summaryrefslogtreecommitdiff
path: root/lib/Target/AArch64/AArch64PBQPRegAlloc.cpp
blob: ccf646575296beb9f0d6f50dfd727f8b8bc571d7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
//===-- AArch64PBQPRegAlloc.cpp - AArch64 specific PBQP constraints -------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// This file contains the AArch64 / Cortex-A57 specific register allocation
// constraints for use by the PBQP register allocator.
//
// It is essentially a transcription of what is contained in
// AArch64A57FPLoadBalancing, which tries to use a balanced
// mix of odd and even D-registers when performing a critical sequence of
// independent, non-quadword FP/ASIMD floating-point multiply-accumulates.
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "aarch64-pbqp"

#include "AArch64PBQPRegAlloc.h"
#include "AArch64.h"
#include "AArch64RegisterInfo.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegAllocPBQP.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"

using namespace llvm;

namespace {

#ifndef NDEBUG
bool isFPReg(unsigned reg) {
  return AArch64::FPR32RegClass.contains(reg) ||
         AArch64::FPR64RegClass.contains(reg) ||
         AArch64::FPR128RegClass.contains(reg);
}
#endif

bool isOdd(unsigned reg) {
  switch (reg) {
  default:
    llvm_unreachable("Register is not from the expected class !");
  case AArch64::S1:
  case AArch64::S3:
  case AArch64::S5:
  case AArch64::S7:
  case AArch64::S9:
  case AArch64::S11:
  case AArch64::S13:
  case AArch64::S15:
  case AArch64::S17:
  case AArch64::S19:
  case AArch64::S21:
  case AArch64::S23:
  case AArch64::S25:
  case AArch64::S27:
  case AArch64::S29:
  case AArch64::S31:
  case AArch64::D1:
  case AArch64::D3:
  case AArch64::D5:
  case AArch64::D7:
  case AArch64::D9:
  case AArch64::D11:
  case AArch64::D13:
  case AArch64::D15:
  case AArch64::D17:
  case AArch64::D19:
  case AArch64::D21:
  case AArch64::D23:
  case AArch64::D25:
  case AArch64::D27:
  case AArch64::D29:
  case AArch64::D31:
  case AArch64::Q1:
  case AArch64::Q3:
  case AArch64::Q5:
  case AArch64::Q7:
  case AArch64::Q9:
  case AArch64::Q11:
  case AArch64::Q13:
  case AArch64::Q15:
  case AArch64::Q17:
  case AArch64::Q19:
  case AArch64::Q21:
  case AArch64::Q23:
  case AArch64::Q25:
  case AArch64::Q27:
  case AArch64::Q29:
  case AArch64::Q31:
    return true;
  case AArch64::S0:
  case AArch64::S2:
  case AArch64::S4:
  case AArch64::S6:
  case AArch64::S8:
  case AArch64::S10:
  case AArch64::S12:
  case AArch64::S14:
  case AArch64::S16:
  case AArch64::S18:
  case AArch64::S20:
  case AArch64::S22:
  case AArch64::S24:
  case AArch64::S26:
  case AArch64::S28:
  case AArch64::S30:
  case AArch64::D0:
  case AArch64::D2:
  case AArch64::D4:
  case AArch64::D6:
  case AArch64::D8:
  case AArch64::D10:
  case AArch64::D12:
  case AArch64::D14:
  case AArch64::D16:
  case AArch64::D18:
  case AArch64::D20:
  case AArch64::D22:
  case AArch64::D24:
  case AArch64::D26:
  case AArch64::D28:
  case AArch64::D30:
  case AArch64::Q0:
  case AArch64::Q2:
  case AArch64::Q4:
  case AArch64::Q6:
  case AArch64::Q8:
  case AArch64::Q10:
  case AArch64::Q12:
  case AArch64::Q14:
  case AArch64::Q16:
  case AArch64::Q18:
  case AArch64::Q20:
  case AArch64::Q22:
  case AArch64::Q24:
  case AArch64::Q26:
  case AArch64::Q28:
  case AArch64::Q30:
    return false;

  }
}

bool haveSameParity(unsigned reg1, unsigned reg2) {
  assert(isFPReg(reg1) && "Expecting an FP register for reg1");
  assert(isFPReg(reg2) && "Expecting an FP register for reg2");

  return isOdd(reg1) == isOdd(reg2);
}

}

bool A57ChainingConstraint::addIntraChainConstraint(PBQPRAGraph &G, unsigned Rd,
                                                 unsigned Ra) {
  if (Rd == Ra)
    return false;

  LiveIntervals &LIs = G.getMetadata().LIS;

  if (TRI->isPhysicalRegister(Rd) || TRI->isPhysicalRegister(Ra)) {
    LLVM_DEBUG(dbgs() << "Rd is a physical reg:" << TRI->isPhysicalRegister(Rd)
                      << '\n');
    LLVM_DEBUG(dbgs() << "Ra is a physical reg:" << TRI->isPhysicalRegister(Ra)
                      << '\n');
    return false;
  }

  PBQPRAGraph::NodeId node1 = G.getMetadata().getNodeIdForVReg(Rd);
  PBQPRAGraph::NodeId node2 = G.getMetadata().getNodeIdForVReg(Ra);

  const PBQPRAGraph::NodeMetadata::AllowedRegVector *vRdAllowed =
    &G.getNodeMetadata(node1).getAllowedRegs();
  const PBQPRAGraph::NodeMetadata::AllowedRegVector *vRaAllowed =
    &G.getNodeMetadata(node2).getAllowedRegs();

  PBQPRAGraph::EdgeId edge = G.findEdge(node1, node2);

  // The edge does not exist. Create one with the appropriate interference
  // costs.
  if (edge == G.invalidEdgeId()) {
    const LiveInterval &ld = LIs.getInterval(Rd);
    const LiveInterval &la = LIs.getInterval(Ra);
    bool livesOverlap = ld.overlaps(la);

    PBQPRAGraph::RawMatrix costs(vRdAllowed->size() + 1,
                                 vRaAllowed->size() + 1, 0);
    for (unsigned i = 0, ie = vRdAllowed->size(); i != ie; ++i) {
      unsigned pRd = (*vRdAllowed)[i];
      for (unsigned j = 0, je = vRaAllowed->size(); j != je; ++j) {
        unsigned pRa = (*vRaAllowed)[j];
        if (livesOverlap && TRI->regsOverlap(pRd, pRa))
          costs[i + 1][j + 1] = std::numeric_limits<PBQP::PBQPNum>::infinity();
        else
          costs[i + 1][j + 1] = haveSameParity(pRd, pRa) ? 0.0 : 1.0;
      }
    }
    G.addEdge(node1, node2, std::move(costs));
    return true;
  }

  if (G.getEdgeNode1Id(edge) == node2) {
    std::swap(node1, node2);
    std::swap(vRdAllowed, vRaAllowed);
  }

  // Enforce minCost(sameParity(RaClass)) > maxCost(otherParity(RdClass))
  PBQPRAGraph::RawMatrix costs(G.getEdgeCosts(edge));
  for (unsigned i = 0, ie = vRdAllowed->size(); i != ie; ++i) {
    unsigned pRd = (*vRdAllowed)[i];

    // Get the maximum cost (excluding unallocatable reg) for same parity
    // registers
    PBQP::PBQPNum sameParityMax = std::numeric_limits<PBQP::PBQPNum>::min();
    for (unsigned j = 0, je = vRaAllowed->size(); j != je; ++j) {
      unsigned pRa = (*vRaAllowed)[j];
      if (haveSameParity(pRd, pRa))
        if (costs[i + 1][j + 1] !=
                std::numeric_limits<PBQP::PBQPNum>::infinity() &&
            costs[i + 1][j + 1] > sameParityMax)
          sameParityMax = costs[i + 1][j + 1];
    }

    // Ensure all registers with a different parity have a higher cost
    // than sameParityMax
    for (unsigned j = 0, je = vRaAllowed->size(); j != je; ++j) {
      unsigned pRa = (*vRaAllowed)[j];
      if (!haveSameParity(pRd, pRa))
        if (sameParityMax > costs[i + 1][j + 1])
          costs[i + 1][j + 1] = sameParityMax + 1.0;
    }
  }
  G.updateEdgeCosts(edge, std::move(costs));

  return true;
}

void A57ChainingConstraint::addInterChainConstraint(PBQPRAGraph &G, unsigned Rd,
                                                 unsigned Ra) {
  LiveIntervals &LIs = G.getMetadata().LIS;

  // Do some Chain management
  if (Chains.count(Ra)) {
    if (Rd != Ra) {
      LLVM_DEBUG(dbgs() << "Moving acc chain from " << printReg(Ra, TRI)
                        << " to " << printReg(Rd, TRI) << '\n';);
      Chains.remove(Ra);
      Chains.insert(Rd);
    }
  } else {
    LLVM_DEBUG(dbgs() << "Creating new acc chain for " << printReg(Rd, TRI)
                      << '\n';);
    Chains.insert(Rd);
  }

  PBQPRAGraph::NodeId node1 = G.getMetadata().getNodeIdForVReg(Rd);

  const LiveInterval &ld = LIs.getInterval(Rd);
  for (auto r : Chains) {
    // Skip self
    if (r == Rd)
      continue;

    const LiveInterval &lr = LIs.getInterval(r);
    if (ld.overlaps(lr)) {
      const PBQPRAGraph::NodeMetadata::AllowedRegVector *vRdAllowed =
        &G.getNodeMetadata(node1).getAllowedRegs();

      PBQPRAGraph::NodeId node2 = G.getMetadata().getNodeIdForVReg(r);
      const PBQPRAGraph::NodeMetadata::AllowedRegVector *vRrAllowed =
        &G.getNodeMetadata(node2).getAllowedRegs();

      PBQPRAGraph::EdgeId edge = G.findEdge(node1, node2);
      assert(edge != G.invalidEdgeId() &&
             "PBQP error ! The edge should exist !");

      LLVM_DEBUG(dbgs() << "Refining constraint !\n";);

      if (G.getEdgeNode1Id(edge) == node2) {
        std::swap(node1, node2);
        std::swap(vRdAllowed, vRrAllowed);
      }

      // Enforce that cost is higher with all other Chains of the same parity
      PBQP::Matrix costs(G.getEdgeCosts(edge));
      for (unsigned i = 0, ie = vRdAllowed->size(); i != ie; ++i) {
        unsigned pRd = (*vRdAllowed)[i];

        // Get the maximum cost (excluding unallocatable reg) for all other
        // parity registers
        PBQP::PBQPNum sameParityMax = std::numeric_limits<PBQP::PBQPNum>::min();
        for (unsigned j = 0, je = vRrAllowed->size(); j != je; ++j) {
          unsigned pRa = (*vRrAllowed)[j];
          if (!haveSameParity(pRd, pRa))
            if (costs[i + 1][j + 1] !=
                    std::numeric_limits<PBQP::PBQPNum>::infinity() &&
                costs[i + 1][j + 1] > sameParityMax)
              sameParityMax = costs[i + 1][j + 1];
        }

        // Ensure all registers with same parity have a higher cost
        // than sameParityMax
        for (unsigned j = 0, je = vRrAllowed->size(); j != je; ++j) {
          unsigned pRa = (*vRrAllowed)[j];
          if (haveSameParity(pRd, pRa))
            if (sameParityMax > costs[i + 1][j + 1])
              costs[i + 1][j + 1] = sameParityMax + 1.0;
        }
      }
      G.updateEdgeCosts(edge, std::move(costs));
    }
  }
}

static bool regJustKilledBefore(const LiveIntervals &LIs, unsigned reg,
                                const MachineInstr &MI) {
  const LiveInterval &LI = LIs.getInterval(reg);
  SlotIndex SI = LIs.getInstructionIndex(MI);
  return LI.expiredAt(SI);
}

void A57ChainingConstraint::apply(PBQPRAGraph &G) {
  const MachineFunction &MF = G.getMetadata().MF;
  LiveIntervals &LIs = G.getMetadata().LIS;

  TRI = MF.getSubtarget().getRegisterInfo();
  LLVM_DEBUG(MF.dump());

  for (const auto &MBB: MF) {
    Chains.clear(); // FIXME: really needed ? Could not work at MF level ?

    for (const auto &MI: MBB) {

      // Forget Chains which have expired
      for (auto r : Chains) {
        SmallVector<unsigned, 8> toDel;
        if(regJustKilledBefore(LIs, r, MI)) {
          LLVM_DEBUG(dbgs() << "Killing chain " << printReg(r, TRI) << " at ";
                     MI.print(dbgs()););
          toDel.push_back(r);
        }

        while (!toDel.empty()) {
          Chains.remove(toDel.back());
          toDel.pop_back();
        }
      }

      switch (MI.getOpcode()) {
      case AArch64::FMSUBSrrr:
      case AArch64::FMADDSrrr:
      case AArch64::FNMSUBSrrr:
      case AArch64::FNMADDSrrr:
      case AArch64::FMSUBDrrr:
      case AArch64::FMADDDrrr:
      case AArch64::FNMSUBDrrr:
      case AArch64::FNMADDDrrr: {
        unsigned Rd = MI.getOperand(0).getReg();
        unsigned Ra = MI.getOperand(3).getReg();

        if (addIntraChainConstraint(G, Rd, Ra))
          addInterChainConstraint(G, Rd, Ra);
        break;
      }

      case AArch64::FMLAv2f32:
      case AArch64::FMLSv2f32: {
        unsigned Rd = MI.getOperand(0).getReg();
        addInterChainConstraint(G, Rd, Rd);
        break;
      }

      default:
        break;
      }
    }
  }
}