summaryrefslogtreecommitdiff
path: root/lib/Analysis/MemorySSA.cpp
blob: b38c0c4f14392ed14a13774671adaa943cfb9a09 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
//===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the MemorySSA class.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/MemorySSA.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/iterator.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/IteratedDominanceFrontier.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/AssemblyAnnotationWriter.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Use.h"
#include "llvm/Pass.h"
#include "llvm/Support/AtomicOrdering.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <iterator>
#include <memory>
#include <utility>

using namespace llvm;

#define DEBUG_TYPE "memoryssa"

INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
                      true)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
                    true)

INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa",
                      "Memory SSA Printer", false, false)
INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa",
                    "Memory SSA Printer", false, false)

static cl::opt<unsigned> MaxCheckLimit(
    "memssa-check-limit", cl::Hidden, cl::init(100),
    cl::desc("The maximum number of stores/phis MemorySSA"
             "will consider trying to walk past (default = 100)"));

static cl::opt<bool>
    VerifyMemorySSA("verify-memoryssa", cl::init(false), cl::Hidden,
                    cl::desc("Verify MemorySSA in legacy printer pass."));

namespace llvm {

/// An assembly annotator class to print Memory SSA information in
/// comments.
class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter {
  friend class MemorySSA;

  const MemorySSA *MSSA;

public:
  MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {}

  void emitBasicBlockStartAnnot(const BasicBlock *BB,
                                formatted_raw_ostream &OS) override {
    if (MemoryAccess *MA = MSSA->getMemoryAccess(BB))
      OS << "; " << *MA << "\n";
  }

  void emitInstructionAnnot(const Instruction *I,
                            formatted_raw_ostream &OS) override {
    if (MemoryAccess *MA = MSSA->getMemoryAccess(I))
      OS << "; " << *MA << "\n";
  }
};

} // end namespace llvm

namespace {

/// Our current alias analysis API differentiates heavily between calls and
/// non-calls, and functions called on one usually assert on the other.
/// This class encapsulates the distinction to simplify other code that wants
/// "Memory affecting instructions and related data" to use as a key.
/// For example, this class is used as a densemap key in the use optimizer.
class MemoryLocOrCall {
public:
  bool IsCall = false;

  MemoryLocOrCall() = default;
  MemoryLocOrCall(MemoryUseOrDef *MUD)
      : MemoryLocOrCall(MUD->getMemoryInst()) {}
  MemoryLocOrCall(const MemoryUseOrDef *MUD)
      : MemoryLocOrCall(MUD->getMemoryInst()) {}

  MemoryLocOrCall(Instruction *Inst) {
    if (ImmutableCallSite(Inst)) {
      IsCall = true;
      CS = ImmutableCallSite(Inst);
    } else {
      IsCall = false;
      // There is no such thing as a memorylocation for a fence inst, and it is
      // unique in that regard.
      if (!isa<FenceInst>(Inst))
        Loc = MemoryLocation::get(Inst);
    }
  }

  explicit MemoryLocOrCall(const MemoryLocation &Loc) : Loc(Loc) {}

  ImmutableCallSite getCS() const {
    assert(IsCall);
    return CS;
  }

  MemoryLocation getLoc() const {
    assert(!IsCall);
    return Loc;
  }

  bool operator==(const MemoryLocOrCall &Other) const {
    if (IsCall != Other.IsCall)
      return false;

    if (!IsCall)
      return Loc == Other.Loc;

    if (CS.getCalledValue() != Other.CS.getCalledValue())
      return false;

    return CS.arg_size() == Other.CS.arg_size() &&
           std::equal(CS.arg_begin(), CS.arg_end(), Other.CS.arg_begin());
  }

private:
  union {
    ImmutableCallSite CS;
    MemoryLocation Loc;
  };
};

} // end anonymous namespace

namespace llvm {

template <> struct DenseMapInfo<MemoryLocOrCall> {
  static inline MemoryLocOrCall getEmptyKey() {
    return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey());
  }

  static inline MemoryLocOrCall getTombstoneKey() {
    return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey());
  }

  static unsigned getHashValue(const MemoryLocOrCall &MLOC) {
    if (!MLOC.IsCall)
      return hash_combine(
          MLOC.IsCall,
          DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc()));

    hash_code hash =
        hash_combine(MLOC.IsCall, DenseMapInfo<const Value *>::getHashValue(
                                      MLOC.getCS().getCalledValue()));

    for (const Value *Arg : MLOC.getCS().args())
      hash = hash_combine(hash, DenseMapInfo<const Value *>::getHashValue(Arg));
    return hash;
  }

  static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) {
    return LHS == RHS;
  }
};

} // end namespace llvm

/// This does one-way checks to see if Use could theoretically be hoisted above
/// MayClobber. This will not check the other way around.
///
/// This assumes that, for the purposes of MemorySSA, Use comes directly after
/// MayClobber, with no potentially clobbering operations in between them.
/// (Where potentially clobbering ops are memory barriers, aliased stores, etc.)
static bool areLoadsReorderable(const LoadInst *Use,
                                const LoadInst *MayClobber) {
  bool VolatileUse = Use->isVolatile();
  bool VolatileClobber = MayClobber->isVolatile();
  // Volatile operations may never be reordered with other volatile operations.
  if (VolatileUse && VolatileClobber)
    return false;
  // Otherwise, volatile doesn't matter here. From the language reference:
  // 'optimizers may change the order of volatile operations relative to
  // non-volatile operations.'"

  // If a load is seq_cst, it cannot be moved above other loads. If its ordering
  // is weaker, it can be moved above other loads. We just need to be sure that
  // MayClobber isn't an acquire load, because loads can't be moved above
  // acquire loads.
  //
  // Note that this explicitly *does* allow the free reordering of monotonic (or
  // weaker) loads of the same address.
  bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent;
  bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(),
                                                     AtomicOrdering::Acquire);
  return !(SeqCstUse || MayClobberIsAcquire);
}

namespace {

struct ClobberAlias {
  bool IsClobber;
  Optional<AliasResult> AR;
};

} // end anonymous namespace

// Return a pair of {IsClobber (bool), AR (AliasResult)}. It relies on AR being
// ignored if IsClobber = false.
static ClobberAlias instructionClobbersQuery(MemoryDef *MD,
                                             const MemoryLocation &UseLoc,
                                             const Instruction *UseInst,
                                             AliasAnalysis &AA) {
  Instruction *DefInst = MD->getMemoryInst();
  assert(DefInst && "Defining instruction not actually an instruction");
  ImmutableCallSite UseCS(UseInst);
  Optional<AliasResult> AR;

  if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) {
    // These intrinsics will show up as affecting memory, but they are just
    // markers, mostly.
    //
    // FIXME: We probably don't actually want MemorySSA to model these at all
    // (including creating MemoryAccesses for them): we just end up inventing
    // clobbers where they don't really exist at all. Please see D43269 for
    // context.
    switch (II->getIntrinsicID()) {
    case Intrinsic::lifetime_start:
      if (UseCS)
        return {false, NoAlias};
      AR = AA.alias(MemoryLocation(II->getArgOperand(1)), UseLoc);
      return {AR != NoAlias, AR};
    case Intrinsic::lifetime_end:
    case Intrinsic::invariant_start:
    case Intrinsic::invariant_end:
    case Intrinsic::assume:
      return {false, NoAlias};
    default:
      break;
    }
  }

  if (UseCS) {
    ModRefInfo I = AA.getModRefInfo(DefInst, UseCS);
    AR = isMustSet(I) ? MustAlias : MayAlias;
    return {isModOrRefSet(I), AR};
  }

  if (auto *DefLoad = dyn_cast<LoadInst>(DefInst))
    if (auto *UseLoad = dyn_cast<LoadInst>(UseInst))
      return {!areLoadsReorderable(UseLoad, DefLoad), MayAlias};

  ModRefInfo I = AA.getModRefInfo(DefInst, UseLoc);
  AR = isMustSet(I) ? MustAlias : MayAlias;
  return {isModSet(I), AR};
}

static ClobberAlias instructionClobbersQuery(MemoryDef *MD,
                                             const MemoryUseOrDef *MU,
                                             const MemoryLocOrCall &UseMLOC,
                                             AliasAnalysis &AA) {
  // FIXME: This is a temporary hack to allow a single instructionClobbersQuery
  // to exist while MemoryLocOrCall is pushed through places.
  if (UseMLOC.IsCall)
    return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(),
                                    AA);
  return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(),
                                  AA);
}

// Return true when MD may alias MU, return false otherwise.
bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU,
                                        AliasAnalysis &AA) {
  return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA).IsClobber;
}

namespace {

struct UpwardsMemoryQuery {
  // True if our original query started off as a call
  bool IsCall = false;
  // The pointer location we started the query with. This will be empty if
  // IsCall is true.
  MemoryLocation StartingLoc;
  // This is the instruction we were querying about.
  const Instruction *Inst = nullptr;
  // The MemoryAccess we actually got called with, used to test local domination
  const MemoryAccess *OriginalAccess = nullptr;
  Optional<AliasResult> AR = MayAlias;

  UpwardsMemoryQuery() = default;

  UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access)
      : IsCall(ImmutableCallSite(Inst)), Inst(Inst), OriginalAccess(Access) {
    if (!IsCall)
      StartingLoc = MemoryLocation::get(Inst);
  }
};

} // end anonymous namespace

static bool lifetimeEndsAt(MemoryDef *MD, const MemoryLocation &Loc,
                           AliasAnalysis &AA) {
  Instruction *Inst = MD->getMemoryInst();
  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
    switch (II->getIntrinsicID()) {
    case Intrinsic::lifetime_end:
      return AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), Loc);
    default:
      return false;
    }
  }
  return false;
}

static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysis &AA,
                                                   const Instruction *I) {
  // If the memory can't be changed, then loads of the memory can't be
  // clobbered.
  return isa<LoadInst>(I) && (I->getMetadata(LLVMContext::MD_invariant_load) ||
                              AA.pointsToConstantMemory(cast<LoadInst>(I)->
                                                          getPointerOperand()));
}

/// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing
/// inbetween `Start` and `ClobberAt` can clobbers `Start`.
///
/// This is meant to be as simple and self-contained as possible. Because it
/// uses no cache, etc., it can be relatively expensive.
///
/// \param Start     The MemoryAccess that we want to walk from.
/// \param ClobberAt A clobber for Start.
/// \param StartLoc  The MemoryLocation for Start.
/// \param MSSA      The MemorySSA isntance that Start and ClobberAt belong to.
/// \param Query     The UpwardsMemoryQuery we used for our search.
/// \param AA        The AliasAnalysis we used for our search.
static void LLVM_ATTRIBUTE_UNUSED
checkClobberSanity(MemoryAccess *Start, MemoryAccess *ClobberAt,
                   const MemoryLocation &StartLoc, const MemorySSA &MSSA,
                   const UpwardsMemoryQuery &Query, AliasAnalysis &AA) {
  assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?");

  if (MSSA.isLiveOnEntryDef(Start)) {
    assert(MSSA.isLiveOnEntryDef(ClobberAt) &&
           "liveOnEntry must clobber itself");
    return;
  }

  bool FoundClobber = false;
  DenseSet<MemoryAccessPair> VisitedPhis;
  SmallVector<MemoryAccessPair, 8> Worklist;
  Worklist.emplace_back(Start, StartLoc);
  // Walk all paths from Start to ClobberAt, while looking for clobbers. If one
  // is found, complain.
  while (!Worklist.empty()) {
    MemoryAccessPair MAP = Worklist.pop_back_val();
    // All we care about is that nothing from Start to ClobberAt clobbers Start.
    // We learn nothing from revisiting nodes.
    if (!VisitedPhis.insert(MAP).second)
      continue;

    for (MemoryAccess *MA : def_chain(MAP.first)) {
      if (MA == ClobberAt) {
        if (auto *MD = dyn_cast<MemoryDef>(MA)) {
          // instructionClobbersQuery isn't essentially free, so don't use `|=`,
          // since it won't let us short-circuit.
          //
          // Also, note that this can't be hoisted out of the `Worklist` loop,
          // since MD may only act as a clobber for 1 of N MemoryLocations.
          FoundClobber = FoundClobber || MSSA.isLiveOnEntryDef(MD);
          if (!FoundClobber) {
            ClobberAlias CA =
                instructionClobbersQuery(MD, MAP.second, Query.Inst, AA);
            if (CA.IsClobber) {
              FoundClobber = true;
              // Not used: CA.AR;
            }
          }
        }
        break;
      }

      // We should never hit liveOnEntry, unless it's the clobber.
      assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?");

      if (auto *MD = dyn_cast<MemoryDef>(MA)) {
        (void)MD;
        assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA)
                    .IsClobber &&
               "Found clobber before reaching ClobberAt!");
        continue;
      }

      assert(isa<MemoryPhi>(MA));
      Worklist.append(upward_defs_begin({MA, MAP.second}), upward_defs_end());
    }
  }

  // If ClobberAt is a MemoryPhi, we can assume something above it acted as a
  // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point.
  assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) &&
         "ClobberAt never acted as a clobber");
}

namespace {

/// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up
/// in one class.
class ClobberWalker {
  /// Save a few bytes by using unsigned instead of size_t.
  using ListIndex = unsigned;

  /// Represents a span of contiguous MemoryDefs, potentially ending in a
  /// MemoryPhi.
  struct DefPath {
    MemoryLocation Loc;
    // Note that, because we always walk in reverse, Last will always dominate
    // First. Also note that First and Last are inclusive.
    MemoryAccess *First;
    MemoryAccess *Last;
    Optional<ListIndex> Previous;

    DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last,
            Optional<ListIndex> Previous)
        : Loc(Loc), First(First), Last(Last), Previous(Previous) {}

    DefPath(const MemoryLocation &Loc, MemoryAccess *Init,
            Optional<ListIndex> Previous)
        : DefPath(Loc, Init, Init, Previous) {}
  };

  const MemorySSA &MSSA;
  AliasAnalysis &AA;
  DominatorTree &DT;
  UpwardsMemoryQuery *Query;

  // Phi optimization bookkeeping
  SmallVector<DefPath, 32> Paths;
  DenseSet<ConstMemoryAccessPair> VisitedPhis;

  /// Find the nearest def or phi that `From` can legally be optimized to.
  const MemoryAccess *getWalkTarget(const MemoryPhi *From) const {
    assert(From->getNumOperands() && "Phi with no operands?");

    BasicBlock *BB = From->getBlock();
    MemoryAccess *Result = MSSA.getLiveOnEntryDef();
    DomTreeNode *Node = DT.getNode(BB);
    while ((Node = Node->getIDom())) {
      auto *Defs = MSSA.getBlockDefs(Node->getBlock());
      if (Defs)
        return &*Defs->rbegin();
    }
    return Result;
  }

  /// Result of calling walkToPhiOrClobber.
  struct UpwardsWalkResult {
    /// The "Result" of the walk. Either a clobber, the last thing we walked, or
    /// both. Include alias info when clobber found.
    MemoryAccess *Result;
    bool IsKnownClobber;
    Optional<AliasResult> AR;
  };

  /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last.
  /// This will update Desc.Last as it walks. It will (optionally) also stop at
  /// StopAt.
  ///
  /// This does not test for whether StopAt is a clobber
  UpwardsWalkResult
  walkToPhiOrClobber(DefPath &Desc,
                     const MemoryAccess *StopAt = nullptr) const {
    assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world");

    for (MemoryAccess *Current : def_chain(Desc.Last)) {
      Desc.Last = Current;
      if (Current == StopAt)
        return {Current, false, MayAlias};

      if (auto *MD = dyn_cast<MemoryDef>(Current)) {
        if (MSSA.isLiveOnEntryDef(MD))
          return {MD, true, MustAlias};
        ClobberAlias CA =
            instructionClobbersQuery(MD, Desc.Loc, Query->Inst, AA);
        if (CA.IsClobber)
          return {MD, true, CA.AR};
      }
    }

    assert(isa<MemoryPhi>(Desc.Last) &&
           "Ended at a non-clobber that's not a phi?");
    return {Desc.Last, false, MayAlias};
  }

  void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches,
                   ListIndex PriorNode) {
    auto UpwardDefs = make_range(upward_defs_begin({Phi, Paths[PriorNode].Loc}),
                                 upward_defs_end());
    for (const MemoryAccessPair &P : UpwardDefs) {
      PausedSearches.push_back(Paths.size());
      Paths.emplace_back(P.second, P.first, PriorNode);
    }
  }

  /// Represents a search that terminated after finding a clobber. This clobber
  /// may or may not be present in the path of defs from LastNode..SearchStart,
  /// since it may have been retrieved from cache.
  struct TerminatedPath {
    MemoryAccess *Clobber;
    ListIndex LastNode;
  };

  /// Get an access that keeps us from optimizing to the given phi.
  ///
  /// PausedSearches is an array of indices into the Paths array. Its incoming
  /// value is the indices of searches that stopped at the last phi optimization
  /// target. It's left in an unspecified state.
  ///
  /// If this returns None, NewPaused is a vector of searches that terminated
  /// at StopWhere. Otherwise, NewPaused is left in an unspecified state.
  Optional<TerminatedPath>
  getBlockingAccess(const MemoryAccess *StopWhere,
                    SmallVectorImpl<ListIndex> &PausedSearches,
                    SmallVectorImpl<ListIndex> &NewPaused,
                    SmallVectorImpl<TerminatedPath> &Terminated) {
    assert(!PausedSearches.empty() && "No searches to continue?");

    // BFS vs DFS really doesn't make a difference here, so just do a DFS with
    // PausedSearches as our stack.
    while (!PausedSearches.empty()) {
      ListIndex PathIndex = PausedSearches.pop_back_val();
      DefPath &Node = Paths[PathIndex];

      // If we've already visited this path with this MemoryLocation, we don't
      // need to do so again.
      //
      // NOTE: That we just drop these paths on the ground makes caching
      // behavior sporadic. e.g. given a diamond:
      //  A
      // B C
      //  D
      //
      // ...If we walk D, B, A, C, we'll only cache the result of phi
      // optimization for A, B, and D; C will be skipped because it dies here.
      // This arguably isn't the worst thing ever, since:
      //   - We generally query things in a top-down order, so if we got below D
      //     without needing cache entries for {C, MemLoc}, then chances are
      //     that those cache entries would end up ultimately unused.
      //   - We still cache things for A, so C only needs to walk up a bit.
      // If this behavior becomes problematic, we can fix without a ton of extra
      // work.
      if (!VisitedPhis.insert({Node.Last, Node.Loc}).second)
        continue;

      UpwardsWalkResult Res = walkToPhiOrClobber(Node, /*StopAt=*/StopWhere);
      if (Res.IsKnownClobber) {
        assert(Res.Result != StopWhere);
        // If this wasn't a cache hit, we hit a clobber when walking. That's a
        // failure.
        TerminatedPath Term{Res.Result, PathIndex};
        if (!MSSA.dominates(Res.Result, StopWhere))
          return Term;

        // Otherwise, it's a valid thing to potentially optimize to.
        Terminated.push_back(Term);
        continue;
      }

      if (Res.Result == StopWhere) {
        // We've hit our target. Save this path off for if we want to continue
        // walking.
        NewPaused.push_back(PathIndex);
        continue;
      }

      assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber");
      addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex);
    }

    return None;
  }

  template <typename T, typename Walker>
  struct generic_def_path_iterator
      : public iterator_facade_base<generic_def_path_iterator<T, Walker>,
                                    std::forward_iterator_tag, T *> {
    generic_def_path_iterator() = default;
    generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {}

    T &operator*() const { return curNode(); }

    generic_def_path_iterator &operator++() {
      N = curNode().Previous;
      return *this;
    }

    bool operator==(const generic_def_path_iterator &O) const {
      if (N.hasValue() != O.N.hasValue())
        return false;
      return !N.hasValue() || *N == *O.N;
    }

  private:
    T &curNode() const { return W->Paths[*N]; }

    Walker *W = nullptr;
    Optional<ListIndex> N = None;
  };

  using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>;
  using const_def_path_iterator =
      generic_def_path_iterator<const DefPath, const ClobberWalker>;

  iterator_range<def_path_iterator> def_path(ListIndex From) {
    return make_range(def_path_iterator(this, From), def_path_iterator());
  }

  iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const {
    return make_range(const_def_path_iterator(this, From),
                      const_def_path_iterator());
  }

  struct OptznResult {
    /// The path that contains our result.
    TerminatedPath PrimaryClobber;
    /// The paths that we can legally cache back from, but that aren't
    /// necessarily the result of the Phi optimization.
    SmallVector<TerminatedPath, 4> OtherClobbers;
  };

  ListIndex defPathIndex(const DefPath &N) const {
    // The assert looks nicer if we don't need to do &N
    const DefPath *NP = &N;
    assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() &&
           "Out of bounds DefPath!");
    return NP - &Paths.front();
  }

  /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths
  /// that act as legal clobbers. Note that this won't return *all* clobbers.
  ///
  /// Phi optimization algorithm tl;dr:
  ///   - Find the earliest def/phi, A, we can optimize to
  ///   - Find if all paths from the starting memory access ultimately reach A
  ///     - If not, optimization isn't possible.
  ///     - Otherwise, walk from A to another clobber or phi, A'.
  ///       - If A' is a def, we're done.
  ///       - If A' is a phi, try to optimize it.
  ///
  /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path
  /// terminates when a MemoryAccess that clobbers said MemoryLocation is found.
  OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start,
                             const MemoryLocation &Loc) {
    assert(Paths.empty() && VisitedPhis.empty() &&
           "Reset the optimization state.");

    Paths.emplace_back(Loc, Start, Phi, None);
    // Stores how many "valid" optimization nodes we had prior to calling
    // addSearches/getBlockingAccess. Necessary for caching if we had a blocker.
    auto PriorPathsSize = Paths.size();

    SmallVector<ListIndex, 16> PausedSearches;
    SmallVector<ListIndex, 8> NewPaused;
    SmallVector<TerminatedPath, 4> TerminatedPaths;

    addSearches(Phi, PausedSearches, 0);

    // Moves the TerminatedPath with the "most dominated" Clobber to the end of
    // Paths.
    auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) {
      assert(!Paths.empty() && "Need a path to move");
      auto Dom = Paths.begin();
      for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I)
        if (!MSSA.dominates(I->Clobber, Dom->Clobber))
          Dom = I;
      auto Last = Paths.end() - 1;
      if (Last != Dom)
        std::iter_swap(Last, Dom);
    };

    MemoryPhi *Current = Phi;
    while (true) {
      assert(!MSSA.isLiveOnEntryDef(Current) &&
             "liveOnEntry wasn't treated as a clobber?");

      const auto *Target = getWalkTarget(Current);
      // If a TerminatedPath doesn't dominate Target, then it wasn't a legal
      // optimization for the prior phi.
      assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) {
        return MSSA.dominates(P.Clobber, Target);
      }));

      // FIXME: This is broken, because the Blocker may be reported to be
      // liveOnEntry, and we'll happily wait for that to disappear (read: never)
      // For the moment, this is fine, since we do nothing with blocker info.
      if (Optional<TerminatedPath> Blocker = getBlockingAccess(
              Target, PausedSearches, NewPaused, TerminatedPaths)) {

        // Find the node we started at. We can't search based on N->Last, since
        // we may have gone around a loop with a different MemoryLocation.
        auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) {
          return defPathIndex(N) < PriorPathsSize;
        });
        assert(Iter != def_path_iterator());

        DefPath &CurNode = *Iter;
        assert(CurNode.Last == Current);

        // Two things:
        // A. We can't reliably cache all of NewPaused back. Consider a case
        //    where we have two paths in NewPaused; one of which can't optimize
        //    above this phi, whereas the other can. If we cache the second path
        //    back, we'll end up with suboptimal cache entries. We can handle
        //    cases like this a bit better when we either try to find all
        //    clobbers that block phi optimization, or when our cache starts
        //    supporting unfinished searches.
        // B. We can't reliably cache TerminatedPaths back here without doing
        //    extra checks; consider a case like:
        //       T
        //      / \
        //     D   C
        //      \ /
        //       S
        //    Where T is our target, C is a node with a clobber on it, D is a
        //    diamond (with a clobber *only* on the left or right node, N), and
        //    S is our start. Say we walk to D, through the node opposite N
        //    (read: ignoring the clobber), and see a cache entry in the top
        //    node of D. That cache entry gets put into TerminatedPaths. We then
        //    walk up to C (N is later in our worklist), find the clobber, and
        //    quit. If we append TerminatedPaths to OtherClobbers, we'll cache
        //    the bottom part of D to the cached clobber, ignoring the clobber
        //    in N. Again, this problem goes away if we start tracking all
        //    blockers for a given phi optimization.
        TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)};
        return {Result, {}};
      }

      // If there's nothing left to search, then all paths led to valid clobbers
      // that we got from our cache; pick the nearest to the start, and allow
      // the rest to be cached back.
      if (NewPaused.empty()) {
        MoveDominatedPathToEnd(TerminatedPaths);
        TerminatedPath Result = TerminatedPaths.pop_back_val();
        return {Result, std::move(TerminatedPaths)};
      }

      MemoryAccess *DefChainEnd = nullptr;
      SmallVector<TerminatedPath, 4> Clobbers;
      for (ListIndex Paused : NewPaused) {
        UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]);
        if (WR.IsKnownClobber)
          Clobbers.push_back({WR.Result, Paused});
        else
          // Micro-opt: If we hit the end of the chain, save it.
          DefChainEnd = WR.Result;
      }

      if (!TerminatedPaths.empty()) {
        // If we couldn't find the dominating phi/liveOnEntry in the above loop,
        // do it now.
        if (!DefChainEnd)
          for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target)))
            DefChainEnd = MA;

        // If any of the terminated paths don't dominate the phi we'll try to
        // optimize, we need to figure out what they are and quit.
        const BasicBlock *ChainBB = DefChainEnd->getBlock();
        for (const TerminatedPath &TP : TerminatedPaths) {
          // Because we know that DefChainEnd is as "high" as we can go, we
          // don't need local dominance checks; BB dominance is sufficient.
          if (DT.dominates(ChainBB, TP.Clobber->getBlock()))
            Clobbers.push_back(TP);
        }
      }

      // If we have clobbers in the def chain, find the one closest to Current
      // and quit.
      if (!Clobbers.empty()) {
        MoveDominatedPathToEnd(Clobbers);
        TerminatedPath Result = Clobbers.pop_back_val();
        return {Result, std::move(Clobbers)};
      }

      assert(all_of(NewPaused,
                    [&](ListIndex I) { return Paths[I].Last == DefChainEnd; }));

      // Because liveOnEntry is a clobber, this must be a phi.
      auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd);

      PriorPathsSize = Paths.size();
      PausedSearches.clear();
      for (ListIndex I : NewPaused)
        addSearches(DefChainPhi, PausedSearches, I);
      NewPaused.clear();

      Current = DefChainPhi;
    }
  }

  void verifyOptResult(const OptznResult &R) const {
    assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) {
      return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber);
    }));
  }

  void resetPhiOptznState() {
    Paths.clear();
    VisitedPhis.clear();
  }

public:
  ClobberWalker(const MemorySSA &MSSA, AliasAnalysis &AA, DominatorTree &DT)
      : MSSA(MSSA), AA(AA), DT(DT) {}

  /// Finds the nearest clobber for the given query, optimizing phis if
  /// possible.
  MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q) {
    Query = &Q;

    MemoryAccess *Current = Start;
    // This walker pretends uses don't exist. If we're handed one, silently grab
    // its def. (This has the nice side-effect of ensuring we never cache uses)
    if (auto *MU = dyn_cast<MemoryUse>(Start))
      Current = MU->getDefiningAccess();

    DefPath FirstDesc(Q.StartingLoc, Current, Current, None);
    // Fast path for the overly-common case (no crazy phi optimization
    // necessary)
    UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc);
    MemoryAccess *Result;
    if (WalkResult.IsKnownClobber) {
      Result = WalkResult.Result;
      Q.AR = WalkResult.AR;
    } else {
      OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last),
                                          Current, Q.StartingLoc);
      verifyOptResult(OptRes);
      resetPhiOptznState();
      Result = OptRes.PrimaryClobber.Clobber;
    }

#ifdef EXPENSIVE_CHECKS
    checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, AA);
#endif
    return Result;
  }

  void verify(const MemorySSA *MSSA) { assert(MSSA == &this->MSSA); }
};

struct RenamePassData {
  DomTreeNode *DTN;
  DomTreeNode::const_iterator ChildIt;
  MemoryAccess *IncomingVal;

  RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It,
                 MemoryAccess *M)
      : DTN(D), ChildIt(It), IncomingVal(M) {}

  void swap(RenamePassData &RHS) {
    std::swap(DTN, RHS.DTN);
    std::swap(ChildIt, RHS.ChildIt);
    std::swap(IncomingVal, RHS.IncomingVal);
  }
};

} // end anonymous namespace

namespace llvm {

/// A MemorySSAWalker that does AA walks to disambiguate accesses. It no
/// longer does caching on its own, but the name has been retained for the
/// moment.
class MemorySSA::CachingWalker final : public MemorySSAWalker {
  ClobberWalker Walker;

  MemoryAccess *getClobberingMemoryAccess(MemoryAccess *, UpwardsMemoryQuery &);

public:
  CachingWalker(MemorySSA *, AliasAnalysis *, DominatorTree *);
  ~CachingWalker() override = default;

  using MemorySSAWalker::getClobberingMemoryAccess;

  MemoryAccess *getClobberingMemoryAccess(MemoryAccess *) override;
  MemoryAccess *getClobberingMemoryAccess(MemoryAccess *,
                                          const MemoryLocation &) override;
  void invalidateInfo(MemoryAccess *) override;

  void verify(const MemorySSA *MSSA) override {
    MemorySSAWalker::verify(MSSA);
    Walker.verify(MSSA);
  }
};

} // end namespace llvm

void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal,
                                    bool RenameAllUses) {
  // Pass through values to our successors
  for (const BasicBlock *S : successors(BB)) {
    auto It = PerBlockAccesses.find(S);
    // Rename the phi nodes in our successor block
    if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
      continue;
    AccessList *Accesses = It->second.get();
    auto *Phi = cast<MemoryPhi>(&Accesses->front());
    if (RenameAllUses) {
      int PhiIndex = Phi->getBasicBlockIndex(BB);
      assert(PhiIndex != -1 && "Incomplete phi during partial rename");
      Phi->setIncomingValue(PhiIndex, IncomingVal);
    } else
      Phi->addIncoming(IncomingVal, BB);
  }
}

/// Rename a single basic block into MemorySSA form.
/// Uses the standard SSA renaming algorithm.
/// \returns The new incoming value.
MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal,
                                     bool RenameAllUses) {
  auto It = PerBlockAccesses.find(BB);
  // Skip most processing if the list is empty.
  if (It != PerBlockAccesses.end()) {
    AccessList *Accesses = It->second.get();
    for (MemoryAccess &L : *Accesses) {
      if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) {
        if (MUD->getDefiningAccess() == nullptr || RenameAllUses)
          MUD->setDefiningAccess(IncomingVal);
        if (isa<MemoryDef>(&L))
          IncomingVal = &L;
      } else {
        IncomingVal = &L;
      }
    }
  }
  return IncomingVal;
}

/// This is the standard SSA renaming algorithm.
///
/// We walk the dominator tree in preorder, renaming accesses, and then filling
/// in phi nodes in our successors.
void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal,
                           SmallPtrSetImpl<BasicBlock *> &Visited,
                           bool SkipVisited, bool RenameAllUses) {
  SmallVector<RenamePassData, 32> WorkStack;
  // Skip everything if we already renamed this block and we are skipping.
  // Note: You can't sink this into the if, because we need it to occur
  // regardless of whether we skip blocks or not.
  bool AlreadyVisited = !Visited.insert(Root->getBlock()).second;
  if (SkipVisited && AlreadyVisited)
    return;

  IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses);
  renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses);
  WorkStack.push_back({Root, Root->begin(), IncomingVal});

  while (!WorkStack.empty()) {
    DomTreeNode *Node = WorkStack.back().DTN;
    DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt;
    IncomingVal = WorkStack.back().IncomingVal;

    if (ChildIt == Node->end()) {
      WorkStack.pop_back();
    } else {
      DomTreeNode *Child = *ChildIt;
      ++WorkStack.back().ChildIt;
      BasicBlock *BB = Child->getBlock();
      // Note: You can't sink this into the if, because we need it to occur
      // regardless of whether we skip blocks or not.
      AlreadyVisited = !Visited.insert(BB).second;
      if (SkipVisited && AlreadyVisited) {
        // We already visited this during our renaming, which can happen when
        // being asked to rename multiple blocks. Figure out the incoming val,
        // which is the last def.
        // Incoming value can only change if there is a block def, and in that
        // case, it's the last block def in the list.
        if (auto *BlockDefs = getWritableBlockDefs(BB))
          IncomingVal = &*BlockDefs->rbegin();
      } else
        IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses);
      renameSuccessorPhis(BB, IncomingVal, RenameAllUses);
      WorkStack.push_back({Child, Child->begin(), IncomingVal});
    }
  }
}

/// This handles unreachable block accesses by deleting phi nodes in
/// unreachable blocks, and marking all other unreachable MemoryAccess's as
/// being uses of the live on entry definition.
void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) {
  assert(!DT->isReachableFromEntry(BB) &&
         "Reachable block found while handling unreachable blocks");

  // Make sure phi nodes in our reachable successors end up with a
  // LiveOnEntryDef for our incoming edge, even though our block is forward
  // unreachable.  We could just disconnect these blocks from the CFG fully,
  // but we do not right now.
  for (const BasicBlock *S : successors(BB)) {
    if (!DT->isReachableFromEntry(S))
      continue;
    auto It = PerBlockAccesses.find(S);
    // Rename the phi nodes in our successor block
    if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
      continue;
    AccessList *Accesses = It->second.get();
    auto *Phi = cast<MemoryPhi>(&Accesses->front());
    Phi->addIncoming(LiveOnEntryDef.get(), BB);
  }

  auto It = PerBlockAccesses.find(BB);
  if (It == PerBlockAccesses.end())
    return;

  auto &Accesses = It->second;
  for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) {
    auto Next = std::next(AI);
    // If we have a phi, just remove it. We are going to replace all
    // users with live on entry.
    if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI))
      UseOrDef->setDefiningAccess(LiveOnEntryDef.get());
    else
      Accesses->erase(AI);
    AI = Next;
  }
}

MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT)
    : AA(AA), DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr),
      NextID(0) {
  buildMemorySSA();
}

MemorySSA::~MemorySSA() {
  // Drop all our references
  for (const auto &Pair : PerBlockAccesses)
    for (MemoryAccess &MA : *Pair.second)
      MA.dropAllReferences();
}

MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) {
  auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr));

  if (Res.second)
    Res.first->second = llvm::make_unique<AccessList>();
  return Res.first->second.get();
}

MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) {
  auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr));

  if (Res.second)
    Res.first->second = llvm::make_unique<DefsList>();
  return Res.first->second.get();
}

namespace llvm {

/// This class is a batch walker of all MemoryUse's in the program, and points
/// their defining access at the thing that actually clobbers them.  Because it
/// is a batch walker that touches everything, it does not operate like the
/// other walkers.  This walker is basically performing a top-down SSA renaming
/// pass, where the version stack is used as the cache.  This enables it to be
/// significantly more time and memory efficient than using the regular walker,
/// which is walking bottom-up.
class MemorySSA::OptimizeUses {
public:
  OptimizeUses(MemorySSA *MSSA, MemorySSAWalker *Walker, AliasAnalysis *AA,
               DominatorTree *DT)
      : MSSA(MSSA), Walker(Walker), AA(AA), DT(DT) {
    Walker = MSSA->getWalker();
  }

  void optimizeUses();

private:
  /// This represents where a given memorylocation is in the stack.
  struct MemlocStackInfo {
    // This essentially is keeping track of versions of the stack. Whenever
    // the stack changes due to pushes or pops, these versions increase.
    unsigned long StackEpoch;
    unsigned long PopEpoch;
    // This is the lower bound of places on the stack to check. It is equal to
    // the place the last stack walk ended.
    // Note: Correctness depends on this being initialized to 0, which densemap
    // does
    unsigned long LowerBound;
    const BasicBlock *LowerBoundBlock;
    // This is where the last walk for this memory location ended.
    unsigned long LastKill;
    bool LastKillValid;
    Optional<AliasResult> AR;
  };

  void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &,
                           SmallVectorImpl<MemoryAccess *> &,
                           DenseMap<MemoryLocOrCall, MemlocStackInfo> &);

  MemorySSA *MSSA;
  MemorySSAWalker *Walker;
  AliasAnalysis *AA;
  DominatorTree *DT;
};

} // end namespace llvm

/// Optimize the uses in a given block This is basically the SSA renaming
/// algorithm, with one caveat: We are able to use a single stack for all
/// MemoryUses.  This is because the set of *possible* reaching MemoryDefs is
/// the same for every MemoryUse.  The *actual* clobbering MemoryDef is just
/// going to be some position in that stack of possible ones.
///
/// We track the stack positions that each MemoryLocation needs
/// to check, and last ended at.  This is because we only want to check the
/// things that changed since last time.  The same MemoryLocation should
/// get clobbered by the same store (getModRefInfo does not use invariantness or
/// things like this, and if they start, we can modify MemoryLocOrCall to
/// include relevant data)
void MemorySSA::OptimizeUses::optimizeUsesInBlock(
    const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch,
    SmallVectorImpl<MemoryAccess *> &VersionStack,
    DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) {

  /// If no accesses, nothing to do.
  MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB);
  if (Accesses == nullptr)
    return;

  // Pop everything that doesn't dominate the current block off the stack,
  // increment the PopEpoch to account for this.
  while (true) {
    assert(
        !VersionStack.empty() &&
        "Version stack should have liveOnEntry sentinel dominating everything");
    BasicBlock *BackBlock = VersionStack.back()->getBlock();
    if (DT->dominates(BackBlock, BB))
      break;
    while (VersionStack.back()->getBlock() == BackBlock)
      VersionStack.pop_back();
    ++PopEpoch;
  }

  for (MemoryAccess &MA : *Accesses) {
    auto *MU = dyn_cast<MemoryUse>(&MA);
    if (!MU) {
      VersionStack.push_back(&MA);
      ++StackEpoch;
      continue;
    }

    if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) {
      MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true, None);
      continue;
    }

    MemoryLocOrCall UseMLOC(MU);
    auto &LocInfo = LocStackInfo[UseMLOC];
    // If the pop epoch changed, it means we've removed stuff from top of
    // stack due to changing blocks. We may have to reset the lower bound or
    // last kill info.
    if (LocInfo.PopEpoch != PopEpoch) {
      LocInfo.PopEpoch = PopEpoch;
      LocInfo.StackEpoch = StackEpoch;
      // If the lower bound was in something that no longer dominates us, we
      // have to reset it.
      // We can't simply track stack size, because the stack may have had
      // pushes/pops in the meantime.
      // XXX: This is non-optimal, but only is slower cases with heavily
      // branching dominator trees.  To get the optimal number of queries would
      // be to make lowerbound and lastkill a per-loc stack, and pop it until
      // the top of that stack dominates us.  This does not seem worth it ATM.
      // A much cheaper optimization would be to always explore the deepest
      // branch of the dominator tree first. This will guarantee this resets on
      // the smallest set of blocks.
      if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB &&
          !DT->dominates(LocInfo.LowerBoundBlock, BB)) {
        // Reset the lower bound of things to check.
        // TODO: Some day we should be able to reset to last kill, rather than
        // 0.
        LocInfo.LowerBound = 0;
        LocInfo.LowerBoundBlock = VersionStack[0]->getBlock();
        LocInfo.LastKillValid = false;
      }
    } else if (LocInfo.StackEpoch != StackEpoch) {
      // If all that has changed is the StackEpoch, we only have to check the
      // new things on the stack, because we've checked everything before.  In
      // this case, the lower bound of things to check remains the same.
      LocInfo.PopEpoch = PopEpoch;
      LocInfo.StackEpoch = StackEpoch;
    }
    if (!LocInfo.LastKillValid) {
      LocInfo.LastKill = VersionStack.size() - 1;
      LocInfo.LastKillValid = true;
      LocInfo.AR = MayAlias;
    }

    // At this point, we should have corrected last kill and LowerBound to be
    // in bounds.
    assert(LocInfo.LowerBound < VersionStack.size() &&
           "Lower bound out of range");
    assert(LocInfo.LastKill < VersionStack.size() &&
           "Last kill info out of range");
    // In any case, the new upper bound is the top of the stack.
    unsigned long UpperBound = VersionStack.size() - 1;

    if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) {
      LLVM_DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " ("
                        << *(MU->getMemoryInst()) << ")"
                        << " because there are "
                        << UpperBound - LocInfo.LowerBound
                        << " stores to disambiguate\n");
      // Because we did not walk, LastKill is no longer valid, as this may
      // have been a kill.
      LocInfo.LastKillValid = false;
      continue;
    }
    bool FoundClobberResult = false;
    while (UpperBound > LocInfo.LowerBound) {
      if (isa<MemoryPhi>(VersionStack[UpperBound])) {
        // For phis, use the walker, see where we ended up, go there
        Instruction *UseInst = MU->getMemoryInst();
        MemoryAccess *Result = Walker->getClobberingMemoryAccess(UseInst);
        // We are guaranteed to find it or something is wrong
        while (VersionStack[UpperBound] != Result) {
          assert(UpperBound != 0);
          --UpperBound;
        }
        FoundClobberResult = true;
        break;
      }

      MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]);
      // If the lifetime of the pointer ends at this instruction, it's live on
      // entry.
      if (!UseMLOC.IsCall && lifetimeEndsAt(MD, UseMLOC.getLoc(), *AA)) {
        // Reset UpperBound to liveOnEntryDef's place in the stack
        UpperBound = 0;
        FoundClobberResult = true;
        LocInfo.AR = MustAlias;
        break;
      }
      ClobberAlias CA = instructionClobbersQuery(MD, MU, UseMLOC, *AA);
      if (CA.IsClobber) {
        FoundClobberResult = true;
        LocInfo.AR = CA.AR;
        break;
      }
      --UpperBound;
    }

    // Note: Phis always have AliasResult AR set to MayAlias ATM.

    // At the end of this loop, UpperBound is either a clobber, or lower bound
    // PHI walking may cause it to be < LowerBound, and in fact, < LastKill.
    if (FoundClobberResult || UpperBound < LocInfo.LastKill) {
      // We were last killed now by where we got to
      if (MSSA->isLiveOnEntryDef(VersionStack[UpperBound]))
        LocInfo.AR = None;
      MU->setDefiningAccess(VersionStack[UpperBound], true, LocInfo.AR);
      LocInfo.LastKill = UpperBound;
    } else {
      // Otherwise, we checked all the new ones, and now we know we can get to
      // LastKill.
      MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true, LocInfo.AR);
    }
    LocInfo.LowerBound = VersionStack.size() - 1;
    LocInfo.LowerBoundBlock = BB;
  }
}

/// Optimize uses to point to their actual clobbering definitions.
void MemorySSA::OptimizeUses::optimizeUses() {
  SmallVector<MemoryAccess *, 16> VersionStack;
  DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo;
  VersionStack.push_back(MSSA->getLiveOnEntryDef());

  unsigned long StackEpoch = 1;
  unsigned long PopEpoch = 1;
  // We perform a non-recursive top-down dominator tree walk.
  for (const auto *DomNode : depth_first(DT->getRootNode()))
    optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack,
                        LocStackInfo);
}

void MemorySSA::placePHINodes(
    const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks) {
  // Determine where our MemoryPhi's should go
  ForwardIDFCalculator IDFs(*DT);
  IDFs.setDefiningBlocks(DefiningBlocks);
  SmallVector<BasicBlock *, 32> IDFBlocks;
  IDFs.calculate(IDFBlocks);

  // Now place MemoryPhi nodes.
  for (auto &BB : IDFBlocks)
    createMemoryPhi(BB);
}

void MemorySSA::buildMemorySSA() {
  // We create an access to represent "live on entry", for things like
  // arguments or users of globals, where the memory they use is defined before
  // the beginning of the function. We do not actually insert it into the IR.
  // We do not define a live on exit for the immediate uses, and thus our
  // semantics do *not* imply that something with no immediate uses can simply
  // be removed.
  BasicBlock &StartingPoint = F.getEntryBlock();
  LiveOnEntryDef.reset(new MemoryDef(F.getContext(), nullptr, nullptr,
                                     &StartingPoint, NextID++));

  // We maintain lists of memory accesses per-block, trading memory for time. We
  // could just look up the memory access for every possible instruction in the
  // stream.
  SmallPtrSet<BasicBlock *, 32> DefiningBlocks;
  // Go through each block, figure out where defs occur, and chain together all
  // the accesses.
  for (BasicBlock &B : F) {
    bool InsertIntoDef = false;
    AccessList *Accesses = nullptr;
    DefsList *Defs = nullptr;
    for (Instruction &I : B) {
      MemoryUseOrDef *MUD = createNewAccess(&I);
      if (!MUD)
        continue;

      if (!Accesses)
        Accesses = getOrCreateAccessList(&B);
      Accesses->push_back(MUD);
      if (isa<MemoryDef>(MUD)) {
        InsertIntoDef = true;
        if (!Defs)
          Defs = getOrCreateDefsList(&B);
        Defs->push_back(*MUD);
      }
    }
    if (InsertIntoDef)
      DefiningBlocks.insert(&B);
  }
  placePHINodes(DefiningBlocks);

  // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get
  // filled in with all blocks.
  SmallPtrSet<BasicBlock *, 16> Visited;
  renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited);

  CachingWalker *Walker = getWalkerImpl();

  OptimizeUses(this, Walker, AA, DT).optimizeUses();

  // Mark the uses in unreachable blocks as live on entry, so that they go
  // somewhere.
  for (auto &BB : F)
    if (!Visited.count(&BB))
      markUnreachableAsLiveOnEntry(&BB);
}

MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); }

MemorySSA::CachingWalker *MemorySSA::getWalkerImpl() {
  if (Walker)
    return Walker.get();

  Walker = llvm::make_unique<CachingWalker>(this, AA, DT);
  return Walker.get();
}

// This is a helper function used by the creation routines. It places NewAccess
// into the access and defs lists for a given basic block, at the given
// insertion point.
void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess,
                                        const BasicBlock *BB,
                                        InsertionPlace Point) {
  auto *Accesses = getOrCreateAccessList(BB);
  if (Point == Beginning) {
    // If it's a phi node, it goes first, otherwise, it goes after any phi
    // nodes.
    if (isa<MemoryPhi>(NewAccess)) {
      Accesses->push_front(NewAccess);
      auto *Defs = getOrCreateDefsList(BB);
      Defs->push_front(*NewAccess);
    } else {
      auto AI = find_if_not(
          *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
      Accesses->insert(AI, NewAccess);
      if (!isa<MemoryUse>(NewAccess)) {
        auto *Defs = getOrCreateDefsList(BB);
        auto DI = find_if_not(
            *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
        Defs->insert(DI, *NewAccess);
      }
    }
  } else {
    Accesses->push_back(NewAccess);
    if (!isa<MemoryUse>(NewAccess)) {
      auto *Defs = getOrCreateDefsList(BB);
      Defs->push_back(*NewAccess);
    }
  }
  BlockNumberingValid.erase(BB);
}

void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB,
                                      AccessList::iterator InsertPt) {
  auto *Accesses = getWritableBlockAccesses(BB);
  bool WasEnd = InsertPt == Accesses->end();
  Accesses->insert(AccessList::iterator(InsertPt), What);
  if (!isa<MemoryUse>(What)) {
    auto *Defs = getOrCreateDefsList(BB);
    // If we got asked to insert at the end, we have an easy job, just shove it
    // at the end. If we got asked to insert before an existing def, we also get
    // an iterator. If we got asked to insert before a use, we have to hunt for
    // the next def.
    if (WasEnd) {
      Defs->push_back(*What);
    } else if (isa<MemoryDef>(InsertPt)) {
      Defs->insert(InsertPt->getDefsIterator(), *What);
    } else {
      while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt))
        ++InsertPt;
      // Either we found a def, or we are inserting at the end
      if (InsertPt == Accesses->end())
        Defs->push_back(*What);
      else
        Defs->insert(InsertPt->getDefsIterator(), *What);
    }
  }
  BlockNumberingValid.erase(BB);
}

// Move What before Where in the IR.  The end result is that What will belong to
// the right lists and have the right Block set, but will not otherwise be
// correct. It will not have the right defining access, and if it is a def,
// things below it will not properly be updated.
void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
                       AccessList::iterator Where) {
  // Keep it in the lookup tables, remove from the lists
  removeFromLists(What, false);
  What->setBlock(BB);
  insertIntoListsBefore(What, BB, Where);
}

void MemorySSA::moveTo(MemoryAccess *What, BasicBlock *BB,
                       InsertionPlace Point) {
  if (isa<MemoryPhi>(What)) {
    assert(Point == Beginning &&
           "Can only move a Phi at the beginning of the block");
    // Update lookup table entry
    ValueToMemoryAccess.erase(What->getBlock());
    bool Inserted = ValueToMemoryAccess.insert({BB, What}).second;
    (void)Inserted;
    assert(Inserted && "Cannot move a Phi to a block that already has one");
  }

  removeFromLists(What, false);
  What->setBlock(BB);
  insertIntoListsForBlock(What, BB, Point);
}

MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) {
  assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB");
  MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++);
  // Phi's always are placed at the front of the block.
  insertIntoListsForBlock(Phi, BB, Beginning);
  ValueToMemoryAccess[BB] = Phi;
  return Phi;
}

MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I,
                                               MemoryAccess *Definition) {
  assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI");
  MemoryUseOrDef *NewAccess = createNewAccess(I);
  assert(
      NewAccess != nullptr &&
      "Tried to create a memory access for a non-memory touching instruction");
  NewAccess->setDefiningAccess(Definition);
  return NewAccess;
}

// Return true if the instruction has ordering constraints.
// Note specifically that this only considers stores and loads
// because others are still considered ModRef by getModRefInfo.
static inline bool isOrdered(const Instruction *I) {
  if (auto *SI = dyn_cast<StoreInst>(I)) {
    if (!SI->isUnordered())
      return true;
  } else if (auto *LI = dyn_cast<LoadInst>(I)) {
    if (!LI->isUnordered())
      return true;
  }
  return false;
}

/// Helper function to create new memory accesses
MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I) {
  // The assume intrinsic has a control dependency which we model by claiming
  // that it writes arbitrarily. Ignore that fake memory dependency here.
  // FIXME: Replace this special casing with a more accurate modelling of
  // assume's control dependency.
  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
    if (II->getIntrinsicID() == Intrinsic::assume)
      return nullptr;

  // Find out what affect this instruction has on memory.
  ModRefInfo ModRef = AA->getModRefInfo(I, None);
  // The isOrdered check is used to ensure that volatiles end up as defs
  // (atomics end up as ModRef right now anyway).  Until we separate the
  // ordering chain from the memory chain, this enables people to see at least
  // some relative ordering to volatiles.  Note that getClobberingMemoryAccess
  // will still give an answer that bypasses other volatile loads.  TODO:
  // Separate memory aliasing and ordering into two different chains so that we
  // can precisely represent both "what memory will this read/write/is clobbered
  // by" and "what instructions can I move this past".
  bool Def = isModSet(ModRef) || isOrdered(I);
  bool Use = isRefSet(ModRef);

  // It's possible for an instruction to not modify memory at all. During
  // construction, we ignore them.
  if (!Def && !Use)
    return nullptr;

  MemoryUseOrDef *MUD;
  if (Def)
    MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++);
  else
    MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent());
  ValueToMemoryAccess[I] = MUD;
  return MUD;
}

/// Returns true if \p Replacer dominates \p Replacee .
bool MemorySSA::dominatesUse(const MemoryAccess *Replacer,
                             const MemoryAccess *Replacee) const {
  if (isa<MemoryUseOrDef>(Replacee))
    return DT->dominates(Replacer->getBlock(), Replacee->getBlock());
  const auto *MP = cast<MemoryPhi>(Replacee);
  // For a phi node, the use occurs in the predecessor block of the phi node.
  // Since we may occur multiple times in the phi node, we have to check each
  // operand to ensure Replacer dominates each operand where Replacee occurs.
  for (const Use &Arg : MP->operands()) {
    if (Arg.get() != Replacee &&
        !DT->dominates(Replacer->getBlock(), MP->getIncomingBlock(Arg)))
      return false;
  }
  return true;
}

/// Properly remove \p MA from all of MemorySSA's lookup tables.
void MemorySSA::removeFromLookups(MemoryAccess *MA) {
  assert(MA->use_empty() &&
         "Trying to remove memory access that still has uses");
  BlockNumbering.erase(MA);
  if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
    MUD->setDefiningAccess(nullptr);
  // Invalidate our walker's cache if necessary
  if (!isa<MemoryUse>(MA))
    Walker->invalidateInfo(MA);

  Value *MemoryInst;
  if (const auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
    MemoryInst = MUD->getMemoryInst();
  else
    MemoryInst = MA->getBlock();

  auto VMA = ValueToMemoryAccess.find(MemoryInst);
  if (VMA->second == MA)
    ValueToMemoryAccess.erase(VMA);
}

/// Properly remove \p MA from all of MemorySSA's lists.
///
/// Because of the way the intrusive list and use lists work, it is important to
/// do removal in the right order.
/// ShouldDelete defaults to true, and will cause the memory access to also be
/// deleted, not just removed.
void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) {
  BasicBlock *BB = MA->getBlock();
  // The access list owns the reference, so we erase it from the non-owning list
  // first.
  if (!isa<MemoryUse>(MA)) {
    auto DefsIt = PerBlockDefs.find(BB);
    std::unique_ptr<DefsList> &Defs = DefsIt->second;
    Defs->remove(*MA);
    if (Defs->empty())
      PerBlockDefs.erase(DefsIt);
  }

  // The erase call here will delete it. If we don't want it deleted, we call
  // remove instead.
  auto AccessIt = PerBlockAccesses.find(BB);
  std::unique_ptr<AccessList> &Accesses = AccessIt->second;
  if (ShouldDelete)
    Accesses->erase(MA);
  else
    Accesses->remove(MA);

  if (Accesses->empty()) {
    PerBlockAccesses.erase(AccessIt);
    BlockNumberingValid.erase(BB);
  }
}

void MemorySSA::print(raw_ostream &OS) const {
  MemorySSAAnnotatedWriter Writer(this);
  F.print(OS, &Writer);
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); }
#endif

void MemorySSA::verifyMemorySSA() const {
  verifyDefUses(F);
  verifyDomination(F);
  verifyOrdering(F);
  verifyDominationNumbers(F);
  Walker->verify(this);
}

/// Verify that all of the blocks we believe to have valid domination numbers
/// actually have valid domination numbers.
void MemorySSA::verifyDominationNumbers(const Function &F) const {
#ifndef NDEBUG
  if (BlockNumberingValid.empty())
    return;

  SmallPtrSet<const BasicBlock *, 16> ValidBlocks = BlockNumberingValid;
  for (const BasicBlock &BB : F) {
    if (!ValidBlocks.count(&BB))
      continue;

    ValidBlocks.erase(&BB);

    const AccessList *Accesses = getBlockAccesses(&BB);
    // It's correct to say an empty block has valid numbering.
    if (!Accesses)
      continue;

    // Block numbering starts at 1.
    unsigned long LastNumber = 0;
    for (const MemoryAccess &MA : *Accesses) {
      auto ThisNumberIter = BlockNumbering.find(&MA);
      assert(ThisNumberIter != BlockNumbering.end() &&
             "MemoryAccess has no domination number in a valid block!");

      unsigned long ThisNumber = ThisNumberIter->second;
      assert(ThisNumber > LastNumber &&
             "Domination numbers should be strictly increasing!");
      LastNumber = ThisNumber;
    }
  }

  assert(ValidBlocks.empty() &&
         "All valid BasicBlocks should exist in F -- dangling pointers?");
#endif
}

/// Verify that the order and existence of MemoryAccesses matches the
/// order and existence of memory affecting instructions.
void MemorySSA::verifyOrdering(Function &F) const {
  // Walk all the blocks, comparing what the lookups think and what the access
  // lists think, as well as the order in the blocks vs the order in the access
  // lists.
  SmallVector<MemoryAccess *, 32> ActualAccesses;
  SmallVector<MemoryAccess *, 32> ActualDefs;
  for (BasicBlock &B : F) {
    const AccessList *AL = getBlockAccesses(&B);
    const auto *DL = getBlockDefs(&B);
    MemoryAccess *Phi = getMemoryAccess(&B);
    if (Phi) {
      ActualAccesses.push_back(Phi);
      ActualDefs.push_back(Phi);
    }

    for (Instruction &I : B) {
      MemoryAccess *MA = getMemoryAccess(&I);
      assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) &&
             "We have memory affecting instructions "
             "in this block but they are not in the "
             "access list or defs list");
      if (MA) {
        ActualAccesses.push_back(MA);
        if (isa<MemoryDef>(MA))
          ActualDefs.push_back(MA);
      }
    }
    // Either we hit the assert, really have no accesses, or we have both
    // accesses and an access list.
    // Same with defs.
    if (!AL && !DL)
      continue;
    assert(AL->size() == ActualAccesses.size() &&
           "We don't have the same number of accesses in the block as on the "
           "access list");
    assert((DL || ActualDefs.size() == 0) &&
           "Either we should have a defs list, or we should have no defs");
    assert((!DL || DL->size() == ActualDefs.size()) &&
           "We don't have the same number of defs in the block as on the "
           "def list");
    auto ALI = AL->begin();
    auto AAI = ActualAccesses.begin();
    while (ALI != AL->end() && AAI != ActualAccesses.end()) {
      assert(&*ALI == *AAI && "Not the same accesses in the same order");
      ++ALI;
      ++AAI;
    }
    ActualAccesses.clear();
    if (DL) {
      auto DLI = DL->begin();
      auto ADI = ActualDefs.begin();
      while (DLI != DL->end() && ADI != ActualDefs.end()) {
        assert(&*DLI == *ADI && "Not the same defs in the same order");
        ++DLI;
        ++ADI;
      }
    }
    ActualDefs.clear();
  }
}

/// Verify the domination properties of MemorySSA by checking that each
/// definition dominates all of its uses.
void MemorySSA::verifyDomination(Function &F) const {
#ifndef NDEBUG
  for (BasicBlock &B : F) {
    // Phi nodes are attached to basic blocks
    if (MemoryPhi *MP = getMemoryAccess(&B))
      for (const Use &U : MP->uses())
        assert(dominates(MP, U) && "Memory PHI does not dominate it's uses");

    for (Instruction &I : B) {
      MemoryAccess *MD = dyn_cast_or_null<MemoryDef>(getMemoryAccess(&I));
      if (!MD)
        continue;

      for (const Use &U : MD->uses())
        assert(dominates(MD, U) && "Memory Def does not dominate it's uses");
    }
  }
#endif
}

/// Verify the def-use lists in MemorySSA, by verifying that \p Use
/// appears in the use list of \p Def.
void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const {
#ifndef NDEBUG
  // The live on entry use may cause us to get a NULL def here
  if (!Def)
    assert(isLiveOnEntryDef(Use) &&
           "Null def but use not point to live on entry def");
  else
    assert(is_contained(Def->users(), Use) &&
           "Did not find use in def's use list");
#endif
}

/// Verify the immediate use information, by walking all the memory
/// accesses and verifying that, for each use, it appears in the
/// appropriate def's use list
void MemorySSA::verifyDefUses(Function &F) const {
  for (BasicBlock &B : F) {
    // Phi nodes are attached to basic blocks
    if (MemoryPhi *Phi = getMemoryAccess(&B)) {
      assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance(
                                          pred_begin(&B), pred_end(&B))) &&
             "Incomplete MemoryPhi Node");
      for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
        verifyUseInDefs(Phi->getIncomingValue(I), Phi);
        assert(find(predecessors(&B), Phi->getIncomingBlock(I)) !=
                   pred_end(&B) &&
               "Incoming phi block not a block predecessor");
      }
    }

    for (Instruction &I : B) {
      if (MemoryUseOrDef *MA = getMemoryAccess(&I)) {
        verifyUseInDefs(MA->getDefiningAccess(), MA);
      }
    }
  }
}

MemoryUseOrDef *MemorySSA::getMemoryAccess(const Instruction *I) const {
  return cast_or_null<MemoryUseOrDef>(ValueToMemoryAccess.lookup(I));
}

MemoryPhi *MemorySSA::getMemoryAccess(const BasicBlock *BB) const {
  return cast_or_null<MemoryPhi>(ValueToMemoryAccess.lookup(cast<Value>(BB)));
}

/// Perform a local numbering on blocks so that instruction ordering can be
/// determined in constant time.
/// TODO: We currently just number in order.  If we numbered by N, we could
/// allow at least N-1 sequences of insertBefore or insertAfter (and at least
/// log2(N) sequences of mixed before and after) without needing to invalidate
/// the numbering.
void MemorySSA::renumberBlock(const BasicBlock *B) const {
  // The pre-increment ensures the numbers really start at 1.
  unsigned long CurrentNumber = 0;
  const AccessList *AL = getBlockAccesses(B);
  assert(AL != nullptr && "Asking to renumber an empty block");
  for (const auto &I : *AL)
    BlockNumbering[&I] = ++CurrentNumber;
  BlockNumberingValid.insert(B);
}

/// Determine, for two memory accesses in the same block,
/// whether \p Dominator dominates \p Dominatee.
/// \returns True if \p Dominator dominates \p Dominatee.
bool MemorySSA::locallyDominates(const MemoryAccess *Dominator,
                                 const MemoryAccess *Dominatee) const {
  const BasicBlock *DominatorBlock = Dominator->getBlock();

  assert((DominatorBlock == Dominatee->getBlock()) &&
         "Asking for local domination when accesses are in different blocks!");
  // A node dominates itself.
  if (Dominatee == Dominator)
    return true;

  // When Dominatee is defined on function entry, it is not dominated by another
  // memory access.
  if (isLiveOnEntryDef(Dominatee))
    return false;

  // When Dominator is defined on function entry, it dominates the other memory
  // access.
  if (isLiveOnEntryDef(Dominator))
    return true;

  if (!BlockNumberingValid.count(DominatorBlock))
    renumberBlock(DominatorBlock);

  unsigned long DominatorNum = BlockNumbering.lookup(Dominator);
  // All numbers start with 1
  assert(DominatorNum != 0 && "Block was not numbered properly");
  unsigned long DominateeNum = BlockNumbering.lookup(Dominatee);
  assert(DominateeNum != 0 && "Block was not numbered properly");
  return DominatorNum < DominateeNum;
}

bool MemorySSA::dominates(const MemoryAccess *Dominator,
                          const MemoryAccess *Dominatee) const {
  if (Dominator == Dominatee)
    return true;

  if (isLiveOnEntryDef(Dominatee))
    return false;

  if (Dominator->getBlock() != Dominatee->getBlock())
    return DT->dominates(Dominator->getBlock(), Dominatee->getBlock());
  return locallyDominates(Dominator, Dominatee);
}

bool MemorySSA::dominates(const MemoryAccess *Dominator,
                          const Use &Dominatee) const {
  if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) {
    BasicBlock *UseBB = MP->getIncomingBlock(Dominatee);
    // The def must dominate the incoming block of the phi.
    if (UseBB != Dominator->getBlock())
      return DT->dominates(Dominator->getBlock(), UseBB);
    // If the UseBB and the DefBB are the same, compare locally.
    return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee));
  }
  // If it's not a PHI node use, the normal dominates can already handle it.
  return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser()));
}

const static char LiveOnEntryStr[] = "liveOnEntry";

void MemoryAccess::print(raw_ostream &OS) const {
  switch (getValueID()) {
  case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS);
  case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS);
  case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS);
  }
  llvm_unreachable("invalid value id");
}

void MemoryDef::print(raw_ostream &OS) const {
  MemoryAccess *UO = getDefiningAccess();

  auto printID = [&OS](MemoryAccess *A) {
    if (A && A->getID())
      OS << A->getID();
    else
      OS << LiveOnEntryStr;
  };

  OS << getID() << " = MemoryDef(";
  printID(UO);
  OS << ")";

  if (isOptimized()) {
    OS << "->";
    printID(getOptimized());

    if (Optional<AliasResult> AR = getOptimizedAccessType())
      OS << " " << *AR;
  }
}

void MemoryPhi::print(raw_ostream &OS) const {
  bool First = true;
  OS << getID() << " = MemoryPhi(";
  for (const auto &Op : operands()) {
    BasicBlock *BB = getIncomingBlock(Op);
    MemoryAccess *MA = cast<MemoryAccess>(Op);
    if (!First)
      OS << ',';
    else
      First = false;

    OS << '{';
    if (BB->hasName())
      OS << BB->getName();
    else
      BB->printAsOperand(OS, false);
    OS << ',';
    if (unsigned ID = MA->getID())
      OS << ID;
    else
      OS << LiveOnEntryStr;
    OS << '}';
  }
  OS << ')';
}

void MemoryUse::print(raw_ostream &OS) const {
  MemoryAccess *UO = getDefiningAccess();
  OS << "MemoryUse(";
  if (UO && UO->getID())
    OS << UO->getID();
  else
    OS << LiveOnEntryStr;
  OS << ')';

  if (Optional<AliasResult> AR = getOptimizedAccessType())
    OS << " " << *AR;
}

void MemoryAccess::dump() const {
// Cannot completely remove virtual function even in release mode.
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
  print(dbgs());
  dbgs() << "\n";
#endif
}

char MemorySSAPrinterLegacyPass::ID = 0;

MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) {
  initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry());
}

void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesAll();
  AU.addRequired<MemorySSAWrapperPass>();
}

bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) {
  auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA();
  MSSA.print(dbgs());
  if (VerifyMemorySSA)
    MSSA.verifyMemorySSA();
  return false;
}

AnalysisKey MemorySSAAnalysis::Key;

MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F,
                                                 FunctionAnalysisManager &AM) {
  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
  auto &AA = AM.getResult<AAManager>(F);
  return MemorySSAAnalysis::Result(llvm::make_unique<MemorySSA>(F, &AA, &DT));
}

PreservedAnalyses MemorySSAPrinterPass::run(Function &F,
                                            FunctionAnalysisManager &AM) {
  OS << "MemorySSA for function: " << F.getName() << "\n";
  AM.getResult<MemorySSAAnalysis>(F).getMSSA().print(OS);

  return PreservedAnalyses::all();
}

PreservedAnalyses MemorySSAVerifierPass::run(Function &F,
                                             FunctionAnalysisManager &AM) {
  AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA();

  return PreservedAnalyses::all();
}

char MemorySSAWrapperPass::ID = 0;

MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) {
  initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry());
}

void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); }

void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesAll();
  AU.addRequiredTransitive<DominatorTreeWrapperPass>();
  AU.addRequiredTransitive<AAResultsWrapperPass>();
}

bool MemorySSAWrapperPass::runOnFunction(Function &F) {
  auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
  auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
  MSSA.reset(new MemorySSA(F, &AA, &DT));
  return false;
}

void MemorySSAWrapperPass::verifyAnalysis() const { MSSA->verifyMemorySSA(); }

void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const {
  MSSA->print(OS);
}

MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {}

MemorySSA::CachingWalker::CachingWalker(MemorySSA *M, AliasAnalysis *A,
                                        DominatorTree *D)
    : MemorySSAWalker(M), Walker(*M, *A, *D) {}

void MemorySSA::CachingWalker::invalidateInfo(MemoryAccess *MA) {
  if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
    MUD->resetOptimized();
}

/// Walk the use-def chains starting at \p MA and find
/// the MemoryAccess that actually clobbers Loc.
///
/// \returns our clobbering memory access
MemoryAccess *MemorySSA::CachingWalker::getClobberingMemoryAccess(
    MemoryAccess *StartingAccess, UpwardsMemoryQuery &Q) {
  return Walker.findClobber(StartingAccess, Q);
}

MemoryAccess *MemorySSA::CachingWalker::getClobberingMemoryAccess(
    MemoryAccess *StartingAccess, const MemoryLocation &Loc) {
  if (isa<MemoryPhi>(StartingAccess))
    return StartingAccess;

  auto *StartingUseOrDef = cast<MemoryUseOrDef>(StartingAccess);
  if (MSSA->isLiveOnEntryDef(StartingUseOrDef))
    return StartingUseOrDef;

  Instruction *I = StartingUseOrDef->getMemoryInst();

  // Conservatively, fences are always clobbers, so don't perform the walk if we
  // hit a fence.
  if (!ImmutableCallSite(I) && I->isFenceLike())
    return StartingUseOrDef;

  UpwardsMemoryQuery Q;
  Q.OriginalAccess = StartingUseOrDef;
  Q.StartingLoc = Loc;
  Q.Inst = I;
  Q.IsCall = false;

  // Unlike the other function, do not walk to the def of a def, because we are
  // handed something we already believe is the clobbering access.
  MemoryAccess *DefiningAccess = isa<MemoryUse>(StartingUseOrDef)
                                     ? StartingUseOrDef->getDefiningAccess()
                                     : StartingUseOrDef;

  MemoryAccess *Clobber = getClobberingMemoryAccess(DefiningAccess, Q);
  LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
  LLVM_DEBUG(dbgs() << *StartingUseOrDef << "\n");
  LLVM_DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is ");
  LLVM_DEBUG(dbgs() << *Clobber << "\n");
  return Clobber;
}

MemoryAccess *
MemorySSA::CachingWalker::getClobberingMemoryAccess(MemoryAccess *MA) {
  auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA);
  // If this is a MemoryPhi, we can't do anything.
  if (!StartingAccess)
    return MA;

  // If this is an already optimized use or def, return the optimized result.
  // Note: Currently, we store the optimized def result in a separate field,
  // since we can't use the defining access.
  if (StartingAccess->isOptimized())
    return StartingAccess->getOptimized();

  const Instruction *I = StartingAccess->getMemoryInst();
  UpwardsMemoryQuery Q(I, StartingAccess);
  // We can't sanely do anything with a fence, since they conservatively clobber
  // all memory, and have no locations to get pointers from to try to
  // disambiguate.
  if (!Q.IsCall && I->isFenceLike())
    return StartingAccess;

  if (isUseTriviallyOptimizableToLiveOnEntry(*MSSA->AA, I)) {
    MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef();
    StartingAccess->setOptimized(LiveOnEntry);
    StartingAccess->setOptimizedAccessType(None);
    return LiveOnEntry;
  }

  // Start with the thing we already think clobbers this location
  MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess();

  // At this point, DefiningAccess may be the live on entry def.
  // If it is, we will not get a better result.
  if (MSSA->isLiveOnEntryDef(DefiningAccess)) {
    StartingAccess->setOptimized(DefiningAccess);
    StartingAccess->setOptimizedAccessType(None);
    return DefiningAccess;
  }

  MemoryAccess *Result = getClobberingMemoryAccess(DefiningAccess, Q);
  LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
  LLVM_DEBUG(dbgs() << *DefiningAccess << "\n");
  LLVM_DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is ");
  LLVM_DEBUG(dbgs() << *Result << "\n");

  StartingAccess->setOptimized(Result);
  if (MSSA->isLiveOnEntryDef(Result))
    StartingAccess->setOptimizedAccessType(None);
  else if (Q.AR == MustAlias)
    StartingAccess->setOptimizedAccessType(MustAlias);

  return Result;
}

MemoryAccess *
DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA) {
  if (auto *Use = dyn_cast<MemoryUseOrDef>(MA))
    return Use->getDefiningAccess();
  return MA;
}

MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess(
    MemoryAccess *StartingAccess, const MemoryLocation &) {
  if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess))
    return Use->getDefiningAccess();
  return StartingAccess;
}

void MemoryPhi::deleteMe(DerivedUser *Self) {
  delete static_cast<MemoryPhi *>(Self);
}

void MemoryDef::deleteMe(DerivedUser *Self) {
  delete static_cast<MemoryDef *>(Self);
}

void MemoryUse::deleteMe(DerivedUser *Self) {
  delete static_cast<MemoryUse *>(Self);
}