominatesAllSingleUseLIs(&Op1, &Op2))
          std::swap(Op1, Op2);
        else if (!isSingleUsePHI(&Op1) || !dominatesAllSingleUseLIs(&Op2, &Op1))
          break; // We don't have an ADD fed by LI's that can be transformed

        // Now we know that Op1 is the PHI node and Op2 is the dominator
        unsigned DominatorReg = Op2.getReg();

        const TargetRegisterClass *TRC = MI.getOpcode() == PPC::ADD8
                                             ? &PPC::G8RC_and_G8RC_NOX0RegClass
                                             : &PPC::GPRC_and_GPRC_NOR0RegClass;
        MRI->setRegClass(DominatorReg, TRC);

        // replace LIs with ADDIs
        MachineInstr *DefPhiMI = getVRegDefOrNull(&Op1, MRI);
        for (unsigned i = 1; i < DefPhiMI->getNumOperands(); i += 2) {
          MachineInstr *LiMI = getVRegDefOrNull(&DefPhiMI->getOperand(i), MRI);
          DEBUG(dbgs() << "Optimizing LI to ADDI: ");
          DEBUG(LiMI->dump());

          // There could be repeated registers in the PHI, e.g: %1 =
          // PHI %6, <%bb.2>, %8, <%bb.3>, %8, <%bb.6>; So if we've
          // already replaced the def instruction, skip.
          if (LiMI->getOpcode() == PPC::ADDI || LiMI->getOpcode() == PPC::ADDI8)
            continue;

          assert((LiMI->getOpcode() == PPC::LI ||
                  LiMI->getOpcode() == PPC::LI8) &&
                 "Invalid Opcode!");
          auto LiImm = LiMI->getOperand(1).getImm(); // save the imm of LI
          LiMI->RemoveOperand(1);                    // remove the imm of LI
          LiMI->setDesc(TII->get(LiMI->getOpcode() == PPC::LI ? PPC::ADDI
                                                              : PPC::ADDI8));
          MachineInstrBuilder(*LiMI->getParent()->getParent(), *LiMI)
              .addReg(DominatorReg)
              .addImm(LiImm); // restore the imm of LI
          DEBUG(LiMI->dump());
        }

        // Replace ADD with COPY
        DEBUG(dbgs() << "Optimizing ADD to COPY: ");
        DEBUG(MI.dump());
        BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
                MI.getOperand(0).getReg())
            .add(Op1);
        ToErase = &MI;
        Simplified = true;
        NumOptADDLIs++;
        break;
      }
      }
    }

    // If the last instruction was marked for elimination,
    // remove it now.
    if (ToErase) {
      ToErase->eraseFromParent();
      ToErase = nullptr;
    }
  }

  // Eliminate all the TOC save instructions which are redundant.
  Simplified |= eliminateRedundantTOCSaves(TOCSaves);
  // We try to eliminate redundant compare instruction.
  //Simplified |= eliminateRedundantCompare();

  return Simplified;
}

// helper functions for eliminateRedundantCompare
static bool isEqOrNe(MachineInstr *BI) {
  PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm();
  unsigned PredCond = PPC::getPredicateCondition(Pred);
  return (PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE);
}

static bool isSupportedCmpOp(unsigned opCode) {
  return (opCode == PPC::CMPLD  || opCode == PPC::CMPD  ||
          opCode == PPC::CMPLW  || opCode == PPC::CMPW  ||
          opCode == PPC::CMPLDI || opCode == PPC::CMPDI ||
          opCode == PPC::CMPLWI || opCode == PPC::CMPWI);
}

static bool is64bitCmpOp(unsigned opCode) {
  return (opCode == PPC::CMPLD  || opCode == PPC::CMPD ||
          opCode == PPC::CMPLDI || opCode == PPC::CMPDI);
}

static bool isSignedCmpOp(unsigned opCode) {
  return (opCode == PPC::CMPD  || opCode == PPC::CMPW ||
          opCode == PPC::CMPDI || opCode == PPC::CMPWI);
}

static unsigned getSignedCmpOpCode(unsigned opCode) {
  if (opCode == PPC::CMPLD)  return PPC::CMPD;
  if (opCode == PPC::CMPLW)  return PPC::CMPW;
  if (opCode == PPC::CMPLDI) return PPC::CMPDI;
  if (opCode == PPC::CMPLWI) return PPC::CMPWI;
  return opCode;
}

// We can decrement immediate x in (GE x) by changing it to (GT x-1) or
// (LT x) to (LE x-1)
static unsigned getPredicateToDecImm(MachineInstr *BI, MachineInstr *CMPI) {
  uint64_t Imm = CMPI->getOperand(2).getImm();
  bool SignedCmp = isSignedCmpOp(CMPI->getOpcode());
  if ((!SignedCmp && Imm == 0) || (SignedCmp && Imm == 0x8000))
    return 0;

  PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm();
  unsigned PredCond = PPC::getPredicateCondition(Pred);
  unsigned PredHint = PPC::getPredicateHint(Pred);
  if (PredCond == PPC::PRED_GE)
    return PPC::getPredicate(PPC::PRED_GT, PredHint);
  if (PredCond == PPC::PRED_LT)
    return PPC::getPredicate(PPC::PRED_LE, PredHint);

  return 0;
}

// We can increment immediate x in (GT x) by changing it to (GE x+1) or
// (LE x) to (LT x+1)
static unsigned getPredicateToIncImm(MachineInstr *BI, MachineInstr *CMPI) {
  uint64_t Imm = CMPI->getOperand(2).getImm();
  bool SignedCmp = isSignedCmpOp(CMPI->getOpcode());
  if ((!SignedCmp && Imm == 0xFFFF) || (SignedCmp && Imm == 0x7FFF))
    return 0;

  PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm();
  unsigned PredCond = PPC::getPredicateCondition(Pred);
  unsigned PredHint = PPC::getPredicateHint(Pred);
  if (PredCond == PPC::PRED_GT)
    return PPC::getPredicate(PPC::PRED_GE, PredHint);
  if (PredCond == PPC::PRED_LE)
    return PPC::getPredicate(PPC::PRED_LT, PredHint);

  return 0;
}

// This takes a Phi node and returns a register value for the spefied BB.
static unsigned getIncomingRegForBlock(MachineInstr *Phi,
                                       MachineBasicBlock *MBB) {
  for (unsigned I = 2, E = Phi->getNumOperands() + 1; I != E; I += 2) {
    MachineOperand &MO = Phi->getOperand(I);
    if (MO.getMBB() == MBB)
      return Phi->getOperand(I-1).getReg();
  }
  llvm_unreachable("invalid src basic block for this Phi node\n");
  return 0;
}

// This function tracks the source of the register through register copy.
// If BB1 and BB2 are non-NULL, we also track PHI instruction in BB2
// assuming that the control comes from BB1 into BB2.
static unsigned getSrcVReg(unsigned Reg, MachineBasicBlock *BB1,
                           MachineBasicBlock *BB2, MachineRegisterInfo *MRI) {
  unsigned SrcReg = Reg;
  while (1) {
    unsigned NextReg = SrcReg;
    MachineInstr *Inst = MRI->getVRegDef(SrcReg);
    if (BB1 && Inst->getOpcode() == PPC::PHI && Inst->getParent() == BB2) {
      NextReg = getIncomingRegForBlock(Inst, BB1);
      // We track through PHI only once to avoid infinite loop.
      BB1 = nullptr;
    }
    else if (Inst->isFullCopy())
      NextReg = Inst->getOperand(1).getReg();
    if (NextReg == SrcReg || !TargetRegisterInfo::isVirtualRegister(NextReg))
      break;
    SrcReg = NextReg;
  }
  return SrcReg;
}

static bool eligibleForCompareElimination(MachineBasicBlock &MBB,
                                          MachineBasicBlock *&PredMBB,
                                          MachineBasicBlock *&MBBtoMoveCmp,
                                          MachineRegisterInfo *MRI) {

  auto isEligibleBB = [&](MachineBasicBlock &BB) {
    auto BII = BB.getFirstInstrTerminator();
    // We optimize BBs ending with a conditional branch.
    // We check only for BCC here, not BCCLR, because BCCLR
    // will be formed only later in the pipeline. 
    if (BB.succ_size() == 2 &&
        BII != BB.instr_end() &&
        (*BII).getOpcode() == PPC::BCC &&
        (*BII).getOperand(1).isReg()) {
      // We optimize only if the condition code is used only by one BCC.
      unsigned CndReg = (*BII).getOperand(1).getReg();
      if (!TargetRegisterInfo::isVirtualRegister(CndReg) ||
          !MRI->hasOneNonDBGUse(CndReg))
        return false;

      MachineInstr *CMPI = MRI->getVRegDef(CndReg);
      // We assume compare and branch are in the same BB for ease of analysis.
      if (CMPI->getParent() != &BB)
        return false;

      // We skip this BB if a physical register is used in comparison.
      for (MachineOperand &MO : CMPI->operands())
        if (MO.isReg() && !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
          return false;

      return true;
    }
    return false;
  };

  // If this BB has more than one successor, we can create a new BB and
  // move the compare instruction in the new BB.
  // So far, we do not move compare instruction to a BB having multiple
  // successors to avoid potentially increasing code size.
  auto isEligibleForMoveCmp = [](MachineBasicBlock &BB) {
    return BB.succ_size() == 1;
  };

  if (!isEligibleBB(MBB))
    return false;

  unsigned NumPredBBs = MBB.pred_size();
  if (NumPredBBs == 1) {
    MachineBasicBlock *TmpMBB = *MBB.pred_begin();
    if (isEligibleBB(*TmpMBB)) {
      PredMBB = TmpMBB;
      MBBtoMoveCmp = nullptr;
      return true;
    }
  }
  else if (NumPredBBs == 2) {
    // We check for partially redundant case.
    // So far, we support cases with only two predecessors
    // to avoid increasing the number of instructions.
    MachineBasicBlock::pred_iterator PI = MBB.pred_begin();
    MachineBasicBlock *Pred1MBB = *PI;
    MachineBasicBlock *Pred2MBB = *(PI+1);

    if (isEligibleBB(*Pred1MBB) && isEligibleForMoveCmp(*Pred2MBB)) {
      // We assume Pred1MBB is the BB containing the compare to be merged and
      // Pred2MBB is the BB to which we will append a compare instruction.
      // Hence we can proceed as is.
    }
    else if (isEligibleBB(*Pred2MBB) && isEligibleForMoveCmp(*Pred1MBB)) {
      // We need to swap Pred1MBB and Pred2MBB to canonicalize.
      std::swap(Pred1MBB, Pred2MBB);
    }
    else return false;

    // Here, Pred2MBB is the BB to which we need to append a compare inst.
    // We cannot move the compare instruction if operands are not available
    // in Pred2MBB (i.e. defined in MBB by an instruction other than PHI).
    MachineInstr *BI = &*MBB.getFirstInstrTerminator();
    MachineInstr *CMPI = MRI->getVRegDef(BI->getOperand(1).getReg());
    for (int I = 1; I <= 2; I++)
      if (CMPI->getOperand(I).isReg()) {
        MachineInstr *Inst = MRI->getVRegDef(CMPI->getOperand(I).getReg());
        if (Inst->getParent() == &MBB && Inst->getOpcode() != PPC::PHI)
          return false;
      }

    PredMBB = Pred1MBB;
    MBBtoMoveCmp = Pred2MBB;
    return true;
  }

  return false;
}

// This function will iterate over the input map containing a pair of TOC save
// instruction and a flag. The flag will be set to false if the TOC save is proven
// redundant. This function will erase from the basic block all the TOC saves
// marked as redundant.
bool PPCMIPeephole::eliminateRedundantTOCSaves(
    std::map<MachineInstr *, bool> &TOCSaves) {
  bool Simplified = false;
  int NumKept = 0;
  for (auto TOCSave : TOCSaves) {
    if (!TOCSave.second) {
      TOCSave.first->eraseFromParent();
      RemoveTOCSave++;
      Simplified = true;
    } else {
      NumKept++;
    }
  }

  if (NumKept > 1)
    MultiTOCSaves++;

  return Simplified;
}

// If multiple conditional branches are executed based on the (essentially)
// same comparison, we merge compare instructions into one and make multiple
// conditional branches on this comparison.
// For example,
//   if (a == 0) { ... }
//   else if (a < 0) { ... }
// can be executed by one compare and two conditional branches instead of
// two pairs of a compare and a conditional branch.
//
// This method merges two compare instructions in two MBBs and modifies the
// compare and conditional branch instructions if needed.
// For the above example, the input for this pass looks like:
//   cmplwi r3, 0
//   beq    0, .LBB0_3
//   cmpwi  r3, -1
//   bgt    0, .LBB0_4
// So, before merging two compares, we need to modify these instructions as
//   cmpwi  r3, 0       ; cmplwi and cmpwi yield same result for beq
//   beq    0, .LBB0_3
//   cmpwi  r3, 0       ; greather than -1 means greater or equal to 0
//   bge    0, .LBB0_4

bool PPCMIPeephole::eliminateRedundantCompare(void) {
  bool Simplified = false;

  for (MachineBasicBlock &MBB2 : *MF) {
    MachineBasicBlock *MBB1 = nullptr, *MBBtoMoveCmp = nullptr;

    // For fully redundant case, we select two basic blocks MBB1 and MBB2
    // as an optimization target if
    // - both MBBs end with a conditional branch,
    // - MBB1 is the only predecessor of MBB2, and
    // - compare does not take a physical register as a operand in both MBBs.
    // In this case, eligibleForCompareElimination sets MBBtoMoveCmp nullptr.
    //
    // As partially redundant case, we additionally handle if MBB2 has one
    // additional predecessor, which has only one successor (MBB2).
    // In this case, we move the compare instruction originally in MBB2 into
    // MBBtoMoveCmp. This partially redundant case is typically appear by
    // compiling a while loop; here, MBBtoMoveCmp is the loop preheader.
    //
    // Overview of CFG of related basic blocks
    // Fully redundant case        Partially redundant case
    //   --------                   ----------------  --------
    //   | MBB1 | (w/ 2 succ)       | MBBtoMoveCmp |  | MBB1 | (w/ 2 succ)
    //   --------                   ----------------  --------
    //      |    \                     (w/ 1 succ) \     |    \
    //      |     \                                 \    |     \
    //      |                                        \   |
    //   --------                                     --------
    //   | MBB2 | (w/ 1 pred                          | MBB2 | (w/ 2 pred
    //   -------- and 2 succ)                         -------- and 2 succ)
    //      |    \                                       |    \
    //      |     \                                      |     \
    //
    if (!eligibleForCompareElimination(MBB2, MBB1, MBBtoMoveCmp, MRI))
      continue;

    MachineInstr *BI1   = &*MBB1->getFirstInstrTerminator();
    MachineInstr *CMPI1 = MRI->getVRegDef(BI1->getOperand(1).getReg());

    MachineInstr *BI2   = &*MBB2.getFirstInstrTerminator();
    MachineInstr *CMPI2 = MRI->getVRegDef(BI2->getOperand(1).getReg());
    bool IsPartiallyRedundant = (MBBtoMoveCmp != nullptr);

    // We cannot optimize an unsupported compare opcode or
    // a mix of 32-bit and 64-bit comaprisons
    if (!isSupportedCmpOp(CMPI1->getOpcode()) ||
        !isSupportedCmpOp(CMPI2->getOpcode()) ||
        is64bitCmpOp(CMPI1->getOpcode()) != is64bitCmpOp(CMPI2->getOpcode()))
      continue;

    unsigned NewOpCode = 0;
    unsigned NewPredicate1 = 0, NewPredicate2 = 0;
    int16_t Imm1 = 0, NewImm1 = 0, Imm2 = 0, NewImm2 = 0;
    bool SwapOperands = false;

    if (CMPI1->getOpcode() != CMPI2->getOpcode()) {
      // Typically, unsigned comparison is used for equality check, but
      // we replace it with a signed comparison if the comparison
      // to be merged is a signed comparison.
      // In other cases of opcode mismatch, we cannot optimize this.
      if (isEqOrNe(BI2) &&
          CMPI1->getOpcode() == getSignedCmpOpCode(CMPI2->getOpcode()))
        NewOpCode = CMPI1->getOpcode();
      else if (isEqOrNe(BI1) &&
               getSignedCmpOpCode(CMPI1->getOpcode()) == CMPI2->getOpcode())
        NewOpCode = CMPI2->getOpcode();
      else continue;
    }

    if (CMPI1->getOperand(2).isReg() && CMPI2->getOperand(2).isReg()) {
      // In case of comparisons between two registers, these two registers
      // must be same to merge two comparisons.
      unsigned Cmp1Operand1 = getSrcVReg(CMPI1->getOperand(1).getReg(),
                                         nullptr, nullptr, MRI);
      unsigned Cmp1Operand2 = getSrcVReg(CMPI1->getOperand(2).getReg(),
                                         nullptr, nullptr, MRI);
      unsigned Cmp2Operand1 = getSrcVReg(CMPI2->getOperand(1).getReg(),
                                         MBB1, &MBB2, MRI);
      unsigned Cmp2Operand2 = getSrcVReg(CMPI2->getOperand(2).getReg(),
                                         MBB1, &MBB2, MRI);

      if (Cmp1Operand1 == Cmp2Operand1 && Cmp1Operand2 == Cmp2Operand2) {
        // Same pair of registers in the same order; ready to merge as is.
      }
      else if (Cmp1Operand1 == Cmp2Operand2 && Cmp1Operand2 == Cmp2Operand1) {
        // Same pair of registers in different order.
        // We reverse the predicate to merge compare instructions.
        PPC::Predicate Pred = (PPC::Predicate)BI2->getOperand(0).getImm();
        NewPredicate2 = (unsigned)PPC::getSwappedPredicate(Pred);
        // In case of partial redundancy, we need to swap operands
        // in another compare instruction.
        SwapOperands = true;
      }
      else continue;
    }
    else if (CMPI1->getOperand(2).isImm() && CMPI2->getOperand(2).isImm()) {
      // In case of comparisons between a register and an immediate,
      // the operand register must be same for two compare instructions.
      unsigned Cmp1Operand1 = getSrcVReg(CMPI1->getOperand(1).getReg(),
                                         nullptr, nullptr, MRI);
      unsigned Cmp2Operand1 = getSrcVReg(CMPI2->getOperand(1).getReg(),
                                         MBB1, &MBB2, MRI);
      if (Cmp1Operand1 != Cmp2Operand1)
        continue;

      NewImm1 = Imm1 = (int16_t)CMPI1->getOperand(2).getImm();
      NewImm2 = Imm2 = (int16_t)CMPI2->getOperand(2).getImm();

      // If immediate are not same, we try to adjust by changing predicate;
      // e.g. GT imm means GE (imm+1).
      if (Imm1 != Imm2 && (!isEqOrNe(BI2) || !isEqOrNe(BI1))) {
        int Diff = Imm1 - Imm2;
        if (Diff < -2 || Diff > 2)
          continue;

        unsigned PredToInc1 = getPredicateToIncImm(BI1, CMPI1);
        unsigned PredToDec1 = getPredicateToDecImm(BI1, CMPI1);
        unsigned PredToInc2 = getPredicateToIncImm(BI2, CMPI2);
        unsigned PredToDec2 = getPredicateToDecImm(BI2, CMPI2);
        if (Diff == 2) {
          if (PredToInc2 && PredToDec1) {
            NewPredicate2 = PredToInc2;
            NewPredicate1 = PredToDec1;
            NewImm2++;
            NewImm1--;
          }
        }
        else if (Diff == 1) {
          if (PredToInc2) {
            NewImm2++;
            NewPredicate2 = PredToInc2;
          }
          else if (PredToDec1) {
            NewImm1--;
            NewPredicate1 = PredToDec1;
          }
        }
        else if (Diff == -1) {
          if (PredToDec2) {
            NewImm2--;
            NewPredicate2 = PredToDec2;
          }
          else if (PredToInc1) {
            NewImm1++;
            NewPredicate1 = PredToInc1;
          }
        }
        else if (Diff == -2) {
          if (PredToDec2 && PredToInc1) {
            NewPredicate2 = PredToDec2;
            NewPredicate1 = PredToInc1;
            NewImm2--;
            NewImm1++;
          }
        }
      }

      // We cannnot merge two compares if the immediates are not same.
      if (NewImm2 != NewImm1)
        continue;
    }

    DEBUG(dbgs() << "Optimize two pairs of compare and branch:\n");
    DEBUG(CMPI1->dump());
    DEBUG(BI1->dump());
    DEBUG(CMPI2->dump());
    DEBUG(BI2->dump());

    // We adjust opcode, predicates and immediate as we determined above.
    if (NewOpCode != 0 && NewOpCode != CMPI1->getOpcode()) {
      CMPI1->setDesc(TII->get(NewOpCode));
    }
    if (NewPredicate1) {
      BI1->getOperand(0).setImm(NewPredicate1);
    }
    if (NewPredicate2) {
      BI2->getOperand(0).setImm(NewPredicate2);
    }
    if (NewImm1 != Imm1) {
      CMPI1->getOperand(2).setImm(NewImm1);
    }

    if (IsPartiallyRedundant) {
      // We touch up the compare instruction in MBB2 and move it to
      // a previous BB to handle partially redundant case.
      if (SwapOperands) {
        unsigned Op1 = CMPI2->getOperand(1).getReg();
        unsigned Op2 = CMPI2->getOperand(2).getReg();
        CMPI2->getOperand(1).setReg(Op2);
        CMPI2->getOperand(2).setReg(Op1);
      }
      if (NewImm2 != Imm2)
        CMPI2->getOperand(2).setImm(NewImm2);

      for (int I = 1; I <= 2; I++) {
        if (CMPI2->getOperand(I).isReg()) {
          MachineInstr *Inst = MRI->getVRegDef(CMPI2->getOperand(I).getReg());
          if (Inst->getParent() != &MBB2)
            continue;

          assert(Inst->getOpcode() == PPC::PHI &&
                 "We cannot support if an operand comes from this BB.");
          unsigned SrcReg = getIncomingRegForBlock(Inst, MBBtoMoveCmp);
          CMPI2->getOperand(I).setReg(SrcReg);
        }
      }
      auto I = MachineBasicBlock::iterator(MBBtoMoveCmp->getFirstTerminator());
      MBBtoMoveCmp->splice(I, &MBB2, MachineBasicBlock::iterator(CMPI2));

      DebugLoc DL = CMPI2->getDebugLoc();
      unsigned NewVReg = MRI->createVirtualRegister(&PPC::CRRCRegClass);
      BuildMI(MBB2, MBB2.begin(), DL,
              TII->get(PPC::PHI), NewVReg)
        .addReg(BI1->getOperand(1).getReg()).addMBB(MBB1)
        .addReg(BI2->getOperand(1).getReg()).addMBB(MBBtoMoveCmp);
      BI2->getOperand(1).setReg(NewVReg);
    }
    else {
      // We finally eliminate compare instruction in MBB2.
      BI2->getOperand(1).setReg(BI1->getOperand(1).getReg());
      CMPI2->eraseFromParent();
    }
    BI2->getOperand(1).setIsKill(true);
    BI1->getOperand(1).setIsKill(false);

    DEBUG(dbgs() << "into a compare and two branches:\n");
    DEBUG(CMPI1->dump());
    DEBUG(BI1->dump());
    DEBUG(BI2->dump());
    if (IsPartiallyRedundant) {
      DEBUG(dbgs() << "The following compare is moved into "
                   << printMBBReference(*MBBtoMoveCmp)
                   << " to handle partial redundancy.\n");
      DEBUG(CMPI2->dump());
    }

    Simplified = true;
  }

  return Simplified;
}

// This is used to find the "true" source register for an
// XXPERMDI instruction, since MachineCSE does not handle the
// "copy-like" operations (Copy and SubregToReg).  Returns
// the original SrcReg unless it is the target of a copy-like
// operation, in which case we chain backwards through all
// such operations to the ultimate source register.  If a
// physical register is encountered, we stop the search.
unsigned PPCMIPeephole::lookThruCopyLike(unsigned SrcReg) {

  while (true) {

    MachineInstr *MI = MRI->getVRegDef(SrcReg);
    if (!MI->isCopyLike())
      return SrcReg;

    unsigned CopySrcReg;
    if (MI->isCopy())
      CopySrcReg = MI->getOperand(1).getReg();
    else {
      assert(MI->isSubregToReg() && "bad opcode for lookThruCopyLike");
      CopySrcReg = MI->getOperand(2).getReg();
    }

    if (!TargetRegisterInfo::isVirtualRegister(CopySrcReg))
      return CopySrcReg;

    SrcReg = CopySrcReg;
  }
}

} // end default namespace

INITIALIZE_PASS_BEGIN(PPCMIPeephole, DEBUG_TYPE,
                      "PowerPC MI Peephole Optimization", false, false)
INITIALIZE_PASS_END(PPCMIPeephole, DEBUG_TYPE,
                    "PowerPC MI Peephole Optimization", false, false)

char PPCMIPeephole::ID = 0;
FunctionPass*
llvm::createPPCMIPeepholePass() { return new PPCMIPeephole(); }