summaryrefslogtreecommitdiff
path: root/lib/Target/Hexagon/HexagonEarlyIfConv.cpp
blob: b2244107ac437ce25560decf1af58ca852b6171f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
//===- HexagonEarlyIfConv.cpp ---------------------------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This implements a Hexagon-specific if-conversion pass that runs on the
// SSA form.
// In SSA it is not straightforward to represent instructions that condi-
// tionally define registers, since a conditionally-defined register may
// only be used under the same condition on which the definition was based.
// To avoid complications of this nature, this patch will only generate
// predicated stores, and speculate other instructions from the "if-conver-
// ted" block.
// The code will recognize CFG patterns where a block with a conditional
// branch "splits" into a "true block" and a "false block". Either of these
// could be omitted (in case of a triangle, for example).
// If after conversion of the side block(s) the CFG allows it, the resul-
// ting blocks may be merged. If the "join" block contained PHI nodes, they
// will be replaced with MUX (or MUX-like) instructions to maintain the
// semantics of the PHI.
//
// Example:
//
//         %vreg40<def> = L2_loadrub_io %vreg39<kill>, 1
//         %vreg41<def> = S2_tstbit_i %vreg40<kill>, 0
//         J2_jumpt %vreg41<kill>, <BB#5>, %pc<imp-def,dead>
//         J2_jump <BB#4>, %pc<imp-def,dead>
//     Successors according to CFG: BB#4(62) BB#5(62)
//
// BB#4: derived from LLVM BB %if.then
//     Predecessors according to CFG: BB#3
//         %vreg11<def> = A2_addp %vreg6, %vreg10
//         S2_storerd_io %vreg32, 16, %vreg11
//     Successors according to CFG: BB#5
//
// BB#5: derived from LLVM BB %if.end
//     Predecessors according to CFG: BB#3 BB#4
//         %vreg12<def> = PHI %vreg6, <BB#3>, %vreg11, <BB#4>
//         %vreg13<def> = A2_addp %vreg7, %vreg12
//         %vreg42<def> = C2_cmpeqi %vreg9, 10
//         J2_jumpf %vreg42<kill>, <BB#3>, %pc<imp-def,dead>
//         J2_jump <BB#6>, %pc<imp-def,dead>
//     Successors according to CFG: BB#6(4) BB#3(124)
//
// would become:
//
//         %vreg40<def> = L2_loadrub_io %vreg39<kill>, 1
//         %vreg41<def> = S2_tstbit_i %vreg40<kill>, 0
// spec->  %vreg11<def> = A2_addp %vreg6, %vreg10
// pred->  S2_pstorerdf_io %vreg41, %vreg32, 16, %vreg11
//         %vreg46<def> = PS_pselect %vreg41, %vreg6, %vreg11
//         %vreg13<def> = A2_addp %vreg7, %vreg46
//         %vreg42<def> = C2_cmpeqi %vreg9, 10
//         J2_jumpf %vreg42<kill>, <BB#3>, %pc<imp-def,dead>
//         J2_jump <BB#6>, %pc<imp-def,dead>
//     Successors according to CFG: BB#6 BB#3

#include "Hexagon.h"
#include "HexagonInstrInfo.h"
#include "HexagonSubtarget.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/Pass.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <iterator>

#define DEBUG_TYPE "hexagon-eif"

using namespace llvm;

namespace llvm {

  FunctionPass *createHexagonEarlyIfConversion();
  void initializeHexagonEarlyIfConversionPass(PassRegistry& Registry);

} // end namespace llvm

static cl::opt<bool> EnableHexagonBP("enable-hexagon-br-prob", cl::Hidden,
  cl::init(false), cl::desc("Enable branch probability info"));
static cl::opt<unsigned> SizeLimit("eif-limit", cl::init(6), cl::Hidden,
  cl::desc("Size limit in Hexagon early if-conversion"));
static cl::opt<bool> SkipExitBranches("eif-no-loop-exit", cl::init(false),
  cl::Hidden, cl::desc("Do not convert branches that may exit the loop"));

namespace {

  struct PrintMB {
    PrintMB(const MachineBasicBlock *B) : MB(B) {}

    const MachineBasicBlock *MB;
  };
  raw_ostream &operator<< (raw_ostream &OS, const PrintMB &P) {
    if (!P.MB)
      return OS << "<none>";
    return OS << '#' << P.MB->getNumber();
  }

  struct FlowPattern {
    FlowPattern() = default;
    FlowPattern(MachineBasicBlock *B, unsigned PR, MachineBasicBlock *TB,
          MachineBasicBlock *FB, MachineBasicBlock *JB)
      : SplitB(B), TrueB(TB), FalseB(FB), JoinB(JB), PredR(PR) {}

    MachineBasicBlock *SplitB = nullptr;
    MachineBasicBlock *TrueB = nullptr;
    MachineBasicBlock *FalseB = nullptr;
    MachineBasicBlock *JoinB = nullptr;
    unsigned PredR = 0;
  };

  struct PrintFP {
    PrintFP(const FlowPattern &P, const TargetRegisterInfo &T)
      : FP(P), TRI(T) {}

    const FlowPattern &FP;
    const TargetRegisterInfo &TRI;
    friend raw_ostream &operator<< (raw_ostream &OS, const PrintFP &P);
  };
  raw_ostream &operator<<(raw_ostream &OS,
                          const PrintFP &P) LLVM_ATTRIBUTE_UNUSED;
  raw_ostream &operator<<(raw_ostream &OS, const PrintFP &P) {
    OS << "{ SplitB:" << PrintMB(P.FP.SplitB)
       << ", PredR:" << printReg(P.FP.PredR, &P.TRI)
       << ", TrueB:" << PrintMB(P.FP.TrueB)
       << ", FalseB:" << PrintMB(P.FP.FalseB)
       << ", JoinB:" << PrintMB(P.FP.JoinB) << " }";
    return OS;
  }

  class HexagonEarlyIfConversion : public MachineFunctionPass {
  public:
    static char ID;

    HexagonEarlyIfConversion() : MachineFunctionPass(ID) {}

    StringRef getPassName() const override {
      return "Hexagon early if conversion";
    }

    void getAnalysisUsage(AnalysisUsage &AU) const override {
      AU.addRequired<MachineBranchProbabilityInfo>();
      AU.addRequired<MachineDominatorTree>();
      AU.addPreserved<MachineDominatorTree>();
      AU.addRequired<MachineLoopInfo>();
      MachineFunctionPass::getAnalysisUsage(AU);
    }

    bool runOnMachineFunction(MachineFunction &MF) override;

  private:
    using BlockSetType = DenseSet<MachineBasicBlock *>;

    bool isPreheader(const MachineBasicBlock *B) const;
    bool matchFlowPattern(MachineBasicBlock *B, MachineLoop *L,
          FlowPattern &FP);
    bool visitBlock(MachineBasicBlock *B, MachineLoop *L);
    bool visitLoop(MachineLoop *L);

    bool hasEHLabel(const MachineBasicBlock *B) const;
    bool hasUncondBranch(const MachineBasicBlock *B) const;
    bool isValidCandidate(const MachineBasicBlock *B) const;
    bool usesUndefVReg(const MachineInstr *MI) const;
    bool isValid(const FlowPattern &FP) const;
    unsigned countPredicateDefs(const MachineBasicBlock *B) const;
    unsigned computePhiCost(const MachineBasicBlock *B,
          const FlowPattern &FP) const;
    bool isProfitable(const FlowPattern &FP) const;
    bool isPredicableStore(const MachineInstr *MI) const;
    bool isSafeToSpeculate(const MachineInstr *MI) const;

    unsigned getCondStoreOpcode(unsigned Opc, bool IfTrue) const;
    void predicateInstr(MachineBasicBlock *ToB, MachineBasicBlock::iterator At,
          MachineInstr *MI, unsigned PredR, bool IfTrue);
    void predicateBlockNB(MachineBasicBlock *ToB,
          MachineBasicBlock::iterator At, MachineBasicBlock *FromB,
          unsigned PredR, bool IfTrue);

    unsigned buildMux(MachineBasicBlock *B, MachineBasicBlock::iterator At,
          const TargetRegisterClass *DRC, unsigned PredR, unsigned TR,
          unsigned TSR, unsigned FR, unsigned FSR);
    void updatePhiNodes(MachineBasicBlock *WhereB, const FlowPattern &FP);
    void convert(const FlowPattern &FP);

    void removeBlock(MachineBasicBlock *B);
    void eliminatePhis(MachineBasicBlock *B);
    void replacePhiEdges(MachineBasicBlock *OldB, MachineBasicBlock *NewB);
    void mergeBlocks(MachineBasicBlock *PredB, MachineBasicBlock *SuccB);
    void simplifyFlowGraph(const FlowPattern &FP);

    const HexagonInstrInfo *HII = nullptr;
    const TargetRegisterInfo *TRI = nullptr;
    MachineFunction *MFN = nullptr;
    MachineRegisterInfo *MRI = nullptr;
    MachineDominatorTree *MDT = nullptr;
    MachineLoopInfo *MLI = nullptr;
    BlockSetType Deleted;
    const MachineBranchProbabilityInfo *MBPI;
  };

} // end anonymous namespace

char HexagonEarlyIfConversion::ID = 0;

INITIALIZE_PASS(HexagonEarlyIfConversion, "hexagon-early-if",
  "Hexagon early if conversion", false, false)

bool HexagonEarlyIfConversion::isPreheader(const MachineBasicBlock *B) const {
  if (B->succ_size() != 1)
    return false;
  MachineBasicBlock *SB = *B->succ_begin();
  MachineLoop *L = MLI->getLoopFor(SB);
  return L && SB == L->getHeader() && MDT->dominates(B, SB);
}

bool HexagonEarlyIfConversion::matchFlowPattern(MachineBasicBlock *B,
    MachineLoop *L, FlowPattern &FP) {
  DEBUG(dbgs() << "Checking flow pattern at BB#" << B->getNumber() << "\n");

  // Interested only in conditional branches, no .new, no new-value, etc.
  // Check the terminators directly, it's easier than handling all responses
  // from AnalyzeBranch.
  MachineBasicBlock *TB = nullptr, *FB = nullptr;
  MachineBasicBlock::const_iterator T1I = B->getFirstTerminator();
  if (T1I == B->end())
    return false;
  unsigned Opc = T1I->getOpcode();
  if (Opc != Hexagon::J2_jumpt && Opc != Hexagon::J2_jumpf)
    return false;
  unsigned PredR = T1I->getOperand(0).getReg();

  // Get the layout successor, or 0 if B does not have one.
  MachineFunction::iterator NextBI = std::next(MachineFunction::iterator(B));
  MachineBasicBlock *NextB = (NextBI != MFN->end()) ? &*NextBI : nullptr;

  MachineBasicBlock *T1B = T1I->getOperand(1).getMBB();
  MachineBasicBlock::const_iterator T2I = std::next(T1I);
  // The second terminator should be an unconditional branch.
  assert(T2I == B->end() || T2I->getOpcode() == Hexagon::J2_jump);
  MachineBasicBlock *T2B = (T2I == B->end()) ? NextB
                                             : T2I->getOperand(0).getMBB();
  if (T1B == T2B) {
    // XXX merge if T1B == NextB, or convert branch to unconditional.
    // mark as diamond with both sides equal?
    return false;
  }

  // Record the true/false blocks in such a way that "true" means "if (PredR)",
  // and "false" means "if (!PredR)".
  if (Opc == Hexagon::J2_jumpt)
    TB = T1B, FB = T2B;
  else
    TB = T2B, FB = T1B;

  if (!MDT->properlyDominates(B, TB) || !MDT->properlyDominates(B, FB))
    return false;

  // Detect triangle first. In case of a triangle, one of the blocks TB/FB
  // can fall through into the other, in other words, it will be executed
  // in both cases. We only want to predicate the block that is executed
  // conditionally.
  unsigned TNP = TB->pred_size(), FNP = FB->pred_size();
  unsigned TNS = TB->succ_size(), FNS = FB->succ_size();

  // A block is predicable if it has one predecessor (it must be B), and
  // it has a single successor. In fact, the block has to end either with
  // an unconditional branch (which can be predicated), or with a fall-
  // through.
  // Also, skip blocks that do not belong to the same loop.
  bool TOk = (TNP == 1 && TNS == 1 && MLI->getLoopFor(TB) == L);
  bool FOk = (FNP == 1 && FNS == 1 && MLI->getLoopFor(FB) == L);

  // If requested (via an option), do not consider branches where the
  // true and false targets do not belong to the same loop.
  if (SkipExitBranches && MLI->getLoopFor(TB) != MLI->getLoopFor(FB))
    return false;

  // If neither is predicable, there is nothing interesting.
  if (!TOk && !FOk)
    return false;

  MachineBasicBlock *TSB = (TNS > 0) ? *TB->succ_begin() : nullptr;
  MachineBasicBlock *FSB = (FNS > 0) ? *FB->succ_begin() : nullptr;
  MachineBasicBlock *JB = nullptr;

  if (TOk) {
    if (FOk) {
      if (TSB == FSB)
        JB = TSB;
      // Diamond: "if (P) then TB; else FB;".
    } else {
      // TOk && !FOk
      if (TSB == FB)
        JB = FB;
      FB = nullptr;
    }
  } else {
    // !TOk && FOk  (at least one must be true by now).
    if (FSB == TB)
      JB = TB;
    TB = nullptr;
  }
  // Don't try to predicate loop preheaders.
  if ((TB && isPreheader(TB)) || (FB && isPreheader(FB))) {
    DEBUG(dbgs() << "One of blocks " << PrintMB(TB) << ", " << PrintMB(FB)
                 << " is a loop preheader. Skipping.\n");
    return false;
  }

  FP = FlowPattern(B, PredR, TB, FB, JB);
  DEBUG(dbgs() << "Detected " << PrintFP(FP, *TRI) << "\n");
  return true;
}

// KLUDGE: HexagonInstrInfo::AnalyzeBranch won't work on a block that
// contains EH_LABEL.
bool HexagonEarlyIfConversion::hasEHLabel(const MachineBasicBlock *B) const {
  for (auto &I : *B)
    if (I.isEHLabel())
      return true;
  return false;
}

// KLUDGE: HexagonInstrInfo::AnalyzeBranch may be unable to recognize
// that a block can never fall-through.
bool HexagonEarlyIfConversion::hasUncondBranch(const MachineBasicBlock *B)
      const {
  MachineBasicBlock::const_iterator I = B->getFirstTerminator(), E = B->end();
  while (I != E) {
    if (I->isBarrier())
      return true;
    ++I;
  }
  return false;
}

bool HexagonEarlyIfConversion::isValidCandidate(const MachineBasicBlock *B)
      const {
  if (!B)
    return true;
  if (B->isEHPad() || B->hasAddressTaken())
    return false;
  if (B->succ_size() == 0)
    return false;

  for (auto &MI : *B) {
    if (MI.isDebugValue())
      continue;
    if (MI.isConditionalBranch())
      return false;
    unsigned Opc = MI.getOpcode();
    bool IsJMP = (Opc == Hexagon::J2_jump);
    if (!isPredicableStore(&MI) && !IsJMP && !isSafeToSpeculate(&MI))
      return false;
    // Look for predicate registers defined by this instruction. It's ok
    // to speculate such an instruction, but the predicate register cannot
    // be used outside of this block (or else it won't be possible to
    // update the use of it after predication). PHI uses will be updated
    // to use a result of a MUX, and a MUX cannot be created for predicate
    // registers.
    for (const MachineOperand &MO : MI.operands()) {
      if (!MO.isReg() || !MO.isDef())
        continue;
      unsigned R = MO.getReg();
      if (!TargetRegisterInfo::isVirtualRegister(R))
        continue;
      switch (MRI->getRegClass(R)->getID()) {
        case Hexagon::PredRegsRegClassID:
        case Hexagon::HvxQRRegClassID:
          break;
        default:
          continue;
      }
      for (auto U = MRI->use_begin(R); U != MRI->use_end(); ++U)
        if (U->getParent()->isPHI())
          return false;
    }
  }
  return true;
}

bool HexagonEarlyIfConversion::usesUndefVReg(const MachineInstr *MI) const {
  for (const MachineOperand &MO : MI->operands()) {
    if (!MO.isReg() || !MO.isUse())
      continue;
    unsigned R = MO.getReg();
    if (!TargetRegisterInfo::isVirtualRegister(R))
      continue;
    const MachineInstr *DefI = MRI->getVRegDef(R);
    // "Undefined" virtual registers are actually defined via IMPLICIT_DEF.
    assert(DefI && "Expecting a reaching def in MRI");
    if (DefI->isImplicitDef())
      return true;
  }
  return false;
}

bool HexagonEarlyIfConversion::isValid(const FlowPattern &FP) const {
  if (hasEHLabel(FP.SplitB))  // KLUDGE: see function definition
    return false;
  if (FP.TrueB && !isValidCandidate(FP.TrueB))
    return false;
  if (FP.FalseB && !isValidCandidate(FP.FalseB))
    return false;
  // Check the PHIs in the join block. If any of them use a register
  // that is defined as IMPLICIT_DEF, do not convert this. This can
  // legitimately happen if one side of the split never executes, but
  // the compiler is unable to prove it. That side may then seem to
  // provide an "undef" value to the join block, however it will never
  // execute at run-time. If we convert this case, the "undef" will
  // be used in a MUX instruction, and that may seem like actually
  // using an undefined value to other optimizations. This could lead
  // to trouble further down the optimization stream, cause assertions
  // to fail, etc.
  if (FP.JoinB) {
    const MachineBasicBlock &B = *FP.JoinB;
    for (auto &MI : B) {
      if (!MI.isPHI())
        break;
      if (usesUndefVReg(&MI))
        return false;
      unsigned DefR = MI.getOperand(0).getReg();
      const TargetRegisterClass *RC = MRI->getRegClass(DefR);
      if (RC == &Hexagon::PredRegsRegClass)
        return false;
    }
  }
  return true;
}

unsigned HexagonEarlyIfConversion::computePhiCost(const MachineBasicBlock *B,
      const FlowPattern &FP) const {
  if (B->pred_size() < 2)
    return 0;

  unsigned Cost = 0;
  for (const MachineInstr &MI : *B) {
    if (!MI.isPHI())
      break;
    // If both incoming blocks are one of the TrueB/FalseB/SplitB, then
    // a MUX may be needed. Otherwise the PHI will need to be updated at
    // no extra cost.
    // Find the interesting PHI operands for further checks.
    SmallVector<unsigned,2> Inc;
    for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) {
      const MachineBasicBlock *BB = MI.getOperand(i+1).getMBB();
      if (BB == FP.SplitB || BB == FP.TrueB || BB == FP.FalseB)
        Inc.push_back(i);
    }
    assert(Inc.size() <= 2);
    if (Inc.size() < 2)
      continue;

    const MachineOperand &RA = MI.getOperand(1);
    const MachineOperand &RB = MI.getOperand(3);
    assert(RA.isReg() && RB.isReg());
    // Must have a MUX if the phi uses a subregister.
    if (RA.getSubReg() != 0 || RB.getSubReg() != 0) {
      Cost++;
      continue;
    }
    const MachineInstr *Def1 = MRI->getVRegDef(RA.getReg());
    const MachineInstr *Def3 = MRI->getVRegDef(RB.getReg());
    if (!HII->isPredicable(*Def1) || !HII->isPredicable(*Def3))
      Cost++;
  }
  return Cost;
}

unsigned HexagonEarlyIfConversion::countPredicateDefs(
      const MachineBasicBlock *B) const {
  unsigned PredDefs = 0;
  for (auto &MI : *B) {
    for (const MachineOperand &MO : MI.operands()) {
      if (!MO.isReg() || !MO.isDef())
        continue;
      unsigned R = MO.getReg();
      if (!TargetRegisterInfo::isVirtualRegister(R))
        continue;
      if (MRI->getRegClass(R) == &Hexagon::PredRegsRegClass)
        PredDefs++;
    }
  }
  return PredDefs;
}

bool HexagonEarlyIfConversion::isProfitable(const FlowPattern &FP) const {
  if (FP.TrueB && FP.FalseB) {
    // Do not IfCovert if the branch is one sided.
    if (MBPI) {
      BranchProbability Prob(9, 10);
      if (MBPI->getEdgeProbability(FP.SplitB, FP.TrueB) > Prob)
        return false;
      if (MBPI->getEdgeProbability(FP.SplitB, FP.FalseB) > Prob)
        return false;
    }

    // If both sides are predicable, convert them if they join, and the
    // join block has no other predecessors.
    MachineBasicBlock *TSB = *FP.TrueB->succ_begin();
    MachineBasicBlock *FSB = *FP.FalseB->succ_begin();
    if (TSB != FSB)
      return false;
    if (TSB->pred_size() != 2)
      return false;
  }

  // Calculate the total size of the predicated blocks.
  // Assume instruction counts without branches to be the approximation of
  // the code size. If the predicated blocks are smaller than a packet size,
  // approximate the spare room in the packet that could be filled with the
  // predicated/speculated instructions.
  auto TotalCount = [] (const MachineBasicBlock *B, unsigned &Spare) {
    if (!B)
      return 0u;
    unsigned T = std::count_if(B->begin(), B->getFirstTerminator(),
                               [](const MachineInstr &MI) {
                                 return !MI.isMetaInstruction();
                               });
    if (T < HEXAGON_PACKET_SIZE)
      Spare += HEXAGON_PACKET_SIZE-T;
    return T;
  };
  unsigned Spare = 0;
  unsigned TotalIn = TotalCount(FP.TrueB, Spare) + TotalCount(FP.FalseB, Spare);
  DEBUG(dbgs() << "Total number of instructions to be predicated/speculated: "
               << TotalIn << ", spare room: " << Spare << "\n");
  if (TotalIn >= SizeLimit+Spare)
    return false;

  // Count the number of PHI nodes that will need to be updated (converted
  // to MUX). Those can be later converted to predicated instructions, so
  // they aren't always adding extra cost.
  // KLUDGE: Also, count the number of predicate register definitions in
  // each block. The scheduler may increase the pressure of these and cause
  // expensive spills (e.g. bitmnp01).
  unsigned TotalPh = 0;
  unsigned PredDefs = countPredicateDefs(FP.SplitB);
  if (FP.JoinB) {
    TotalPh = computePhiCost(FP.JoinB, FP);
    PredDefs += countPredicateDefs(FP.JoinB);
  } else {
    if (FP.TrueB && FP.TrueB->succ_size() > 0) {
      MachineBasicBlock *SB = *FP.TrueB->succ_begin();
      TotalPh += computePhiCost(SB, FP);
      PredDefs += countPredicateDefs(SB);
    }
    if (FP.FalseB && FP.FalseB->succ_size() > 0) {
      MachineBasicBlock *SB = *FP.FalseB->succ_begin();
      TotalPh += computePhiCost(SB, FP);
      PredDefs += countPredicateDefs(SB);
    }
  }
  DEBUG(dbgs() << "Total number of extra muxes from converted phis: "
               << TotalPh << "\n");
  if (TotalIn+TotalPh >= SizeLimit+Spare)
    return false;

  DEBUG(dbgs() << "Total number of predicate registers: " << PredDefs << "\n");
  if (PredDefs > 4)
    return false;

  return true;
}

bool HexagonEarlyIfConversion::visitBlock(MachineBasicBlock *B,
      MachineLoop *L) {
  bool Changed = false;

  // Visit all dominated blocks from the same loop first, then process B.
  MachineDomTreeNode *N = MDT->getNode(B);

  using GTN = GraphTraits<MachineDomTreeNode *>;

  // We will change CFG/DT during this traversal, so take precautions to
  // avoid problems related to invalidated iterators. In fact, processing
  // a child C of B cannot cause another child to be removed, but it can
  // cause a new child to be added (which was a child of C before C itself
  // was removed. This new child C, however, would have been processed
  // prior to processing B, so there is no need to process it again.
  // Simply keep a list of children of B, and traverse that list.
  using DTNodeVectType = SmallVector<MachineDomTreeNode *, 4>;
  DTNodeVectType Cn(GTN::child_begin(N), GTN::child_end(N));
  for (DTNodeVectType::iterator I = Cn.begin(), E = Cn.end(); I != E; ++I) {
    MachineBasicBlock *SB = (*I)->getBlock();
    if (!Deleted.count(SB))
      Changed |= visitBlock(SB, L);
  }
  // When walking down the dominator tree, we want to traverse through
  // blocks from nested (other) loops, because they can dominate blocks
  // that are in L. Skip the non-L blocks only after the tree traversal.
  if (MLI->getLoopFor(B) != L)
    return Changed;

  FlowPattern FP;
  if (!matchFlowPattern(B, L, FP))
    return Changed;

  if (!isValid(FP)) {
    DEBUG(dbgs() << "Conversion is not valid\n");
    return Changed;
  }
  if (!isProfitable(FP)) {
    DEBUG(dbgs() << "Conversion is not profitable\n");
    return Changed;
  }

  convert(FP);
  simplifyFlowGraph(FP);
  return true;
}

bool HexagonEarlyIfConversion::visitLoop(MachineLoop *L) {
  MachineBasicBlock *HB = L ? L->getHeader() : nullptr;
  DEBUG((L ? dbgs() << "Visiting loop H:" << PrintMB(HB)
           : dbgs() << "Visiting function") << "\n");
  bool Changed = false;
  if (L) {
    for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I)
      Changed |= visitLoop(*I);
  }

  MachineBasicBlock *EntryB = GraphTraits<MachineFunction*>::getEntryNode(MFN);
  Changed |= visitBlock(L ? HB : EntryB, L);
  return Changed;
}

bool HexagonEarlyIfConversion::isPredicableStore(const MachineInstr *MI)
      const {
  // HexagonInstrInfo::isPredicable will consider these stores are non-
  // -predicable if the offset would become constant-extended after
  // predication.
  unsigned Opc = MI->getOpcode();
  switch (Opc) {
    case Hexagon::S2_storerb_io:
    case Hexagon::S2_storerbnew_io:
    case Hexagon::S2_storerh_io:
    case Hexagon::S2_storerhnew_io:
    case Hexagon::S2_storeri_io:
    case Hexagon::S2_storerinew_io:
    case Hexagon::S2_storerd_io:
    case Hexagon::S4_storeirb_io:
    case Hexagon::S4_storeirh_io:
    case Hexagon::S4_storeiri_io:
      return true;
  }

  // TargetInstrInfo::isPredicable takes a non-const pointer.
  return MI->mayStore() && HII->isPredicable(const_cast<MachineInstr&>(*MI));
}

bool HexagonEarlyIfConversion::isSafeToSpeculate(const MachineInstr *MI)
      const {
  if (MI->mayLoad() || MI->mayStore())
    return false;
  if (MI->isCall() || MI->isBarrier() || MI->isBranch())
    return false;
  if (MI->hasUnmodeledSideEffects())
    return false;

  return true;
}

unsigned HexagonEarlyIfConversion::getCondStoreOpcode(unsigned Opc,
      bool IfTrue) const {
  return HII->getCondOpcode(Opc, !IfTrue);
}

void HexagonEarlyIfConversion::predicateInstr(MachineBasicBlock *ToB,
      MachineBasicBlock::iterator At, MachineInstr *MI,
      unsigned PredR, bool IfTrue) {
  DebugLoc DL;
  if (At != ToB->end())
    DL = At->getDebugLoc();
  else if (!ToB->empty())
    DL = ToB->back().getDebugLoc();

  unsigned Opc = MI->getOpcode();

  if (isPredicableStore(MI)) {
    unsigned COpc = getCondStoreOpcode(Opc, IfTrue);
    assert(COpc);
    MachineInstrBuilder MIB = BuildMI(*ToB, At, DL, HII->get(COpc));
    MachineInstr::mop_iterator MOI = MI->operands_begin();
    if (HII->isPostIncrement(*MI)) {
      MIB.add(*MOI);
      ++MOI;
    }
    MIB.addReg(PredR);
    for (const MachineOperand &MO : make_range(MOI, MI->operands_end()))
      MIB.add(MO);

    // Set memory references.
    MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
    MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
    MIB.setMemRefs(MMOBegin, MMOEnd);

    MI->eraseFromParent();
    return;
  }

  if (Opc == Hexagon::J2_jump) {
    MachineBasicBlock *TB = MI->getOperand(0).getMBB();
    const MCInstrDesc &D = HII->get(IfTrue ? Hexagon::J2_jumpt
                                           : Hexagon::J2_jumpf);
    BuildMI(*ToB, At, DL, D)
      .addReg(PredR)
      .addMBB(TB);
    MI->eraseFromParent();
    return;
  }

  // Print the offending instruction unconditionally as we are about to
  // abort.
  dbgs() << *MI;
  llvm_unreachable("Unexpected instruction");
}

// Predicate/speculate non-branch instructions from FromB into block ToB.
// Leave the branches alone, they will be handled later. Btw, at this point
// FromB should have at most one branch, and it should be unconditional.
void HexagonEarlyIfConversion::predicateBlockNB(MachineBasicBlock *ToB,
      MachineBasicBlock::iterator At, MachineBasicBlock *FromB,
      unsigned PredR, bool IfTrue) {
  DEBUG(dbgs() << "Predicating block " << PrintMB(FromB) << "\n");
  MachineBasicBlock::iterator End = FromB->getFirstTerminator();
  MachineBasicBlock::iterator I, NextI;

  for (I = FromB->begin(); I != End; I = NextI) {
    assert(!I->isPHI());
    NextI = std::next(I);
    if (isSafeToSpeculate(&*I))
      ToB->splice(At, FromB, I);
    else
      predicateInstr(ToB, At, &*I, PredR, IfTrue);
  }
}

unsigned HexagonEarlyIfConversion::buildMux(MachineBasicBlock *B,
      MachineBasicBlock::iterator At, const TargetRegisterClass *DRC,
      unsigned PredR, unsigned TR, unsigned TSR, unsigned FR, unsigned FSR) {
  unsigned Opc = 0;
  switch (DRC->getID()) {
    case Hexagon::IntRegsRegClassID:
      Opc = Hexagon::C2_mux;
      break;
    case Hexagon::DoubleRegsRegClassID:
      Opc = Hexagon::PS_pselect;
      break;
    case Hexagon::HvxVRRegClassID:
      Opc = Hexagon::PS_vselect;
      break;
    case Hexagon::HvxWRRegClassID:
      Opc = Hexagon::PS_wselect;
      break;
    default:
      llvm_unreachable("unexpected register type");
  }
  const MCInstrDesc &D = HII->get(Opc);

  DebugLoc DL = B->findBranchDebugLoc();
  unsigned MuxR = MRI->createVirtualRegister(DRC);
  BuildMI(*B, At, DL, D, MuxR)
    .addReg(PredR)
    .addReg(TR, 0, TSR)
    .addReg(FR, 0, FSR);
  return MuxR;
}

void HexagonEarlyIfConversion::updatePhiNodes(MachineBasicBlock *WhereB,
      const FlowPattern &FP) {
  // Visit all PHI nodes in the WhereB block and generate MUX instructions
  // in the split block. Update the PHI nodes with the values of the MUX.
  auto NonPHI = WhereB->getFirstNonPHI();
  for (auto I = WhereB->begin(); I != NonPHI; ++I) {
    MachineInstr *PN = &*I;
    // Registers and subregisters corresponding to TrueB, FalseB and SplitB.
    unsigned TR = 0, TSR = 0, FR = 0, FSR = 0, SR = 0, SSR = 0;
    for (int i = PN->getNumOperands()-2; i > 0; i -= 2) {
      const MachineOperand &RO = PN->getOperand(i), &BO = PN->getOperand(i+1);
      if (BO.getMBB() == FP.SplitB)
        SR = RO.getReg(), SSR = RO.getSubReg();
      else if (BO.getMBB() == FP.TrueB)
        TR = RO.getReg(), TSR = RO.getSubReg();
      else if (BO.getMBB() == FP.FalseB)
        FR = RO.getReg(), FSR = RO.getSubReg();
      else
        continue;
      PN->RemoveOperand(i+1);
      PN->RemoveOperand(i);
    }
    if (TR == 0)
      TR = SR, TSR = SSR;
    else if (FR == 0)
      FR = SR, FSR = SSR;

    assert(TR || FR);
    unsigned MuxR = 0, MuxSR = 0;

    if (TR && FR) {
      unsigned DR = PN->getOperand(0).getReg();
      const TargetRegisterClass *RC = MRI->getRegClass(DR);
      MuxR = buildMux(FP.SplitB, FP.SplitB->getFirstTerminator(), RC,
                      FP.PredR, TR, TSR, FR, FSR);
    } else if (TR) {
      MuxR = TR;
      MuxSR = TSR;
    } else {
      MuxR = FR;
      MuxSR = FSR;
    }

    PN->addOperand(MachineOperand::CreateReg(MuxR, false, false, false, false,
                                             false, false, MuxSR));
    PN->addOperand(MachineOperand::CreateMBB(FP.SplitB));
  }
}

void HexagonEarlyIfConversion::convert(const FlowPattern &FP) {
  MachineBasicBlock *TSB = nullptr, *FSB = nullptr;
  MachineBasicBlock::iterator OldTI = FP.SplitB->getFirstTerminator();
  assert(OldTI != FP.SplitB->end());
  DebugLoc DL = OldTI->getDebugLoc();

  if (FP.TrueB) {
    TSB = *FP.TrueB->succ_begin();
    predicateBlockNB(FP.SplitB, OldTI, FP.TrueB, FP.PredR, true);
  }
  if (FP.FalseB) {
    FSB = *FP.FalseB->succ_begin();
    MachineBasicBlock::iterator At = FP.SplitB->getFirstTerminator();
    predicateBlockNB(FP.SplitB, At, FP.FalseB, FP.PredR, false);
  }

  // Regenerate new terminators in the split block and update the successors.
  // First, remember any information that may be needed later and remove the
  // existing terminators/successors from the split block.
  MachineBasicBlock *SSB = nullptr;
  FP.SplitB->erase(OldTI, FP.SplitB->end());
  while (FP.SplitB->succ_size() > 0) {
    MachineBasicBlock *T = *FP.SplitB->succ_begin();
    // It's possible that the split block had a successor that is not a pre-
    // dicated block. This could only happen if there was only one block to
    // be predicated. Example:
    //   split_b:
    //     if (p) jump true_b
    //     jump unrelated2_b
    //   unrelated1_b:
    //     ...
    //   unrelated2_b:  ; can have other predecessors, so it's not "false_b"
    //     jump other_b
    //   true_b:        ; only reachable from split_b, can be predicated
    //     ...
    //
    // Find this successor (SSB) if it exists.
    if (T != FP.TrueB && T != FP.FalseB) {
      assert(!SSB);
      SSB = T;
    }
    FP.SplitB->removeSuccessor(FP.SplitB->succ_begin());
  }

  // Insert new branches and update the successors of the split block. This
  // may create unconditional branches to the layout successor, etc., but
  // that will be cleaned up later. For now, make sure that correct code is
  // generated.
  if (FP.JoinB) {
    assert(!SSB || SSB == FP.JoinB);
    BuildMI(*FP.SplitB, FP.SplitB->end(), DL, HII->get(Hexagon::J2_jump))
      .addMBB(FP.JoinB);
    FP.SplitB->addSuccessor(FP.JoinB);
  } else {
    bool HasBranch = false;
    if (TSB) {
      BuildMI(*FP.SplitB, FP.SplitB->end(), DL, HII->get(Hexagon::J2_jumpt))
        .addReg(FP.PredR)
        .addMBB(TSB);
      FP.SplitB->addSuccessor(TSB);
      HasBranch = true;
    }
    if (FSB) {
      const MCInstrDesc &D = HasBranch ? HII->get(Hexagon::J2_jump)
                                       : HII->get(Hexagon::J2_jumpf);
      MachineInstrBuilder MIB = BuildMI(*FP.SplitB, FP.SplitB->end(), DL, D);
      if (!HasBranch)
        MIB.addReg(FP.PredR);
      MIB.addMBB(FSB);
      FP.SplitB->addSuccessor(FSB);
    }
    if (SSB) {
      // This cannot happen if both TSB and FSB are set. [TF]SB are the
      // successor blocks of the TrueB and FalseB (or null of the TrueB
      // or FalseB block is null). SSB is the potential successor block
      // of the SplitB that is neither TrueB nor FalseB.
      BuildMI(*FP.SplitB, FP.SplitB->end(), DL, HII->get(Hexagon::J2_jump))
        .addMBB(SSB);
      FP.SplitB->addSuccessor(SSB);
    }
  }

  // What is left to do is to update the PHI nodes that could have entries
  // referring to predicated blocks.
  if (FP.JoinB) {
    updatePhiNodes(FP.JoinB, FP);
  } else {
    if (TSB)
      updatePhiNodes(TSB, FP);
    if (FSB)
      updatePhiNodes(FSB, FP);
    // Nothing to update in SSB, since SSB's predecessors haven't changed.
  }
}

void HexagonEarlyIfConversion::removeBlock(MachineBasicBlock *B) {
  DEBUG(dbgs() << "Removing block " << PrintMB(B) << "\n");

  // Transfer the immediate dominator information from B to its descendants.
  MachineDomTreeNode *N = MDT->getNode(B);
  MachineDomTreeNode *IDN = N->getIDom();
  if (IDN) {
    MachineBasicBlock *IDB = IDN->getBlock();

    using GTN = GraphTraits<MachineDomTreeNode *>;
    using DTNodeVectType = SmallVector<MachineDomTreeNode *, 4>;

    DTNodeVectType Cn(GTN::child_begin(N), GTN::child_end(N));
    for (DTNodeVectType::iterator I = Cn.begin(), E = Cn.end(); I != E; ++I) {
      MachineBasicBlock *SB = (*I)->getBlock();
      MDT->changeImmediateDominator(SB, IDB);
    }
  }

  while (B->succ_size() > 0)
    B->removeSuccessor(B->succ_begin());

  for (auto I = B->pred_begin(), E = B->pred_end(); I != E; ++I)
    (*I)->removeSuccessor(B, true);

  Deleted.insert(B);
  MDT->eraseNode(B);
  MFN->erase(B->getIterator());
}

void HexagonEarlyIfConversion::eliminatePhis(MachineBasicBlock *B) {
  DEBUG(dbgs() << "Removing phi nodes from block " << PrintMB(B) << "\n");
  MachineBasicBlock::iterator I, NextI, NonPHI = B->getFirstNonPHI();
  for (I = B->begin(); I != NonPHI; I = NextI) {
    NextI = std::next(I);
    MachineInstr *PN = &*I;
    assert(PN->getNumOperands() == 3 && "Invalid phi node");
    MachineOperand &UO = PN->getOperand(1);
    unsigned UseR = UO.getReg(), UseSR = UO.getSubReg();
    unsigned DefR = PN->getOperand(0).getReg();
    unsigned NewR = UseR;
    if (UseSR) {
      // MRI.replaceVregUsesWith does not allow to update the subregister,
      // so instead of doing the use-iteration here, create a copy into a
      // "non-subregistered" register.
      const DebugLoc &DL = PN->getDebugLoc();
      const TargetRegisterClass *RC = MRI->getRegClass(DefR);
      NewR = MRI->createVirtualRegister(RC);
      NonPHI = BuildMI(*B, NonPHI, DL, HII->get(TargetOpcode::COPY), NewR)
        .addReg(UseR, 0, UseSR);
    }
    MRI->replaceRegWith(DefR, NewR);
    B->erase(I);
  }
}

void HexagonEarlyIfConversion::replacePhiEdges(MachineBasicBlock *OldB,
      MachineBasicBlock *NewB) {
  for (auto I = OldB->succ_begin(), E = OldB->succ_end(); I != E; ++I) {
    MachineBasicBlock *SB = *I;
    MachineBasicBlock::iterator P, N = SB->getFirstNonPHI();
    for (P = SB->begin(); P != N; ++P) {
      MachineInstr &PN = *P;
      for (MachineOperand &MO : PN.operands())
        if (MO.isMBB() && MO.getMBB() == OldB)
          MO.setMBB(NewB);
    }
  }
}

void HexagonEarlyIfConversion::mergeBlocks(MachineBasicBlock *PredB,
      MachineBasicBlock *SuccB) {
  DEBUG(dbgs() << "Merging blocks " << PrintMB(PredB) << " and "
               << PrintMB(SuccB) << "\n");
  bool TermOk = hasUncondBranch(SuccB);
  eliminatePhis(SuccB);
  HII->removeBranch(*PredB);
  PredB->removeSuccessor(SuccB);
  PredB->splice(PredB->end(), SuccB, SuccB->begin(), SuccB->end());
  MachineBasicBlock::succ_iterator I, E = SuccB->succ_end();
  for (I = SuccB->succ_begin(); I != E; ++I)
    PredB->addSuccessor(*I);
  PredB->normalizeSuccProbs();
  replacePhiEdges(SuccB, PredB);
  removeBlock(SuccB);
  if (!TermOk)
    PredB->updateTerminator();
}

void HexagonEarlyIfConversion::simplifyFlowGraph(const FlowPattern &FP) {
  if (FP.TrueB)
    removeBlock(FP.TrueB);
  if (FP.FalseB)
    removeBlock(FP.FalseB);

  FP.SplitB->updateTerminator();
  if (FP.SplitB->succ_size() != 1)
    return;

  MachineBasicBlock *SB = *FP.SplitB->succ_begin();
  if (SB->pred_size() != 1)
    return;

  // By now, the split block has only one successor (SB), and SB has only
  // one predecessor. We can try to merge them. We will need to update ter-
  // minators in FP.Split+SB, and that requires working AnalyzeBranch, which
  // fails on Hexagon for blocks that have EH_LABELs. However, if SB ends
  // with an unconditional branch, we won't need to touch the terminators.
  if (!hasEHLabel(SB) || hasUncondBranch(SB))
    mergeBlocks(FP.SplitB, SB);
}

bool HexagonEarlyIfConversion::runOnMachineFunction(MachineFunction &MF) {
  if (skipFunction(*MF.getFunction()))
    return false;

  auto &ST = MF.getSubtarget<HexagonSubtarget>();
  HII = ST.getInstrInfo();
  TRI = ST.getRegisterInfo();
  MFN = &MF;
  MRI = &MF.getRegInfo();
  MDT = &getAnalysis<MachineDominatorTree>();
  MLI = &getAnalysis<MachineLoopInfo>();
  MBPI = EnableHexagonBP ? &getAnalysis<MachineBranchProbabilityInfo>() :
    nullptr;

  Deleted.clear();
  bool Changed = false;

  for (MachineLoopInfo::iterator I = MLI->begin(), E = MLI->end(); I != E; ++I)
    Changed |= visitLoop(*I);
  Changed |= visitLoop(nullptr);

  return Changed;
}

//===----------------------------------------------------------------------===//
//                         Public Constructor Functions
//===----------------------------------------------------------------------===//
FunctionPass *llvm::createHexagonEarlyIfConversion() {
  return new HexagonEarlyIfConversion();
}