summaryrefslogtreecommitdiff
path: root/lib/Target/AMDGPU/AMDGPULegalizerInfo.cpp
blob: 87b072c9ea20ac3f7a099e2a2a1fb3c4b2f7c5c1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
//===- AMDGPULegalizerInfo.cpp -----------------------------------*- C++ -*-==//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the targeting of the Machinelegalizer class for
/// AMDGPU.
/// \todo This should be generated by TableGen.
//===----------------------------------------------------------------------===//

#include "AMDGPU.h"
#include "AMDGPULegalizerInfo.h"
#include "AMDGPUTargetMachine.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Debug.h"

using namespace llvm;
using namespace LegalizeActions;

AMDGPULegalizerInfo::AMDGPULegalizerInfo(const GCNSubtarget &ST,
                                         const GCNTargetMachine &TM) {
  using namespace TargetOpcode;

  auto GetAddrSpacePtr = [&TM](unsigned AS) {
    return LLT::pointer(AS, TM.getPointerSizeInBits(AS));
  };

  auto AMDGPUAS = ST.getAMDGPUAS();

  const LLT S1 = LLT::scalar(1);
  const LLT V2S16 = LLT::vector(2, 16);

  const LLT S32 = LLT::scalar(32);
  const LLT S64 = LLT::scalar(64);
  const LLT S512 = LLT::scalar(512);

  const LLT GlobalPtr = GetAddrSpacePtr(AMDGPUAS::GLOBAL_ADDRESS);
  const LLT ConstantPtr = GetAddrSpacePtr(AMDGPUAS::CONSTANT_ADDRESS);
  const LLT LocalPtr = GetAddrSpacePtr(AMDGPUAS::LOCAL_ADDRESS);
  const LLT FlatPtr = GetAddrSpacePtr(AMDGPUAS.FLAT_ADDRESS);
  const LLT PrivatePtr = GetAddrSpacePtr(AMDGPUAS.PRIVATE_ADDRESS);

  const LLT AddrSpaces[] = {
    GlobalPtr,
    ConstantPtr,
    LocalPtr,
    FlatPtr,
    PrivatePtr
  };

  setAction({G_ADD, S32}, Legal);
  setAction({G_ASHR, S32}, Legal);
  setAction({G_SUB, S32}, Legal);
  setAction({G_MUL, S32}, Legal);
  setAction({G_AND, S32}, Legal);
  setAction({G_OR, S32}, Legal);
  setAction({G_XOR, S32}, Legal);

  setAction({G_BITCAST, V2S16}, Legal);
  setAction({G_BITCAST, 1, S32}, Legal);

  setAction({G_BITCAST, S32}, Legal);
  setAction({G_BITCAST, 1, V2S16}, Legal);

  getActionDefinitionsBuilder(G_FCONSTANT)
    .legalFor({S32, S64});

  // G_IMPLICIT_DEF is a no-op so we can make it legal for any value type that
  // can fit in a register.
  // FIXME: We need to legalize several more operations before we can add
  // a test case for size > 512.
  getActionDefinitionsBuilder(G_IMPLICIT_DEF)
    .legalIf([=](const LegalityQuery &Query) {
        return Query.Types[0].getSizeInBits() <= 512;
    })
    .clampScalar(0, S1, S512);

  getActionDefinitionsBuilder(G_CONSTANT)
    .legalFor({S1, S32, S64});

  // FIXME: i1 operands to intrinsics should always be legal, but other i1
  // values may not be legal.  We need to figure out how to distinguish
  // between these two scenarios.
  setAction({G_CONSTANT, S1}, Legal);

  setAction({G_FADD, S32}, Legal);

  setAction({G_FCMP, S1}, Legal);
  setAction({G_FCMP, 1, S32}, Legal);
  setAction({G_FCMP, 1, S64}, Legal);

  setAction({G_FMUL, S32}, Legal);

  setAction({G_ZEXT, S64}, Legal);
  setAction({G_ZEXT, 1, S32}, Legal);

  setAction({G_FPTOSI, S32}, Legal);
  setAction({G_FPTOSI, 1, S32}, Legal);

  setAction({G_SITOFP, S32}, Legal);
  setAction({G_SITOFP, 1, S32}, Legal);

  setAction({G_FPTOUI, S32}, Legal);
  setAction({G_FPTOUI, 1, S32}, Legal);

  for (LLT PtrTy : AddrSpaces) {
    LLT IdxTy = LLT::scalar(PtrTy.getSizeInBits());
    setAction({G_GEP, PtrTy}, Legal);
    setAction({G_GEP, 1, IdxTy}, Legal);
  }

  setAction({G_ICMP, S1}, Legal);
  setAction({G_ICMP, 1, S32}, Legal);


  getActionDefinitionsBuilder({G_LOAD, G_STORE})
    .legalIf([=, &ST](const LegalityQuery &Query) {
        const LLT &Ty0 = Query.Types[0];

        // TODO: Decompose private loads into 4-byte components.
        // TODO: Illegal flat loads on SI
        switch (Ty0.getSizeInBits()) {
        case 32:
        case 64:
        case 128:
          return true;

        case 96:
          // XXX hasLoadX3
          return (ST.getGeneration() >= AMDGPUSubtarget::SEA_ISLANDS);

        case 256:
        case 512:
          // TODO: constant loads
        default:
          return false;
        }
      });



  setAction({G_SELECT, S32}, Legal);
  setAction({G_SELECT, 1, S1}, Legal);

  setAction({G_SHL, S32}, Legal);


  // FIXME: When RegBankSelect inserts copies, it will only create new
  // registers with scalar types.  This means we can end up with
  // G_LOAD/G_STORE/G_GEP instruction with scalar types for their pointer
  // operands.  In assert builds, the instruction selector will assert
  // if it sees a generic instruction which isn't legal, so we need to
  // tell it that scalar types are legal for pointer operands
  setAction({G_GEP, S64}, Legal);

  for (unsigned Op : {G_EXTRACT_VECTOR_ELT, G_INSERT_VECTOR_ELT}) {
    getActionDefinitionsBuilder(Op)
      .legalIf([=](const LegalityQuery &Query) {
          const LLT &VecTy = Query.Types[1];
          const LLT &IdxTy = Query.Types[2];
          return VecTy.getSizeInBits() % 32 == 0 &&
            VecTy.getSizeInBits() <= 512 &&
            IdxTy.getSizeInBits() == 32;
        });
  }

  // FIXME: Doesn't handle extract of illegal sizes.
  getActionDefinitionsBuilder({G_EXTRACT, G_INSERT})
    .legalIf([=](const LegalityQuery &Query) {
        const LLT &Ty0 = Query.Types[0];
        const LLT &Ty1 = Query.Types[1];
        return (Ty0.getSizeInBits() % 32 == 0) &&
               (Ty1.getSizeInBits() % 32 == 0);
      });

  // Merge/Unmerge
  for (unsigned Op : {G_MERGE_VALUES, G_UNMERGE_VALUES}) {
    unsigned BigTyIdx = Op == G_MERGE_VALUES ? 0 : 1;
    unsigned LitTyIdx = Op == G_MERGE_VALUES ? 1 : 0;

    getActionDefinitionsBuilder(Op)
      .legalIf([=](const LegalityQuery &Query) {
          const LLT &BigTy = Query.Types[BigTyIdx];
          const LLT &LitTy = Query.Types[LitTyIdx];
          return BigTy.getSizeInBits() % 32 == 0 &&
                 LitTy.getSizeInBits() % 32 == 0 &&
                 BigTy.getSizeInBits() <= 512;
        })
      // Any vectors left are the wrong size. Scalarize them.
      .fewerElementsIf([](const LegalityQuery &Query) { return true; },
                       [](const LegalityQuery &Query) {
                         return std::make_pair(
                           0, Query.Types[0].getElementType());
                       })
      .fewerElementsIf([](const LegalityQuery &Query) { return true; },
                       [](const LegalityQuery &Query) {
                         return std::make_pair(
                           1, Query.Types[1].getElementType());
                       });

  }

  computeTables();
  verify(*ST.getInstrInfo());
}