summaryrefslogtreecommitdiff
path: root/lib/LTO/LTOBackend.cpp
blob: 76b20b5130feb714cea1f5472e1fe9569c936c18 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
//===-LTOBackend.cpp - LLVM Link Time Optimizer Backend -------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the "backend" phase of LTO, i.e. it performs
// optimization and code generation on a loaded module. It is generally used
// internally by the LTO class but can also be used independently, for example
// to implement a standalone ThinLTO backend.
//
//===----------------------------------------------------------------------===//

#include "llvm/LTO/LTOBackend.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/CGSCCPassManager.h"
#include "llvm/Analysis/LoopPassManager.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Bitcode/ReaderWriter.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Verifier.h"
#include "llvm/LTO/LTO.h"
#include "llvm/LTO/legacy/UpdateCompilerUsed.h"
#include "llvm/MC/SubtargetFeature.h"
#include "llvm/Passes/PassBuilder.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/ThreadPool.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/IPO/PassManagerBuilder.h"
#include "llvm/Transforms/Utils/FunctionImportUtils.h"
#include "llvm/Transforms/Utils/SplitModule.h"

using namespace llvm;
using namespace lto;

Error Config::addSaveTemps(std::string OutputFileName,
                           bool UseInputModulePath) {
  ShouldDiscardValueNames = false;

  std::error_code EC;
  ResolutionFile = llvm::make_unique<raw_fd_ostream>(
      OutputFileName + "resolution.txt", EC, sys::fs::OpenFlags::F_Text);
  if (EC)
    return errorCodeToError(EC);

  auto setHook = [&](std::string PathSuffix, ModuleHookFn &Hook) {
    // Keep track of the hook provided by the linker, which also needs to run.
    ModuleHookFn LinkerHook = Hook;
    Hook = [=](unsigned Task, const Module &M) {
      // If the linker's hook returned false, we need to pass that result
      // through.
      if (LinkerHook && !LinkerHook(Task, M))
        return false;

      std::string PathPrefix;
      // If this is the combined module (not a ThinLTO backend compile) or the
      // user hasn't requested using the input module's path, emit to a file
      // named from the provided OutputFileName with the Task ID appended.
      if (M.getModuleIdentifier() == "ld-temp.o" || !UseInputModulePath) {
        PathPrefix = OutputFileName + utostr(Task);
      } else
        PathPrefix = M.getModuleIdentifier();
      std::string Path = PathPrefix + "." + PathSuffix + ".bc";
      std::error_code EC;
      raw_fd_ostream OS(Path, EC, sys::fs::OpenFlags::F_None);
      if (EC) {
        // Because -save-temps is a debugging feature, we report the error
        // directly and exit.
        llvm::errs() << "failed to open " << Path << ": " << EC.message()
                     << '\n';
        exit(1);
      }
      WriteBitcodeToFile(&M, OS, /*ShouldPreserveUseListOrder=*/false);
      return true;
    };
  };

  setHook("0.preopt", PreOptModuleHook);
  setHook("1.promote", PostPromoteModuleHook);
  setHook("2.internalize", PostInternalizeModuleHook);
  setHook("3.import", PostImportModuleHook);
  setHook("4.opt", PostOptModuleHook);
  setHook("5.precodegen", PreCodeGenModuleHook);

  CombinedIndexHook = [=](const ModuleSummaryIndex &Index) {
    std::string Path = OutputFileName + "index.bc";
    std::error_code EC;
    raw_fd_ostream OS(Path, EC, sys::fs::OpenFlags::F_None);
    if (EC) {
      // Because -save-temps is a debugging feature, we report the error
      // directly and exit.
      llvm::errs() << "failed to open " << Path << ": " << EC.message() << '\n';
      exit(1);
    }
    WriteIndexToFile(Index, OS);
    return true;
  };

  return Error();
}

namespace {

std::unique_ptr<TargetMachine>
createTargetMachine(Config &Conf, StringRef TheTriple,
                    const Target *TheTarget) {
  SubtargetFeatures Features;
  Features.getDefaultSubtargetFeatures(Triple(TheTriple));
  for (const std::string &A : Conf.MAttrs)
    Features.AddFeature(A);

  return std::unique_ptr<TargetMachine>(TheTarget->createTargetMachine(
      TheTriple, Conf.CPU, Features.getString(), Conf.Options, Conf.RelocModel,
      Conf.CodeModel, Conf.CGOptLevel));
}

static void runNewPMCustomPasses(Module &Mod, TargetMachine *TM,
                                 std::string PipelineDesc,
                                 bool DisableVerify) {
  PassBuilder PB(TM);
  AAManager AA;
  LoopAnalysisManager LAM;
  FunctionAnalysisManager FAM;
  CGSCCAnalysisManager CGAM;
  ModuleAnalysisManager MAM;

  // Register the AA manager first so that our version is the one used.
  FAM.registerPass([&] { return std::move(AA); });

  // Register all the basic analyses with the managers.
  PB.registerModuleAnalyses(MAM);
  PB.registerCGSCCAnalyses(CGAM);
  PB.registerFunctionAnalyses(FAM);
  PB.registerLoopAnalyses(LAM);
  PB.crossRegisterProxies(LAM, FAM, CGAM, MAM);

  ModulePassManager MPM;

  // Always verify the input.
  MPM.addPass(VerifierPass());

  // Now, add all the passes we've been requested to.
  if (!PB.parsePassPipeline(MPM, PipelineDesc))
    report_fatal_error("unable to parse pass pipeline description: " +
                       PipelineDesc);

  if (!DisableVerify)
    MPM.addPass(VerifierPass());
  MPM.run(Mod, MAM);
}

static void runOldPMPasses(Config &Conf, Module &Mod, TargetMachine *TM,
                           bool IsThinLto) {
  legacy::PassManager passes;
  passes.add(createTargetTransformInfoWrapperPass(TM->getTargetIRAnalysis()));

  PassManagerBuilder PMB;
  PMB.LibraryInfo = new TargetLibraryInfoImpl(Triple(TM->getTargetTriple()));
  PMB.Inliner = createFunctionInliningPass();
  // Unconditionally verify input since it is not verified before this
  // point and has unknown origin.
  PMB.VerifyInput = true;
  PMB.VerifyOutput = !Conf.DisableVerify;
  PMB.LoopVectorize = true;
  PMB.SLPVectorize = true;
  PMB.OptLevel = Conf.OptLevel;
  if (IsThinLto)
    PMB.populateThinLTOPassManager(passes);
  else
    PMB.populateLTOPassManager(passes);
  passes.run(Mod);
}

bool opt(Config &Conf, TargetMachine *TM, unsigned Task, Module &Mod,
         bool IsThinLto) {
  Mod.setDataLayout(TM->createDataLayout());
  if (Conf.OptPipeline.empty())
    runOldPMPasses(Conf, Mod, TM, IsThinLto);
  else
    runNewPMCustomPasses(Mod, TM, Conf.OptPipeline, Conf.DisableVerify);
  return !Conf.PostOptModuleHook || Conf.PostOptModuleHook(Task, Mod);
}

/// Monolithic LTO does not support caching (yet), this is a convenient wrapper
/// around AddOutput to workaround this.
static AddOutputFn getUncachedOutputWrapper(AddOutputFn &AddOutput,
                                            unsigned Task) {
  return [Task, &AddOutput](unsigned TaskId) {
    auto Output = AddOutput(Task);
    if (Output->isCachingEnabled() && Output->tryLoadFromCache(""))
      report_fatal_error("Cache hit without a valid key?");
    assert(Task == TaskId && "Unexpexted TaskId mismatch");
    return Output;
  };
}

void codegen(Config &Conf, TargetMachine *TM, AddOutputFn AddOutput,
             unsigned Task, Module &Mod) {
  if (Conf.PreCodeGenModuleHook && !Conf.PreCodeGenModuleHook(Task, Mod))
    return;

  auto Output = AddOutput(Task);
  std::unique_ptr<raw_pwrite_stream> OS = Output->getStream();
  legacy::PassManager CodeGenPasses;
  if (TM->addPassesToEmitFile(CodeGenPasses, *OS,
                              TargetMachine::CGFT_ObjectFile))
    report_fatal_error("Failed to setup codegen");
  CodeGenPasses.run(Mod);
}

void splitCodeGen(Config &C, TargetMachine *TM, AddOutputFn AddOutput,
                  unsigned ParallelCodeGenParallelismLevel,
                  std::unique_ptr<Module> Mod) {
  ThreadPool CodegenThreadPool(ParallelCodeGenParallelismLevel);
  unsigned ThreadCount = 0;
  const Target *T = &TM->getTarget();

  SplitModule(
      std::move(Mod), ParallelCodeGenParallelismLevel,
      [&](std::unique_ptr<Module> MPart) {
        // We want to clone the module in a new context to multi-thread the
        // codegen. We do it by serializing partition modules to bitcode
        // (while still on the main thread, in order to avoid data races) and
        // spinning up new threads which deserialize the partitions into
        // separate contexts.
        // FIXME: Provide a more direct way to do this in LLVM.
        SmallString<0> BC;
        raw_svector_ostream BCOS(BC);
        WriteBitcodeToFile(MPart.get(), BCOS);

        // Enqueue the task
        CodegenThreadPool.async(
            [&](const SmallString<0> &BC, unsigned ThreadId) {
              LTOLLVMContext Ctx(C);
              ErrorOr<std::unique_ptr<Module>> MOrErr = parseBitcodeFile(
                  MemoryBufferRef(StringRef(BC.data(), BC.size()), "ld-temp.o"),
                  Ctx);
              if (!MOrErr)
                report_fatal_error("Failed to read bitcode");
              std::unique_ptr<Module> MPartInCtx = std::move(MOrErr.get());

              std::unique_ptr<TargetMachine> TM =
                  createTargetMachine(C, MPartInCtx->getTargetTriple(), T);

              codegen(C, TM.get(),
                      getUncachedOutputWrapper(AddOutput, ThreadId), ThreadId,
                      *MPartInCtx);
            },
            // Pass BC using std::move to ensure that it get moved rather than
            // copied into the thread's context.
            std::move(BC), ThreadCount++);
      },
      false);
}

Expected<const Target *> initAndLookupTarget(Config &C, Module &Mod) {
  if (!C.OverrideTriple.empty())
    Mod.setTargetTriple(C.OverrideTriple);
  else if (Mod.getTargetTriple().empty())
    Mod.setTargetTriple(C.DefaultTriple);

  std::string Msg;
  const Target *T = TargetRegistry::lookupTarget(Mod.getTargetTriple(), Msg);
  if (!T)
    return make_error<StringError>(Msg, inconvertibleErrorCode());
  return T;
}

}

static void handleAsmUndefinedRefs(Module &Mod, TargetMachine &TM) {
  // Collect the list of undefined symbols used in asm and update
  // llvm.compiler.used to prevent optimization to drop these from the output.
  StringSet<> AsmUndefinedRefs;
  object::IRObjectFile::CollectAsmUndefinedRefs(
      Triple(Mod.getTargetTriple()), Mod.getModuleInlineAsm(),
      [&AsmUndefinedRefs](StringRef Name, object::BasicSymbolRef::Flags Flags) {
        if (Flags & object::BasicSymbolRef::SF_Undefined)
          AsmUndefinedRefs.insert(Name);
      });
  updateCompilerUsed(Mod, TM, AsmUndefinedRefs);
}

Error lto::backend(Config &C, AddOutputFn AddOutput,
                   unsigned ParallelCodeGenParallelismLevel,
                   std::unique_ptr<Module> Mod) {
  Expected<const Target *> TOrErr = initAndLookupTarget(C, *Mod);
  if (!TOrErr)
    return TOrErr.takeError();

  std::unique_ptr<TargetMachine> TM =
      createTargetMachine(C, Mod->getTargetTriple(), *TOrErr);

  handleAsmUndefinedRefs(*Mod, *TM);

  if (!C.CodeGenOnly)
    if (!opt(C, TM.get(), 0, *Mod, /*IsThinLto=*/false))
      return Error();

  if (ParallelCodeGenParallelismLevel == 1) {
    codegen(C, TM.get(), getUncachedOutputWrapper(AddOutput, 0), 0, *Mod);
  } else {
    splitCodeGen(C, TM.get(), AddOutput, ParallelCodeGenParallelismLevel,
                 std::move(Mod));
  }
  return Error();
}

Error lto::thinBackend(Config &Conf, unsigned Task, AddOutputFn AddOutput,
                       Module &Mod, ModuleSummaryIndex &CombinedIndex,
                       const FunctionImporter::ImportMapTy &ImportList,
                       const GVSummaryMapTy &DefinedGlobals,
                       MapVector<StringRef, MemoryBufferRef> &ModuleMap) {
  Expected<const Target *> TOrErr = initAndLookupTarget(Conf, Mod);
  if (!TOrErr)
    return TOrErr.takeError();

  std::unique_ptr<TargetMachine> TM =
      createTargetMachine(Conf, Mod.getTargetTriple(), *TOrErr);

  handleAsmUndefinedRefs(Mod, *TM);

  if (Conf.CodeGenOnly) {
    codegen(Conf, TM.get(), AddOutput, Task, Mod);
    return Error();
  }

  if (Conf.PreOptModuleHook && !Conf.PreOptModuleHook(Task, Mod))
    return Error();

  renameModuleForThinLTO(Mod, CombinedIndex);

  thinLTOResolveWeakForLinkerModule(Mod, DefinedGlobals);

  if (Conf.PostPromoteModuleHook && !Conf.PostPromoteModuleHook(Task, Mod))
    return Error();

  if (!DefinedGlobals.empty())
    thinLTOInternalizeModule(Mod, DefinedGlobals);

  if (Conf.PostInternalizeModuleHook &&
      !Conf.PostInternalizeModuleHook(Task, Mod))
    return Error();

  auto ModuleLoader = [&](StringRef Identifier) {
    assert(Mod.getContext().isODRUniquingDebugTypes() &&
           "ODR Type uniquing should be enabled on the context");
    return std::move(getLazyBitcodeModule(MemoryBuffer::getMemBuffer(
                                              ModuleMap[Identifier], false),
                                          Mod.getContext(),
                                          /*ShouldLazyLoadMetadata=*/true)
                         .get());
  };

  FunctionImporter Importer(CombinedIndex, ModuleLoader);
  Importer.importFunctions(Mod, ImportList);

  if (Conf.PostImportModuleHook && !Conf.PostImportModuleHook(Task, Mod))
    return Error();

  if (!opt(Conf, TM.get(), Task, Mod, /*IsThinLto=*/true))
    return Error();

  codegen(Conf, TM.get(), AddOutput, Task, Mod);
  return Error();
}