summaryrefslogtreecommitdiff
path: root/lib/Target/Hexagon/HexagonGenMux.cpp
blob: e5af96468af1974beaa3a2a67fe01923be375135 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
//===- HexagonGenMux.cpp --------------------------------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

// During instruction selection, MUX instructions are generated for
// conditional assignments. Since such assignments often present an
// opportunity to predicate instructions, HexagonExpandCondsets
// expands MUXes into pairs of conditional transfers, and then proceeds
// with predication of the producers/consumers of the registers involved.
// This happens after exiting from the SSA form, but before the machine
// instruction scheduler. After the scheduler and after the register
// allocation there can be cases of pairs of conditional transfers
// resulting from a MUX where neither of them was further predicated. If
// these transfers are now placed far enough from the instruction defining
// the predicate register, they cannot use the .new form. In such cases it
// is better to collapse them back to a single MUX instruction.

#define DEBUG_TYPE "hexmux"

#include "HexagonInstrInfo.h"
#include "HexagonRegisterInfo.h"
#include "HexagonSubtarget.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/LivePhysRegs.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/MathExtras.h"
#include <algorithm>
#include <cassert>
#include <iterator>
#include <limits>
#include <utility>

using namespace llvm;

namespace llvm {

  FunctionPass *createHexagonGenMux();
  void initializeHexagonGenMuxPass(PassRegistry& Registry);

} // end namespace llvm

// Initialize this to 0 to always prefer generating mux by default.
static cl::opt<unsigned> MinPredDist("hexagon-gen-mux-threshold", cl::Hidden,
  cl::init(0), cl::desc("Minimum distance between predicate definition and "
  "farther of the two predicated uses"));

namespace {

  class HexagonGenMux : public MachineFunctionPass {
  public:
    static char ID;

    HexagonGenMux() : MachineFunctionPass(ID) {}

    StringRef getPassName() const override {
      return "Hexagon generate mux instructions";
    }

    void getAnalysisUsage(AnalysisUsage &AU) const override {
      MachineFunctionPass::getAnalysisUsage(AU);
    }

    bool runOnMachineFunction(MachineFunction &MF) override;

    MachineFunctionProperties getRequiredProperties() const override {
      return MachineFunctionProperties().set(
          MachineFunctionProperties::Property::NoVRegs);
    }

  private:
    const HexagonInstrInfo *HII = nullptr;
    const HexagonRegisterInfo *HRI = nullptr;

    struct CondsetInfo {
      unsigned PredR = 0;
      unsigned TrueX = std::numeric_limits<unsigned>::max();
      unsigned FalseX = std::numeric_limits<unsigned>::max();

      CondsetInfo() = default;
    };

    struct DefUseInfo {
      BitVector Defs, Uses;

      DefUseInfo() = default;
      DefUseInfo(const BitVector &D, const BitVector &U) : Defs(D), Uses(U) {}
    };

    struct MuxInfo {
      MachineBasicBlock::iterator At;
      unsigned DefR, PredR;
      MachineOperand *SrcT, *SrcF;
      MachineInstr *Def1, *Def2;

      MuxInfo(MachineBasicBlock::iterator It, unsigned DR, unsigned PR,
              MachineOperand *TOp, MachineOperand *FOp, MachineInstr &D1,
              MachineInstr &D2)
          : At(It), DefR(DR), PredR(PR), SrcT(TOp), SrcF(FOp), Def1(&D1),
            Def2(&D2) {}
    };

    using InstrIndexMap = DenseMap<MachineInstr *, unsigned>;
    using DefUseInfoMap = DenseMap<unsigned, DefUseInfo>;
    using MuxInfoList = SmallVector<MuxInfo, 4>;

    bool isRegPair(unsigned Reg) const {
      return Hexagon::DoubleRegsRegClass.contains(Reg);
    }

    void getSubRegs(unsigned Reg, BitVector &SRs) const;
    void expandReg(unsigned Reg, BitVector &Set) const;
    void getDefsUses(const MachineInstr *MI, BitVector &Defs,
          BitVector &Uses) const;
    void buildMaps(MachineBasicBlock &B, InstrIndexMap &I2X,
          DefUseInfoMap &DUM);
    bool isCondTransfer(unsigned Opc) const;
    unsigned getMuxOpcode(const MachineOperand &Src1,
          const MachineOperand &Src2) const;
    bool genMuxInBlock(MachineBasicBlock &B);
  };

} // end anonymous namespace

char HexagonGenMux::ID = 0;

INITIALIZE_PASS(HexagonGenMux, "hexagon-gen-mux",
  "Hexagon generate mux instructions", false, false)

void HexagonGenMux::getSubRegs(unsigned Reg, BitVector &SRs) const {
  for (MCSubRegIterator I(Reg, HRI); I.isValid(); ++I)
    SRs[*I] = true;
}

void HexagonGenMux::expandReg(unsigned Reg, BitVector &Set) const {
  if (isRegPair(Reg))
    getSubRegs(Reg, Set);
  else
    Set[Reg] = true;
}

void HexagonGenMux::getDefsUses(const MachineInstr *MI, BitVector &Defs,
      BitVector &Uses) const {
  // First, get the implicit defs and uses for this instruction.
  unsigned Opc = MI->getOpcode();
  const MCInstrDesc &D = HII->get(Opc);
  if (const MCPhysReg *R = D.ImplicitDefs)
    while (*R)
      expandReg(*R++, Defs);
  if (const MCPhysReg *R = D.ImplicitUses)
    while (*R)
      expandReg(*R++, Uses);

  // Look over all operands, and collect explicit defs and uses.
  for (const MachineOperand &MO : MI->operands()) {
    if (!MO.isReg() || MO.isImplicit())
      continue;
    unsigned R = MO.getReg();
    BitVector &Set = MO.isDef() ? Defs : Uses;
    expandReg(R, Set);
  }
}

void HexagonGenMux::buildMaps(MachineBasicBlock &B, InstrIndexMap &I2X,
      DefUseInfoMap &DUM) {
  unsigned Index = 0;
  unsigned NR = HRI->getNumRegs();
  BitVector Defs(NR), Uses(NR);

  for (MachineBasicBlock::iterator I = B.begin(), E = B.end(); I != E; ++I) {
    MachineInstr *MI = &*I;
    I2X.insert(std::make_pair(MI, Index));
    Defs.reset();
    Uses.reset();
    getDefsUses(MI, Defs, Uses);
    DUM.insert(std::make_pair(Index, DefUseInfo(Defs, Uses)));
    Index++;
  }
}

bool HexagonGenMux::isCondTransfer(unsigned Opc) const {
  switch (Opc) {
    case Hexagon::A2_tfrt:
    case Hexagon::A2_tfrf:
    case Hexagon::C2_cmoveit:
    case Hexagon::C2_cmoveif:
      return true;
  }
  return false;
}

unsigned HexagonGenMux::getMuxOpcode(const MachineOperand &Src1,
      const MachineOperand &Src2) const {
  bool IsReg1 = Src1.isReg(), IsReg2 = Src2.isReg();
  if (IsReg1)
    return IsReg2 ? Hexagon::C2_mux : Hexagon::C2_muxir;
  if (IsReg2)
    return Hexagon::C2_muxri;

  // Neither is a register. The first source is extendable, but the second
  // is not (s8).
  if (Src2.isImm() && isInt<8>(Src2.getImm()))
    return Hexagon::C2_muxii;

  return 0;
}

bool HexagonGenMux::genMuxInBlock(MachineBasicBlock &B) {
  bool Changed = false;
  InstrIndexMap I2X;
  DefUseInfoMap DUM;
  buildMaps(B, I2X, DUM);

  using CondsetMap = DenseMap<unsigned, CondsetInfo>;

  CondsetMap CM;
  MuxInfoList ML;

  MachineBasicBlock::iterator NextI, End = B.end();
  for (MachineBasicBlock::iterator I = B.begin(); I != End; I = NextI) {
    MachineInstr *MI = &*I;
    NextI = std::next(I);
    unsigned Opc = MI->getOpcode();
    if (!isCondTransfer(Opc))
      continue;
    unsigned DR = MI->getOperand(0).getReg();
    if (isRegPair(DR))
      continue;
    MachineOperand &PredOp = MI->getOperand(1);
    if (PredOp.isUndef())
      continue;

    unsigned PR = PredOp.getReg();
    unsigned Idx = I2X.lookup(MI);
    CondsetMap::iterator F = CM.find(DR);
    bool IfTrue = HII->isPredicatedTrue(Opc);

    // If there is no record of a conditional transfer for this register,
    // or the predicate register differs, create a new record for it.
    if (F != CM.end() && F->second.PredR != PR) {
      CM.erase(F);
      F = CM.end();
    }
    if (F == CM.end()) {
      auto It = CM.insert(std::make_pair(DR, CondsetInfo()));
      F = It.first;
      F->second.PredR = PR;
    }
    CondsetInfo &CI = F->second;
    if (IfTrue)
      CI.TrueX = Idx;
    else
      CI.FalseX = Idx;
    if (CI.TrueX == std::numeric_limits<unsigned>::max() ||
        CI.FalseX == std::numeric_limits<unsigned>::max())
      continue;

    // There is now a complete definition of DR, i.e. we have the predicate
    // register, the definition if-true, and definition if-false.

    // First, check if the definitions are far enough from the definition
    // of the predicate register.
    unsigned MinX = std::min(CI.TrueX, CI.FalseX);
    unsigned MaxX = std::max(CI.TrueX, CI.FalseX);
    // Specifically, check if the predicate definition is within a prescribed
    // distance from the farther of the two predicated instructions.
    unsigned SearchX = (MaxX >= MinPredDist) ? MaxX-MinPredDist : 0;
    bool NearDef = false;
    for (unsigned X = SearchX; X < MaxX; ++X) {
      const DefUseInfo &DU = DUM.lookup(X);
      if (!DU.Defs[PR])
        continue;
      NearDef = true;
      break;
    }
    if (NearDef)
      continue;

    // The predicate register is not defined in the last few instructions.
    // Check if the conversion to MUX is possible (either "up", i.e. at the
    // place of the earlier partial definition, or "down", where the later
    // definition is located). Examine all defs and uses between these two
    // definitions.
    // SR1, SR2 - source registers from the first and the second definition.
    MachineBasicBlock::iterator It1 = B.begin(), It2 = B.begin();
    std::advance(It1, MinX);
    std::advance(It2, MaxX);
    MachineInstr &Def1 = *It1, &Def2 = *It2;
    MachineOperand *Src1 = &Def1.getOperand(2), *Src2 = &Def2.getOperand(2);
    unsigned SR1 = Src1->isReg() ? Src1->getReg() : 0;
    unsigned SR2 = Src2->isReg() ? Src2->getReg() : 0;
    bool Failure = false, CanUp = true, CanDown = true;
    for (unsigned X = MinX+1; X < MaxX; X++) {
      const DefUseInfo &DU = DUM.lookup(X);
      if (DU.Defs[PR] || DU.Defs[DR] || DU.Uses[DR]) {
        Failure = true;
        break;
      }
      if (CanDown && DU.Defs[SR1])
        CanDown = false;
      if (CanUp && DU.Defs[SR2])
        CanUp = false;
    }
    if (Failure || (!CanUp && !CanDown))
      continue;

    MachineOperand *SrcT = (MinX == CI.TrueX) ? Src1 : Src2;
    MachineOperand *SrcF = (MinX == CI.FalseX) ? Src1 : Src2;
    // Prefer "down", since this will move the MUX farther away from the
    // predicate definition.
    MachineBasicBlock::iterator At = CanDown ? Def2 : Def1;
    ML.push_back(MuxInfo(At, DR, PR, SrcT, SrcF, Def1, Def2));
  }

  for (MuxInfo &MX : ML) {
    unsigned MxOpc = getMuxOpcode(*MX.SrcT, *MX.SrcF);
    if (!MxOpc)
      continue;
    MachineBasicBlock &B = *MX.At->getParent();
    const DebugLoc &DL = B.findDebugLoc(MX.At);
    auto NewMux = BuildMI(B, MX.At, DL, HII->get(MxOpc), MX.DefR)
                      .addReg(MX.PredR)
                      .add(*MX.SrcT)
                      .add(*MX.SrcF);
    NewMux->clearKillInfo();
    B.erase(MX.Def1);
    B.erase(MX.Def2);
    Changed = true;
  }

  // Fix up kill flags.

  LivePhysRegs LPR(*HRI);
  LPR.addLiveOuts(B);
  auto IsLive = [&LPR,this] (unsigned Reg) -> bool {
    for (MCSubRegIterator S(Reg, HRI, true); S.isValid(); ++S)
      if (LPR.contains(*S))
        return true;
    return false;
  };
  for (auto I = B.rbegin(), E = B.rend(); I != E; ++I) {
    if (I->isDebugInstr())
      continue;
    // This isn't 100% accurate, but it's safe.
    // It won't detect (as a kill) a case like this
    //   r0 = add r0, 1    <-- r0 should be "killed"
    //   ... = r0
    for (MachineOperand &Op : I->operands()) {
      if (!Op.isReg() || !Op.isUse())
        continue;
      assert(Op.getSubReg() == 0 && "Should have physical registers only");
      bool Live = IsLive(Op.getReg());
      Op.setIsKill(!Live);
    }
    LPR.stepBackward(*I);
  }

  return Changed;
}

bool HexagonGenMux::runOnMachineFunction(MachineFunction &MF) {
  if (skipFunction(MF.getFunction()))
    return false;
  HII = MF.getSubtarget<HexagonSubtarget>().getInstrInfo();
  HRI = MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
  bool Changed = false;
  for (auto &I : MF)
    Changed |= genMuxInBlock(I);
  return Changed;
}

FunctionPass *llvm::createHexagonGenMux() {
  return new HexagonGenMux();
}