summaryrefslogtreecommitdiff
path: root/lib/Target/AMDGPU/AMDGPUAsmPrinter.cpp
blob: 8866dcd4ecb4345ff091b385d46393e4409ec993 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
//===-- AMDGPUAsmPrinter.cpp - AMDGPU Assebly printer  --------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
///
/// The AMDGPUAsmPrinter is used to print both assembly string and also binary
/// code.  When passed an MCAsmStreamer it prints assembly and when passed
/// an MCObjectStreamer it outputs binary code.
//
//===----------------------------------------------------------------------===//
//

#include "AMDGPUAsmPrinter.h"
#include "MCTargetDesc/AMDGPUTargetStreamer.h"
#include "InstPrinter/AMDGPUInstPrinter.h"
#include "Utils/AMDGPUBaseInfo.h"
#include "AMDGPU.h"
#include "AMDKernelCodeT.h"
#include "AMDGPUSubtarget.h"
#include "R600Defines.h"
#include "R600MachineFunctionInfo.h"
#include "R600RegisterInfo.h"
#include "SIDefines.h"
#include "SIMachineFunctionInfo.h"
#include "SIInstrInfo.h"
#include "SIRegisterInfo.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCSectionELF.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/Support/ELF.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
#include "AMDGPURuntimeMetadata.h"

using namespace ::AMDGPU;
using namespace llvm;

// TODO: This should get the default rounding mode from the kernel. We just set
// the default here, but this could change if the OpenCL rounding mode pragmas
// are used.
//
// The denormal mode here should match what is reported by the OpenCL runtime
// for the CL_FP_DENORM bit from CL_DEVICE_{HALF|SINGLE|DOUBLE}_FP_CONFIG, but
// can also be override to flush with the -cl-denorms-are-zero compiler flag.
//
// AMD OpenCL only sets flush none and reports CL_FP_DENORM for double
// precision, and leaves single precision to flush all and does not report
// CL_FP_DENORM for CL_DEVICE_SINGLE_FP_CONFIG. Mesa's OpenCL currently reports
// CL_FP_DENORM for both.
//
// FIXME: It seems some instructions do not support single precision denormals
// regardless of the mode (exp_*_f32, rcp_*_f32, rsq_*_f32, rsq_*f32, sqrt_f32,
// and sin_f32, cos_f32 on most parts).

// We want to use these instructions, and using fp32 denormals also causes
// instructions to run at the double precision rate for the device so it's
// probably best to just report no single precision denormals.
static uint32_t getFPMode(const MachineFunction &F) {
  const SISubtarget& ST = F.getSubtarget<SISubtarget>();
  // TODO: Is there any real use for the flush in only / flush out only modes?

  uint32_t FP32Denormals =
    ST.hasFP32Denormals() ? FP_DENORM_FLUSH_NONE : FP_DENORM_FLUSH_IN_FLUSH_OUT;

  uint32_t FP64Denormals =
    ST.hasFP64Denormals() ? FP_DENORM_FLUSH_NONE : FP_DENORM_FLUSH_IN_FLUSH_OUT;

  return FP_ROUND_MODE_SP(FP_ROUND_ROUND_TO_NEAREST) |
         FP_ROUND_MODE_DP(FP_ROUND_ROUND_TO_NEAREST) |
         FP_DENORM_MODE_SP(FP32Denormals) |
         FP_DENORM_MODE_DP(FP64Denormals);
}

static AsmPrinter *
createAMDGPUAsmPrinterPass(TargetMachine &tm,
                           std::unique_ptr<MCStreamer> &&Streamer) {
  return new AMDGPUAsmPrinter(tm, std::move(Streamer));
}

extern "C" void LLVMInitializeAMDGPUAsmPrinter() {
  TargetRegistry::RegisterAsmPrinter(TheAMDGPUTarget, createAMDGPUAsmPrinterPass);
  TargetRegistry::RegisterAsmPrinter(TheGCNTarget, createAMDGPUAsmPrinterPass);
}

AMDGPUAsmPrinter::AMDGPUAsmPrinter(TargetMachine &TM,
                                   std::unique_ptr<MCStreamer> Streamer)
    : AsmPrinter(TM, std::move(Streamer)) {}

const char *AMDGPUAsmPrinter::getPassName() const  {
  return "AMDGPU Assembly Printer";
}

void AMDGPUAsmPrinter::EmitStartOfAsmFile(Module &M) {
  if (TM.getTargetTriple().getOS() != Triple::AMDHSA)
    return;

  // Need to construct an MCSubtargetInfo here in case we have no functions
  // in the module.
  std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo(
        TM.getTargetTriple().str(), TM.getTargetCPU(),
        TM.getTargetFeatureString()));

  AMDGPUTargetStreamer *TS =
      static_cast<AMDGPUTargetStreamer *>(OutStreamer->getTargetStreamer());

  TS->EmitDirectiveHSACodeObjectVersion(2, 1);

  AMDGPU::IsaVersion ISA = AMDGPU::getIsaVersion(STI->getFeatureBits());
  TS->EmitDirectiveHSACodeObjectISA(ISA.Major, ISA.Minor, ISA.Stepping,
                                    "AMD", "AMDGPU");
  emitStartOfRuntimeMetadata(M);
}

void AMDGPUAsmPrinter::EmitFunctionBodyStart() {
  const AMDGPUSubtarget &STM = MF->getSubtarget<AMDGPUSubtarget>();
  SIProgramInfo KernelInfo;
  if (STM.isAmdHsaOS()) {
    getSIProgramInfo(KernelInfo, *MF);
    EmitAmdKernelCodeT(*MF, KernelInfo);
  }
}

void AMDGPUAsmPrinter::EmitFunctionEntryLabel() {
  const SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
  const AMDGPUSubtarget &STM = MF->getSubtarget<AMDGPUSubtarget>();
  if (MFI->isKernel() && STM.isAmdHsaOS()) {
    AMDGPUTargetStreamer *TS =
        static_cast<AMDGPUTargetStreamer *>(OutStreamer->getTargetStreamer());
    TS->EmitAMDGPUSymbolType(CurrentFnSym->getName(),
                             ELF::STT_AMDGPU_HSA_KERNEL);
  }

  AsmPrinter::EmitFunctionEntryLabel();
}

void AMDGPUAsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {

  // Group segment variables aren't emitted in HSA.
  if (AMDGPU::isGroupSegment(GV))
    return;

  AsmPrinter::EmitGlobalVariable(GV);
}

bool AMDGPUAsmPrinter::runOnMachineFunction(MachineFunction &MF) {

  // The starting address of all shader programs must be 256 bytes aligned.
  MF.setAlignment(8);

  SetupMachineFunction(MF);

  MCContext &Context = getObjFileLowering().getContext();
  MCSectionELF *ConfigSection =
      Context.getELFSection(".AMDGPU.config", ELF::SHT_PROGBITS, 0);
  OutStreamer->SwitchSection(ConfigSection);

  const AMDGPUSubtarget &STM = MF.getSubtarget<AMDGPUSubtarget>();
  SIProgramInfo KernelInfo;
  if (STM.getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS) {
    getSIProgramInfo(KernelInfo, MF);
    if (!STM.isAmdHsaOS()) {
      EmitProgramInfoSI(MF, KernelInfo);
    }
  } else {
    EmitProgramInfoR600(MF);
  }

  DisasmLines.clear();
  HexLines.clear();
  DisasmLineMaxLen = 0;

  EmitFunctionBody();

  if (isVerbose()) {
    MCSectionELF *CommentSection =
        Context.getELFSection(".AMDGPU.csdata", ELF::SHT_PROGBITS, 0);
    OutStreamer->SwitchSection(CommentSection);

    if (STM.getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS) {
      OutStreamer->emitRawComment(" Kernel info:", false);
      OutStreamer->emitRawComment(" codeLenInByte = " + Twine(KernelInfo.CodeLen),
                                  false);
      OutStreamer->emitRawComment(" NumSgprs: " + Twine(KernelInfo.NumSGPR),
                                  false);
      OutStreamer->emitRawComment(" NumVgprs: " + Twine(KernelInfo.NumVGPR),
                                  false);
      OutStreamer->emitRawComment(" FloatMode: " + Twine(KernelInfo.FloatMode),
                                  false);
      OutStreamer->emitRawComment(" IeeeMode: " + Twine(KernelInfo.IEEEMode),
                                  false);
      OutStreamer->emitRawComment(" ScratchSize: " + Twine(KernelInfo.ScratchSize),
                                  false);
      OutStreamer->emitRawComment(" LDSByteSize: " + Twine(KernelInfo.LDSSize) +
                                  " bytes/workgroup (compile time only)", false);

      OutStreamer->emitRawComment(" ReservedVGPRFirst: " + Twine(KernelInfo.ReservedVGPRFirst),
                                  false);
      OutStreamer->emitRawComment(" ReservedVGPRCount: " + Twine(KernelInfo.ReservedVGPRCount),
                                  false);

      if (MF.getSubtarget<SISubtarget>().debuggerEmitPrologue()) {
        OutStreamer->emitRawComment(" DebuggerWavefrontPrivateSegmentOffsetSGPR: s" +
                                    Twine(KernelInfo.DebuggerWavefrontPrivateSegmentOffsetSGPR), false);
        OutStreamer->emitRawComment(" DebuggerPrivateSegmentBufferSGPR: s" +
                                    Twine(KernelInfo.DebuggerPrivateSegmentBufferSGPR), false);
      }

      OutStreamer->emitRawComment(" COMPUTE_PGM_RSRC2:USER_SGPR: " +
                                  Twine(G_00B84C_USER_SGPR(KernelInfo.ComputePGMRSrc2)),
                                  false);
      OutStreamer->emitRawComment(" COMPUTE_PGM_RSRC2:TGID_X_EN: " +
                                  Twine(G_00B84C_TGID_X_EN(KernelInfo.ComputePGMRSrc2)),
                                  false);
      OutStreamer->emitRawComment(" COMPUTE_PGM_RSRC2:TGID_Y_EN: " +
                                  Twine(G_00B84C_TGID_Y_EN(KernelInfo.ComputePGMRSrc2)),
                                  false);
      OutStreamer->emitRawComment(" COMPUTE_PGM_RSRC2:TGID_Z_EN: " +
                                  Twine(G_00B84C_TGID_Z_EN(KernelInfo.ComputePGMRSrc2)),
                                  false);
      OutStreamer->emitRawComment(" COMPUTE_PGM_RSRC2:TIDIG_COMP_CNT: " +
                                  Twine(G_00B84C_TIDIG_COMP_CNT(KernelInfo.ComputePGMRSrc2)),
                                  false);

    } else {
      R600MachineFunctionInfo *MFI = MF.getInfo<R600MachineFunctionInfo>();
      OutStreamer->emitRawComment(
        Twine("SQ_PGM_RESOURCES:STACK_SIZE = " + Twine(MFI->CFStackSize)));
    }
  }

  if (STM.dumpCode()) {

    OutStreamer->SwitchSection(
        Context.getELFSection(".AMDGPU.disasm", ELF::SHT_NOTE, 0));

    for (size_t i = 0; i < DisasmLines.size(); ++i) {
      std::string Comment(DisasmLineMaxLen - DisasmLines[i].size(), ' ');
      Comment += " ; " + HexLines[i] + "\n";

      OutStreamer->EmitBytes(StringRef(DisasmLines[i]));
      OutStreamer->EmitBytes(StringRef(Comment));
    }
  }

  emitRuntimeMetadata(*MF.getFunction());

  return false;
}

void AMDGPUAsmPrinter::EmitProgramInfoR600(const MachineFunction &MF) {
  unsigned MaxGPR = 0;
  bool killPixel = false;
  const R600Subtarget &STM = MF.getSubtarget<R600Subtarget>();
  const R600RegisterInfo *RI = STM.getRegisterInfo();
  const R600MachineFunctionInfo *MFI = MF.getInfo<R600MachineFunctionInfo>();

  for (const MachineBasicBlock &MBB : MF) {
    for (const MachineInstr &MI : MBB) {
      if (MI.getOpcode() == AMDGPU::KILLGT)
        killPixel = true;
      unsigned numOperands = MI.getNumOperands();
      for (unsigned op_idx = 0; op_idx < numOperands; op_idx++) {
        const MachineOperand &MO = MI.getOperand(op_idx);
        if (!MO.isReg())
          continue;
        unsigned HWReg = RI->getEncodingValue(MO.getReg()) & 0xff;

        // Register with value > 127 aren't GPR
        if (HWReg > 127)
          continue;
        MaxGPR = std::max(MaxGPR, HWReg);
      }
    }
  }

  unsigned RsrcReg;
  if (STM.getGeneration() >= R600Subtarget::EVERGREEN) {
    // Evergreen / Northern Islands
    switch (MF.getFunction()->getCallingConv()) {
    default: // Fall through
    case CallingConv::AMDGPU_CS: RsrcReg = R_0288D4_SQ_PGM_RESOURCES_LS; break;
    case CallingConv::AMDGPU_GS: RsrcReg = R_028878_SQ_PGM_RESOURCES_GS; break;
    case CallingConv::AMDGPU_PS: RsrcReg = R_028844_SQ_PGM_RESOURCES_PS; break;
    case CallingConv::AMDGPU_VS: RsrcReg = R_028860_SQ_PGM_RESOURCES_VS; break;
    }
  } else {
    // R600 / R700
    switch (MF.getFunction()->getCallingConv()) {
    default: // Fall through
    case CallingConv::AMDGPU_GS: // Fall through
    case CallingConv::AMDGPU_CS: // Fall through
    case CallingConv::AMDGPU_VS: RsrcReg = R_028868_SQ_PGM_RESOURCES_VS; break;
    case CallingConv::AMDGPU_PS: RsrcReg = R_028850_SQ_PGM_RESOURCES_PS; break;
    }
  }

  OutStreamer->EmitIntValue(RsrcReg, 4);
  OutStreamer->EmitIntValue(S_NUM_GPRS(MaxGPR + 1) |
                           S_STACK_SIZE(MFI->CFStackSize), 4);
  OutStreamer->EmitIntValue(R_02880C_DB_SHADER_CONTROL, 4);
  OutStreamer->EmitIntValue(S_02880C_KILL_ENABLE(killPixel), 4);

  if (AMDGPU::isCompute(MF.getFunction()->getCallingConv())) {
    OutStreamer->EmitIntValue(R_0288E8_SQ_LDS_ALLOC, 4);
    OutStreamer->EmitIntValue(alignTo(MFI->getLDSSize(), 4) >> 2, 4);
  }
}

void AMDGPUAsmPrinter::getSIProgramInfo(SIProgramInfo &ProgInfo,
                                        const MachineFunction &MF) const {
  const SISubtarget &STM = MF.getSubtarget<SISubtarget>();
  const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
  uint64_t CodeSize = 0;
  unsigned MaxSGPR = 0;
  unsigned MaxVGPR = 0;
  bool VCCUsed = false;
  bool FlatUsed = false;
  const SIRegisterInfo *RI = STM.getRegisterInfo();
  const SIInstrInfo *TII = STM.getInstrInfo();

  for (const MachineBasicBlock &MBB : MF) {
    for (const MachineInstr &MI : MBB) {
      // TODO: CodeSize should account for multiple functions.

      // TODO: Should we count size of debug info?
      if (MI.isDebugValue())
        continue;

      CodeSize += TII->getInstSizeInBytes(MI);

      unsigned numOperands = MI.getNumOperands();
      for (unsigned op_idx = 0; op_idx < numOperands; op_idx++) {
        const MachineOperand &MO = MI.getOperand(op_idx);
        unsigned width = 0;
        bool isSGPR = false;

        if (!MO.isReg())
          continue;

        unsigned reg = MO.getReg();
        switch (reg) {
        case AMDGPU::EXEC:
        case AMDGPU::EXEC_LO:
        case AMDGPU::EXEC_HI:
        case AMDGPU::SCC:
        case AMDGPU::M0:
          continue;

        case AMDGPU::VCC:
        case AMDGPU::VCC_LO:
        case AMDGPU::VCC_HI:
          VCCUsed = true;
          continue;

        case AMDGPU::FLAT_SCR:
        case AMDGPU::FLAT_SCR_LO:
        case AMDGPU::FLAT_SCR_HI:
          FlatUsed = true;
          continue;

        case AMDGPU::TBA:
        case AMDGPU::TBA_LO:
        case AMDGPU::TBA_HI:
        case AMDGPU::TMA:
        case AMDGPU::TMA_LO:
        case AMDGPU::TMA_HI:
          llvm_unreachable("trap handler registers should not be used");

        default:
          break;
        }

        if (AMDGPU::SReg_32RegClass.contains(reg)) {
          assert(!AMDGPU::TTMP_32RegClass.contains(reg) &&
                 "trap handler registers should not be used");
          isSGPR = true;
          width = 1;
        } else if (AMDGPU::VGPR_32RegClass.contains(reg)) {
          isSGPR = false;
          width = 1;
        } else if (AMDGPU::SReg_64RegClass.contains(reg)) {
          assert(!AMDGPU::TTMP_64RegClass.contains(reg) &&
                 "trap handler registers should not be used");
          isSGPR = true;
          width = 2;
        } else if (AMDGPU::VReg_64RegClass.contains(reg)) {
          isSGPR = false;
          width = 2;
        } else if (AMDGPU::VReg_96RegClass.contains(reg)) {
          isSGPR = false;
          width = 3;
        } else if (AMDGPU::SReg_128RegClass.contains(reg)) {
          isSGPR = true;
          width = 4;
        } else if (AMDGPU::VReg_128RegClass.contains(reg)) {
          isSGPR = false;
          width = 4;
        } else if (AMDGPU::SReg_256RegClass.contains(reg)) {
          isSGPR = true;
          width = 8;
        } else if (AMDGPU::VReg_256RegClass.contains(reg)) {
          isSGPR = false;
          width = 8;
        } else if (AMDGPU::SReg_512RegClass.contains(reg)) {
          isSGPR = true;
          width = 16;
        } else if (AMDGPU::VReg_512RegClass.contains(reg)) {
          isSGPR = false;
          width = 16;
        } else {
          llvm_unreachable("Unknown register class");
        }
        unsigned hwReg = RI->getEncodingValue(reg) & 0xff;
        unsigned maxUsed = hwReg + width - 1;
        if (isSGPR) {
          MaxSGPR = maxUsed > MaxSGPR ? maxUsed : MaxSGPR;
        } else {
          MaxVGPR = maxUsed > MaxVGPR ? maxUsed : MaxVGPR;
        }
      }
    }
  }

  unsigned ExtraSGPRs = 0;

  if (VCCUsed)
    ExtraSGPRs = 2;

  if (STM.getGeneration() < SISubtarget::VOLCANIC_ISLANDS) {
    if (FlatUsed)
      ExtraSGPRs = 4;
  } else {
    if (STM.isXNACKEnabled())
      ExtraSGPRs = 4;

    if (FlatUsed)
      ExtraSGPRs = 6;
  }

  MaxSGPR += ExtraSGPRs;

  // Record first reserved register and reserved register count fields, and
  // update max register counts if "amdgpu-debugger-reserve-regs" attribute was
  // specified.
  if (STM.debuggerReserveRegs()) {
    ProgInfo.ReservedVGPRFirst = MaxVGPR + 1;
    ProgInfo.ReservedVGPRCount = MFI->getDebuggerReservedVGPRCount();
    MaxVGPR += MFI->getDebuggerReservedVGPRCount();
  }

  // Update DebuggerWavefrontPrivateSegmentOffsetSGPR and
  // DebuggerPrivateSegmentBufferSGPR fields if "amdgpu-debugger-emit-prologue"
  // attribute was specified.
  if (STM.debuggerEmitPrologue()) {
    ProgInfo.DebuggerWavefrontPrivateSegmentOffsetSGPR =
      RI->getHWRegIndex(MFI->getScratchWaveOffsetReg());
    ProgInfo.DebuggerPrivateSegmentBufferSGPR =
      RI->getHWRegIndex(MFI->getScratchRSrcReg());
  }

  // We found the maximum register index. They start at 0, so add one to get the
  // number of registers.
  ProgInfo.NumVGPR = MaxVGPR + 1;
  ProgInfo.NumSGPR = MaxSGPR + 1;

  if (STM.hasSGPRInitBug()) {
    if (ProgInfo.NumSGPR > SISubtarget::FIXED_SGPR_COUNT_FOR_INIT_BUG) {
      LLVMContext &Ctx = MF.getFunction()->getContext();
      DiagnosticInfoResourceLimit Diag(*MF.getFunction(),
                                       "SGPRs with SGPR init bug",
                                       ProgInfo.NumSGPR, DS_Error);
      Ctx.diagnose(Diag);
    }

    ProgInfo.NumSGPR = SISubtarget::FIXED_SGPR_COUNT_FOR_INIT_BUG;
  }

  if (MFI->NumUserSGPRs > STM.getMaxNumUserSGPRs()) {
    LLVMContext &Ctx = MF.getFunction()->getContext();
    DiagnosticInfoResourceLimit Diag(*MF.getFunction(), "user SGPRs",
                                     MFI->NumUserSGPRs, DS_Error);
    Ctx.diagnose(Diag);
  }

  if (MFI->getLDSSize() > static_cast<unsigned>(STM.getLocalMemorySize())) {
    LLVMContext &Ctx = MF.getFunction()->getContext();
    DiagnosticInfoResourceLimit Diag(*MF.getFunction(), "local memory",
                                     MFI->getLDSSize(), DS_Error);
    Ctx.diagnose(Diag);
  }

  ProgInfo.VGPRBlocks = (ProgInfo.NumVGPR - 1) / 4;
  ProgInfo.SGPRBlocks = (ProgInfo.NumSGPR - 1) / 8;
  // Set the value to initialize FP_ROUND and FP_DENORM parts of the mode
  // register.
  ProgInfo.FloatMode = getFPMode(MF);

  ProgInfo.IEEEMode = 0;

  // Make clamp modifier on NaN input returns 0.
  ProgInfo.DX10Clamp = 1;

  const MachineFrameInfo &FrameInfo = MF.getFrameInfo();
  ProgInfo.ScratchSize = FrameInfo.getStackSize();

  ProgInfo.FlatUsed = FlatUsed;
  ProgInfo.VCCUsed = VCCUsed;
  ProgInfo.CodeLen = CodeSize;

  unsigned LDSAlignShift;
  if (STM.getGeneration() < SISubtarget::SEA_ISLANDS) {
    // LDS is allocated in 64 dword blocks.
    LDSAlignShift = 8;
  } else {
    // LDS is allocated in 128 dword blocks.
    LDSAlignShift = 9;
  }

  unsigned LDSSpillSize = MFI->LDSWaveSpillSize *
                          MFI->getMaximumWorkGroupSize(MF);

  ProgInfo.LDSSize = MFI->getLDSSize() + LDSSpillSize;
  ProgInfo.LDSBlocks =
      alignTo(ProgInfo.LDSSize, 1ULL << LDSAlignShift) >> LDSAlignShift;

  // Scratch is allocated in 256 dword blocks.
  unsigned ScratchAlignShift = 10;
  // We need to program the hardware with the amount of scratch memory that
  // is used by the entire wave.  ProgInfo.ScratchSize is the amount of
  // scratch memory used per thread.
  ProgInfo.ScratchBlocks =
      alignTo(ProgInfo.ScratchSize * STM.getWavefrontSize(),
              1ULL << ScratchAlignShift) >>
      ScratchAlignShift;

  ProgInfo.ComputePGMRSrc1 =
      S_00B848_VGPRS(ProgInfo.VGPRBlocks) |
      S_00B848_SGPRS(ProgInfo.SGPRBlocks) |
      S_00B848_PRIORITY(ProgInfo.Priority) |
      S_00B848_FLOAT_MODE(ProgInfo.FloatMode) |
      S_00B848_PRIV(ProgInfo.Priv) |
      S_00B848_DX10_CLAMP(ProgInfo.DX10Clamp) |
      S_00B848_DEBUG_MODE(ProgInfo.DebugMode) |
      S_00B848_IEEE_MODE(ProgInfo.IEEEMode);

  // 0 = X, 1 = XY, 2 = XYZ
  unsigned TIDIGCompCnt = 0;
  if (MFI->hasWorkItemIDZ())
    TIDIGCompCnt = 2;
  else if (MFI->hasWorkItemIDY())
    TIDIGCompCnt = 1;

  ProgInfo.ComputePGMRSrc2 =
      S_00B84C_SCRATCH_EN(ProgInfo.ScratchBlocks > 0) |
      S_00B84C_USER_SGPR(MFI->getNumUserSGPRs()) |
      S_00B84C_TGID_X_EN(MFI->hasWorkGroupIDX()) |
      S_00B84C_TGID_Y_EN(MFI->hasWorkGroupIDY()) |
      S_00B84C_TGID_Z_EN(MFI->hasWorkGroupIDZ()) |
      S_00B84C_TG_SIZE_EN(MFI->hasWorkGroupInfo()) |
      S_00B84C_TIDIG_COMP_CNT(TIDIGCompCnt) |
      S_00B84C_EXCP_EN_MSB(0) |
      S_00B84C_LDS_SIZE(ProgInfo.LDSBlocks) |
      S_00B84C_EXCP_EN(0);
}

static unsigned getRsrcReg(CallingConv::ID CallConv) {
  switch (CallConv) {
  default: // Fall through
  case CallingConv::AMDGPU_CS: return R_00B848_COMPUTE_PGM_RSRC1;
  case CallingConv::AMDGPU_GS: return R_00B228_SPI_SHADER_PGM_RSRC1_GS;
  case CallingConv::AMDGPU_PS: return R_00B028_SPI_SHADER_PGM_RSRC1_PS;
  case CallingConv::AMDGPU_VS: return R_00B128_SPI_SHADER_PGM_RSRC1_VS;
  }
}

void AMDGPUAsmPrinter::EmitProgramInfoSI(const MachineFunction &MF,
                                         const SIProgramInfo &KernelInfo) {
  const SISubtarget &STM = MF.getSubtarget<SISubtarget>();
  const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
  unsigned RsrcReg = getRsrcReg(MF.getFunction()->getCallingConv());

  if (AMDGPU::isCompute(MF.getFunction()->getCallingConv())) {
    OutStreamer->EmitIntValue(R_00B848_COMPUTE_PGM_RSRC1, 4);

    OutStreamer->EmitIntValue(KernelInfo.ComputePGMRSrc1, 4);

    OutStreamer->EmitIntValue(R_00B84C_COMPUTE_PGM_RSRC2, 4);
    OutStreamer->EmitIntValue(KernelInfo.ComputePGMRSrc2, 4);

    OutStreamer->EmitIntValue(R_00B860_COMPUTE_TMPRING_SIZE, 4);
    OutStreamer->EmitIntValue(S_00B860_WAVESIZE(KernelInfo.ScratchBlocks), 4);

    // TODO: Should probably note flat usage somewhere. SC emits a "FlatPtr32 =
    // 0" comment but I don't see a corresponding field in the register spec.
  } else {
    OutStreamer->EmitIntValue(RsrcReg, 4);
    OutStreamer->EmitIntValue(S_00B028_VGPRS(KernelInfo.VGPRBlocks) |
                              S_00B028_SGPRS(KernelInfo.SGPRBlocks), 4);
    if (STM.isVGPRSpillingEnabled(*MF.getFunction())) {
      OutStreamer->EmitIntValue(R_0286E8_SPI_TMPRING_SIZE, 4);
      OutStreamer->EmitIntValue(S_0286E8_WAVESIZE(KernelInfo.ScratchBlocks), 4);
    }
  }

  if (MF.getFunction()->getCallingConv() == CallingConv::AMDGPU_PS) {
    OutStreamer->EmitIntValue(R_00B02C_SPI_SHADER_PGM_RSRC2_PS, 4);
    OutStreamer->EmitIntValue(S_00B02C_EXTRA_LDS_SIZE(KernelInfo.LDSBlocks), 4);
    OutStreamer->EmitIntValue(R_0286CC_SPI_PS_INPUT_ENA, 4);
    OutStreamer->EmitIntValue(MFI->PSInputEna, 4);
    OutStreamer->EmitIntValue(R_0286D0_SPI_PS_INPUT_ADDR, 4);
    OutStreamer->EmitIntValue(MFI->getPSInputAddr(), 4);
  }

  OutStreamer->EmitIntValue(R_SPILLED_SGPRS, 4);
  OutStreamer->EmitIntValue(MFI->getNumSpilledSGPRs(), 4);
  OutStreamer->EmitIntValue(R_SPILLED_VGPRS, 4);
  OutStreamer->EmitIntValue(MFI->getNumSpilledVGPRs(), 4);
}

// This is supposed to be log2(Size)
static amd_element_byte_size_t getElementByteSizeValue(unsigned Size) {
  switch (Size) {
  case 4:
    return AMD_ELEMENT_4_BYTES;
  case 8:
    return AMD_ELEMENT_8_BYTES;
  case 16:
    return AMD_ELEMENT_16_BYTES;
  default:
    llvm_unreachable("invalid private_element_size");
  }
}

void AMDGPUAsmPrinter::EmitAmdKernelCodeT(const MachineFunction &MF,
                                         const SIProgramInfo &KernelInfo) const {
  const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
  const SISubtarget &STM = MF.getSubtarget<SISubtarget>();
  amd_kernel_code_t header;

  AMDGPU::initDefaultAMDKernelCodeT(header, STM.getFeatureBits());

  header.compute_pgm_resource_registers =
      KernelInfo.ComputePGMRSrc1 |
      (KernelInfo.ComputePGMRSrc2 << 32);
  header.code_properties = AMD_CODE_PROPERTY_IS_PTR64;


  AMD_HSA_BITS_SET(header.code_properties,
                   AMD_CODE_PROPERTY_PRIVATE_ELEMENT_SIZE,
                   getElementByteSizeValue(STM.getMaxPrivateElementSize()));

  if (MFI->hasPrivateSegmentBuffer()) {
    header.code_properties |=
      AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER;
  }

  if (MFI->hasDispatchPtr())
    header.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR;

  if (MFI->hasQueuePtr())
    header.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR;

  if (MFI->hasKernargSegmentPtr())
    header.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR;

  if (MFI->hasDispatchID())
    header.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID;

  if (MFI->hasFlatScratchInit())
    header.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT;

  // TODO: Private segment size

  if (MFI->hasGridWorkgroupCountX()) {
    header.code_properties |=
      AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_X;
  }

  if (MFI->hasGridWorkgroupCountY()) {
    header.code_properties |=
      AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Y;
  }

  if (MFI->hasGridWorkgroupCountZ()) {
    header.code_properties |=
      AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Z;
  }

  if (MFI->hasDispatchPtr())
    header.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR;

  if (STM.debuggerSupported())
    header.code_properties |= AMD_CODE_PROPERTY_IS_DEBUG_SUPPORTED;

  if (STM.isXNACKEnabled())
    header.code_properties |= AMD_CODE_PROPERTY_IS_XNACK_SUPPORTED;

  // FIXME: Should use getKernArgSize
  header.kernarg_segment_byte_size = MFI->getABIArgOffset();
  header.wavefront_sgpr_count = KernelInfo.NumSGPR;
  header.workitem_vgpr_count = KernelInfo.NumVGPR;
  header.workitem_private_segment_byte_size = KernelInfo.ScratchSize;
  header.workgroup_group_segment_byte_size = KernelInfo.LDSSize;
  header.reserved_vgpr_first = KernelInfo.ReservedVGPRFirst;
  header.reserved_vgpr_count = KernelInfo.ReservedVGPRCount;

  if (STM.debuggerEmitPrologue()) {
    header.debug_wavefront_private_segment_offset_sgpr =
      KernelInfo.DebuggerWavefrontPrivateSegmentOffsetSGPR;
    header.debug_private_segment_buffer_sgpr =
      KernelInfo.DebuggerPrivateSegmentBufferSGPR;
  }

  AMDGPUTargetStreamer *TS =
      static_cast<AMDGPUTargetStreamer *>(OutStreamer->getTargetStreamer());

  OutStreamer->SwitchSection(getObjFileLowering().getTextSection());
  TS->EmitAMDKernelCodeT(header);
}

bool AMDGPUAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
                                       unsigned AsmVariant,
                                       const char *ExtraCode, raw_ostream &O) {
  if (ExtraCode && ExtraCode[0]) {
    if (ExtraCode[1] != 0)
      return true; // Unknown modifier.

    switch (ExtraCode[0]) {
    default:
      // See if this is a generic print operand
      return AsmPrinter::PrintAsmOperand(MI, OpNo, AsmVariant, ExtraCode, O);
    case 'r':
      break;
    }
  }

  AMDGPUInstPrinter::printRegOperand(MI->getOperand(OpNo).getReg(), O,
                   *TM.getSubtargetImpl(*MF->getFunction())->getRegisterInfo());
  return false;
}

// Emit a key and an integer value for runtime metadata.
static void emitRuntimeMDIntValue(MCStreamer &Streamer,
                                  RuntimeMD::Key K, uint64_t V,
                                  unsigned Size) {
  Streamer.EmitIntValue(K, 1);
  Streamer.EmitIntValue(V, Size);
}

// Emit a key and a string value for runtime metadata.
static void emitRuntimeMDStringValue(MCStreamer &Streamer,
                                     RuntimeMD::Key K, StringRef S) {
  Streamer.EmitIntValue(K, 1);
  Streamer.EmitIntValue(S.size(), 4);
  Streamer.EmitBytes(S);
}

// Emit a key and three integer values for runtime metadata.
// The three integer values are obtained from MDNode \p Node;
static void emitRuntimeMDThreeIntValues(MCStreamer &Streamer,
                                        RuntimeMD::Key K, MDNode *Node,
                                        unsigned Size) {
  assert(Node->getNumOperands() == 3);

  Streamer.EmitIntValue(K, 1);
  for (const MDOperand &Op : Node->operands()) {
    const ConstantInt *CI = mdconst::extract<ConstantInt>(Op);
    Streamer.EmitIntValue(CI->getZExtValue(), Size);
  }
}

void AMDGPUAsmPrinter::emitStartOfRuntimeMetadata(const Module &M) {
  OutStreamer->SwitchSection(getObjFileLowering().getContext()
    .getELFSection(RuntimeMD::SectionName, ELF::SHT_PROGBITS, 0));

  emitRuntimeMDIntValue(*OutStreamer, RuntimeMD::KeyMDVersion,
                        RuntimeMD::MDVersion << 8 | RuntimeMD::MDRevision, 2);
  if (auto MD = M.getNamedMetadata("opencl.ocl.version")) {
    if (MD->getNumOperands() != 0) {
      auto Node = MD->getOperand(0);
      if (Node->getNumOperands() > 1) {
        emitRuntimeMDIntValue(*OutStreamer, RuntimeMD::KeyLanguage,
                              RuntimeMD::OpenCL_C, 1);
        uint16_t Major = mdconst::extract<ConstantInt>(Node->getOperand(0))
                         ->getZExtValue();
        uint16_t Minor = mdconst::extract<ConstantInt>(Node->getOperand(1))
                         ->getZExtValue();
        emitRuntimeMDIntValue(*OutStreamer, RuntimeMD::KeyLanguageVersion,
                              Major * 100 + Minor * 10, 2);
      }
    }
  }
}

static std::string getOCLTypeName(Type *Ty, bool Signed) {
  switch (Ty->getTypeID()) {
  case Type::HalfTyID:
    return "half";
  case Type::FloatTyID:
    return "float";
  case Type::DoubleTyID:
    return "double";
  case Type::IntegerTyID: {
    if (!Signed)
      return (Twine('u') + getOCLTypeName(Ty, true)).str();
    unsigned BW = Ty->getIntegerBitWidth();
    switch (BW) {
    case 8:
      return "char";
    case 16:
      return "short";
    case 32:
      return "int";
    case 64:
      return "long";
    default:
      return (Twine('i') + Twine(BW)).str();
    }
  }
  case Type::VectorTyID: {
    VectorType *VecTy = cast<VectorType>(Ty);
    Type *EleTy = VecTy->getElementType();
    unsigned Size = VecTy->getVectorNumElements();
    return (Twine(getOCLTypeName(EleTy, Signed)) + Twine(Size)).str();
  }
  default:
    return "unknown";
  }
}

static RuntimeMD::KernelArg::ValueType getRuntimeMDValueType(
  Type *Ty, StringRef TypeName) {
  switch (Ty->getTypeID()) {
  case Type::HalfTyID:
    return RuntimeMD::KernelArg::F16;
  case Type::FloatTyID:
    return RuntimeMD::KernelArg::F32;
  case Type::DoubleTyID:
    return RuntimeMD::KernelArg::F64;
  case Type::IntegerTyID: {
    bool Signed = !TypeName.startswith("u");
    switch (Ty->getIntegerBitWidth()) {
    case 8:
      return Signed ? RuntimeMD::KernelArg::I8 : RuntimeMD::KernelArg::U8;
    case 16:
      return Signed ? RuntimeMD::KernelArg::I16 : RuntimeMD::KernelArg::U16;
    case 32:
      return Signed ? RuntimeMD::KernelArg::I32 : RuntimeMD::KernelArg::U32;
    case 64:
      return Signed ? RuntimeMD::KernelArg::I64 : RuntimeMD::KernelArg::U64;
    default:
      // Runtime does not recognize other integer types. Report as struct type.
      return RuntimeMD::KernelArg::Struct;
    }
  }
  case Type::VectorTyID:
    return getRuntimeMDValueType(Ty->getVectorElementType(), TypeName);
  case Type::PointerTyID:
    return getRuntimeMDValueType(Ty->getPointerElementType(), TypeName);
  default:
    return RuntimeMD::KernelArg::Struct;
  }
}

void AMDGPUAsmPrinter::emitRuntimeMetadata(const Function &F) {
  if (!F.getMetadata("kernel_arg_type"))
    return;

  MCContext &Context = getObjFileLowering().getContext();
  OutStreamer->SwitchSection(
      Context.getELFSection(RuntimeMD::SectionName, ELF::SHT_PROGBITS, 0));
  OutStreamer->EmitIntValue(RuntimeMD::KeyKernelBegin, 1);
  emitRuntimeMDStringValue(*OutStreamer, RuntimeMD::KeyKernelName, F.getName());

  for (auto &Arg : F.args()) {
    // Emit KeyArgBegin.
    unsigned I = Arg.getArgNo();
    OutStreamer->EmitIntValue(RuntimeMD::KeyArgBegin, 1);

    // Emit KeyArgSize and KeyArgAlign.
    Type *T = Arg.getType();
    const DataLayout &DL = F.getParent()->getDataLayout();
    emitRuntimeMDIntValue(*OutStreamer, RuntimeMD::KeyArgSize,
                          DL.getTypeAllocSize(T), 4);
    emitRuntimeMDIntValue(*OutStreamer, RuntimeMD::KeyArgAlign,
                          DL.getABITypeAlignment(T), 4);

    // Emit KeyArgTypeName.
    auto TypeName = dyn_cast<MDString>(F.getMetadata(
      "kernel_arg_type")->getOperand(I))->getString();
    emitRuntimeMDStringValue(*OutStreamer, RuntimeMD::KeyArgTypeName, TypeName);

    // Emit KeyArgName.
    if (auto ArgNameMD = F.getMetadata("kernel_arg_name")) {
      auto ArgName = cast<MDString>(ArgNameMD->getOperand(I))->getString();
      emitRuntimeMDStringValue(*OutStreamer, RuntimeMD::KeyArgName, ArgName);
    }

    // Emit KeyArgIsVolatile, KeyArgIsRestrict, KeyArgIsConst and KeyArgIsPipe.
    auto TypeQual = cast<MDString>(F.getMetadata(
      "kernel_arg_type_qual")->getOperand(I))->getString();
    SmallVector<StringRef, 1> SplitQ;
    TypeQual.split(SplitQ, " ", -1, false /* Drop empty entry */);

    for (StringRef KeyName : SplitQ) {
      auto Key = StringSwitch<RuntimeMD::Key>(KeyName)
        .Case("volatile", RuntimeMD::KeyArgIsVolatile)
        .Case("restrict", RuntimeMD::KeyArgIsRestrict)
        .Case("const",    RuntimeMD::KeyArgIsConst)
        .Case("pipe",     RuntimeMD::KeyArgIsPipe)
        .Default(RuntimeMD::KeyNull);
      OutStreamer->EmitIntValue(Key, 1);
    }

    // Emit KeyArgTypeKind.
    auto BaseTypeName = cast<MDString>(
      F.getMetadata("kernel_arg_base_type")->getOperand(I))->getString();
    auto TypeKind = StringSwitch<RuntimeMD::KernelArg::TypeKind>(BaseTypeName)
      .Case("sampler_t", RuntimeMD::KernelArg::Sampler)
      .Case("queue_t",   RuntimeMD::KernelArg::Queue)
      .Cases("image1d_t", "image1d_array_t", "image1d_buffer_t",
             "image2d_t" , "image2d_array_t",  RuntimeMD::KernelArg::Image)
      .Cases("image2d_depth_t", "image2d_array_depth_t",
             "image2d_msaa_t", "image2d_array_msaa_t",
             "image2d_msaa_depth_t",  RuntimeMD::KernelArg::Image)
      .Cases("image2d_array_msaa_depth_t", "image3d_t",
             RuntimeMD::KernelArg::Image)
      .Default(isa<PointerType>(T) ? RuntimeMD::KernelArg::Pointer :
               RuntimeMD::KernelArg::Value);
    emitRuntimeMDIntValue(*OutStreamer, RuntimeMD::KeyArgTypeKind, TypeKind, 1);

    // Emit KeyArgValueType.
    emitRuntimeMDIntValue(*OutStreamer, RuntimeMD::KeyArgValueType,
                          getRuntimeMDValueType(T, BaseTypeName), 2);

    // Emit KeyArgAccQual.
    auto AccQual = cast<MDString>(F.getMetadata(
      "kernel_arg_access_qual")->getOperand(I))->getString();
    auto AQ = StringSwitch<RuntimeMD::KernelArg::AccessQualifer>(AccQual)
      .Case("read_only",  RuntimeMD::KernelArg::ReadOnly)
      .Case("write_only", RuntimeMD::KernelArg::WriteOnly)
      .Case("read_write", RuntimeMD::KernelArg::ReadWrite)
      .Default(RuntimeMD::KernelArg::None);
    emitRuntimeMDIntValue(*OutStreamer, RuntimeMD::KeyArgAccQual, AQ, 1);

    // Emit KeyArgAddrQual.
    if (auto *PT = dyn_cast<PointerType>(T)) {
      emitRuntimeMDIntValue(*OutStreamer, RuntimeMD::KeyArgAddrQual,
                            PT->getAddressSpace(), 1);
    }

    // Emit KeyArgEnd
    OutStreamer->EmitIntValue(RuntimeMD::KeyArgEnd, 1);
  }

  // Emit KeyReqdWorkGroupSize, KeyWorkGroupSizeHint, and KeyVecTypeHint.
  if (auto RWGS = F.getMetadata("reqd_work_group_size")) {
    emitRuntimeMDThreeIntValues(*OutStreamer, RuntimeMD::KeyReqdWorkGroupSize,
                                RWGS, 4);
  }

  if (auto WGSH = F.getMetadata("work_group_size_hint")) {
    emitRuntimeMDThreeIntValues(*OutStreamer, RuntimeMD::KeyWorkGroupSizeHint,
                                WGSH, 4);
  }

  if (auto VTH = F.getMetadata("vec_type_hint")) {
    auto TypeName = getOCLTypeName(cast<ValueAsMetadata>(
      VTH->getOperand(0))->getType(), mdconst::extract<ConstantInt>(
      VTH->getOperand(1))->getZExtValue());
    emitRuntimeMDStringValue(*OutStreamer, RuntimeMD::KeyVecTypeHint, TypeName);
  }

  // Emit KeyKernelEnd
  OutStreamer->EmitIntValue(RuntimeMD::KeyKernelEnd, 1);
}