summaryrefslogtreecommitdiff
path: root/lib/Analysis/LazyCallGraph.cpp
blob: 54299d078be50a71c464dc2d0036884ad847f9ed (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
//===- LazyCallGraph.cpp - Analysis of a Module's call graph --------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/LazyCallGraph.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/Sequence.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/GraphWriter.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <iterator>
#include <string>
#include <tuple>
#include <utility>

using namespace llvm;

#define DEBUG_TYPE "lcg"

void LazyCallGraph::EdgeSequence::insertEdgeInternal(Node &TargetN,
                                                     Edge::Kind EK) {
  EdgeIndexMap.insert({&TargetN, Edges.size()});
  Edges.emplace_back(TargetN, EK);
}

void LazyCallGraph::EdgeSequence::setEdgeKind(Node &TargetN, Edge::Kind EK) {
  Edges[EdgeIndexMap.find(&TargetN)->second].setKind(EK);
}

bool LazyCallGraph::EdgeSequence::removeEdgeInternal(Node &TargetN) {
  auto IndexMapI = EdgeIndexMap.find(&TargetN);
  if (IndexMapI == EdgeIndexMap.end())
    return false;

  Edges[IndexMapI->second] = Edge();
  EdgeIndexMap.erase(IndexMapI);
  return true;
}

static void addEdge(SmallVectorImpl<LazyCallGraph::Edge> &Edges,
                    DenseMap<LazyCallGraph::Node *, int> &EdgeIndexMap,
                    LazyCallGraph::Node &N, LazyCallGraph::Edge::Kind EK) {
  if (!EdgeIndexMap.insert({&N, Edges.size()}).second)
    return;

  DEBUG(dbgs() << "    Added callable function: " << N.getName() << "\n");
  Edges.emplace_back(LazyCallGraph::Edge(N, EK));
}

LazyCallGraph::EdgeSequence &LazyCallGraph::Node::populateSlow() {
  assert(!Edges && "Must not have already populated the edges for this node!");

  DEBUG(dbgs() << "  Adding functions called by '" << getName()
               << "' to the graph.\n");

  Edges = EdgeSequence();

  SmallVector<Constant *, 16> Worklist;
  SmallPtrSet<Function *, 4> Callees;
  SmallPtrSet<Constant *, 16> Visited;

  // Find all the potential call graph edges in this function. We track both
  // actual call edges and indirect references to functions. The direct calls
  // are trivially added, but to accumulate the latter we walk the instructions
  // and add every operand which is a constant to the worklist to process
  // afterward.
  //
  // Note that we consider *any* function with a definition to be a viable
  // edge. Even if the function's definition is subject to replacement by
  // some other module (say, a weak definition) there may still be
  // optimizations which essentially speculate based on the definition and
  // a way to check that the specific definition is in fact the one being
  // used. For example, this could be done by moving the weak definition to
  // a strong (internal) definition and making the weak definition be an
  // alias. Then a test of the address of the weak function against the new
  // strong definition's address would be an effective way to determine the
  // safety of optimizing a direct call edge.
  for (BasicBlock &BB : *F)
    for (Instruction &I : BB) {
      if (auto CS = CallSite(&I))
        if (Function *Callee = CS.getCalledFunction())
          if (!Callee->isDeclaration())
            if (Callees.insert(Callee).second) {
              Visited.insert(Callee);
              addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(*Callee),
                      LazyCallGraph::Edge::Call);
            }

      for (Value *Op : I.operand_values())
        if (Constant *C = dyn_cast<Constant>(Op))
          if (Visited.insert(C).second)
            Worklist.push_back(C);
    }

  // We've collected all the constant (and thus potentially function or
  // function containing) operands to all of the instructions in the function.
  // Process them (recursively) collecting every function found.
  visitReferences(Worklist, Visited, [&](Function &F) {
    addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(F),
            LazyCallGraph::Edge::Ref);
  });

  // Add implicit reference edges to any defined libcall functions (if we
  // haven't found an explicit edge).
  for (auto *F : G->LibFunctions)
    if (!Visited.count(F))
      addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(*F),
              LazyCallGraph::Edge::Ref);

  return *Edges;
}

void LazyCallGraph::Node::replaceFunction(Function &NewF) {
  assert(F != &NewF && "Must not replace a function with itself!");
  F = &NewF;
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void LazyCallGraph::Node::dump() const {
  dbgs() << *this << '\n';
}
#endif

static bool isKnownLibFunction(Function &F, TargetLibraryInfo &TLI) {
  LibFunc LF;

  // Either this is a normal library function or a "vectorizable" function.
  return TLI.getLibFunc(F, LF) || TLI.isFunctionVectorizable(F.getName());
}

LazyCallGraph::LazyCallGraph(Module &M, TargetLibraryInfo &TLI) {
  DEBUG(dbgs() << "Building CG for module: " << M.getModuleIdentifier()
               << "\n");
  for (Function &F : M) {
    if (F.isDeclaration())
      continue;
    // If this function is a known lib function to LLVM then we want to
    // synthesize reference edges to it to model the fact that LLVM can turn
    // arbitrary code into a library function call.
    if (isKnownLibFunction(F, TLI))
      LibFunctions.insert(&F);

    if (F.hasLocalLinkage())
      continue;

    // External linkage defined functions have edges to them from other
    // modules.
    DEBUG(dbgs() << "  Adding '" << F.getName()
                 << "' to entry set of the graph.\n");
    addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(F), Edge::Ref);
  }

  // Now add entry nodes for functions reachable via initializers to globals.
  SmallVector<Constant *, 16> Worklist;
  SmallPtrSet<Constant *, 16> Visited;
  for (GlobalVariable &GV : M.globals())
    if (GV.hasInitializer())
      if (Visited.insert(GV.getInitializer()).second)
        Worklist.push_back(GV.getInitializer());

  DEBUG(dbgs() << "  Adding functions referenced by global initializers to the "
                  "entry set.\n");
  visitReferences(Worklist, Visited, [&](Function &F) {
    addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(F),
            LazyCallGraph::Edge::Ref);
  });
}

LazyCallGraph::LazyCallGraph(LazyCallGraph &&G)
    : BPA(std::move(G.BPA)), NodeMap(std::move(G.NodeMap)),
      EntryEdges(std::move(G.EntryEdges)), SCCBPA(std::move(G.SCCBPA)),
      SCCMap(std::move(G.SCCMap)),
      LibFunctions(std::move(G.LibFunctions)) {
  updateGraphPtrs();
}

LazyCallGraph &LazyCallGraph::operator=(LazyCallGraph &&G) {
  BPA = std::move(G.BPA);
  NodeMap = std::move(G.NodeMap);
  EntryEdges = std::move(G.EntryEdges);
  SCCBPA = std::move(G.SCCBPA);
  SCCMap = std::move(G.SCCMap);
  LibFunctions = std::move(G.LibFunctions);
  updateGraphPtrs();
  return *this;
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void LazyCallGraph::SCC::dump() const {
  dbgs() << *this << '\n';
}
#endif

#ifndef NDEBUG
void LazyCallGraph::SCC::verify() {
  assert(OuterRefSCC && "Can't have a null RefSCC!");
  assert(!Nodes.empty() && "Can't have an empty SCC!");

  for (Node *N : Nodes) {
    assert(N && "Can't have a null node!");
    assert(OuterRefSCC->G->lookupSCC(*N) == this &&
           "Node does not map to this SCC!");
    assert(N->DFSNumber == -1 &&
           "Must set DFS numbers to -1 when adding a node to an SCC!");
    assert(N->LowLink == -1 &&
           "Must set low link to -1 when adding a node to an SCC!");
    for (Edge &E : **N)
      assert(E.getNode().isPopulated() && "Can't have an unpopulated node!");
  }
}
#endif

bool LazyCallGraph::SCC::isParentOf(const SCC &C) const {
  if (this == &C)
    return false;

  for (Node &N : *this)
    for (Edge &E : N->calls())
      if (OuterRefSCC->G->lookupSCC(E.getNode()) == &C)
        return true;

  // No edges found.
  return false;
}

bool LazyCallGraph::SCC::isAncestorOf(const SCC &TargetC) const {
  if (this == &TargetC)
    return false;

  LazyCallGraph &G = *OuterRefSCC->G;

  // Start with this SCC.
  SmallPtrSet<const SCC *, 16> Visited = {this};
  SmallVector<const SCC *, 16> Worklist = {this};

  // Walk down the graph until we run out of edges or find a path to TargetC.
  do {
    const SCC &C = *Worklist.pop_back_val();
    for (Node &N : C)
      for (Edge &E : N->calls()) {
        SCC *CalleeC = G.lookupSCC(E.getNode());
        if (!CalleeC)
          continue;

        // If the callee's SCC is the TargetC, we're done.
        if (CalleeC == &TargetC)
          return true;

        // If this is the first time we've reached this SCC, put it on the
        // worklist to recurse through.
        if (Visited.insert(CalleeC).second)
          Worklist.push_back(CalleeC);
      }
  } while (!Worklist.empty());

  // No paths found.
  return false;
}

LazyCallGraph::RefSCC::RefSCC(LazyCallGraph &G) : G(&G) {}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void LazyCallGraph::RefSCC::dump() const {
  dbgs() << *this << '\n';
}
#endif

#ifndef NDEBUG
void LazyCallGraph::RefSCC::verify() {
  assert(G && "Can't have a null graph!");
  assert(!SCCs.empty() && "Can't have an empty SCC!");

  // Verify basic properties of the SCCs.
  SmallPtrSet<SCC *, 4> SCCSet;
  for (SCC *C : SCCs) {
    assert(C && "Can't have a null SCC!");
    C->verify();
    assert(&C->getOuterRefSCC() == this &&
           "SCC doesn't think it is inside this RefSCC!");
    bool Inserted = SCCSet.insert(C).second;
    assert(Inserted && "Found a duplicate SCC!");
    auto IndexIt = SCCIndices.find(C);
    assert(IndexIt != SCCIndices.end() &&
           "Found an SCC that doesn't have an index!");
  }

  // Check that our indices map correctly.
  for (auto &SCCIndexPair : SCCIndices) {
    SCC *C = SCCIndexPair.first;
    int i = SCCIndexPair.second;
    assert(C && "Can't have a null SCC in the indices!");
    assert(SCCSet.count(C) && "Found an index for an SCC not in the RefSCC!");
    assert(SCCs[i] == C && "Index doesn't point to SCC!");
  }

  // Check that the SCCs are in fact in post-order.
  for (int i = 0, Size = SCCs.size(); i < Size; ++i) {
    SCC &SourceSCC = *SCCs[i];
    for (Node &N : SourceSCC)
      for (Edge &E : *N) {
        if (!E.isCall())
          continue;
        SCC &TargetSCC = *G->lookupSCC(E.getNode());
        if (&TargetSCC.getOuterRefSCC() == this) {
          assert(SCCIndices.find(&TargetSCC)->second <= i &&
                 "Edge between SCCs violates post-order relationship.");
          continue;
        }
      }
  }
}
#endif

bool LazyCallGraph::RefSCC::isParentOf(const RefSCC &RC) const {
  if (&RC == this)
    return false;

  // Search all edges to see if this is a parent.
  for (SCC &C : *this)
    for (Node &N : C)
      for (Edge &E : *N)
        if (G->lookupRefSCC(E.getNode()) == &RC)
          return true;

  return false;
}

bool LazyCallGraph::RefSCC::isAncestorOf(const RefSCC &RC) const {
  if (&RC == this)
    return false;

  // For each descendant of this RefSCC, see if one of its children is the
  // argument. If not, add that descendant to the worklist and continue
  // searching.
  SmallVector<const RefSCC *, 4> Worklist;
  SmallPtrSet<const RefSCC *, 4> Visited;
  Worklist.push_back(this);
  Visited.insert(this);
  do {
    const RefSCC &DescendantRC = *Worklist.pop_back_val();
    for (SCC &C : DescendantRC)
      for (Node &N : C)
        for (Edge &E : *N) {
          auto *ChildRC = G->lookupRefSCC(E.getNode());
          if (ChildRC == &RC)
            return true;
          if (!ChildRC || !Visited.insert(ChildRC).second)
            continue;
          Worklist.push_back(ChildRC);
        }
  } while (!Worklist.empty());

  return false;
}

/// Generic helper that updates a postorder sequence of SCCs for a potentially
/// cycle-introducing edge insertion.
///
/// A postorder sequence of SCCs of a directed graph has one fundamental
/// property: all deges in the DAG of SCCs point "up" the sequence. That is,
/// all edges in the SCC DAG point to prior SCCs in the sequence.
///
/// This routine both updates a postorder sequence and uses that sequence to
/// compute the set of SCCs connected into a cycle. It should only be called to
/// insert a "downward" edge which will require changing the sequence to
/// restore it to a postorder.
///
/// When inserting an edge from an earlier SCC to a later SCC in some postorder
/// sequence, all of the SCCs which may be impacted are in the closed range of
/// those two within the postorder sequence. The algorithm used here to restore
/// the state is as follows:
///
/// 1) Starting from the source SCC, construct a set of SCCs which reach the
///    source SCC consisting of just the source SCC. Then scan toward the
///    target SCC in postorder and for each SCC, if it has an edge to an SCC
///    in the set, add it to the set. Otherwise, the source SCC is not
///    a successor, move it in the postorder sequence to immediately before
///    the source SCC, shifting the source SCC and all SCCs in the set one
///    position toward the target SCC. Stop scanning after processing the
///    target SCC.
/// 2) If the source SCC is now past the target SCC in the postorder sequence,
///    and thus the new edge will flow toward the start, we are done.
/// 3) Otherwise, starting from the target SCC, walk all edges which reach an
///    SCC between the source and the target, and add them to the set of
///    connected SCCs, then recurse through them. Once a complete set of the
///    SCCs the target connects to is known, hoist the remaining SCCs between
///    the source and the target to be above the target. Note that there is no
///    need to process the source SCC, it is already known to connect.
/// 4) At this point, all of the SCCs in the closed range between the source
///    SCC and the target SCC in the postorder sequence are connected,
///    including the target SCC and the source SCC. Inserting the edge from
///    the source SCC to the target SCC will form a cycle out of precisely
///    these SCCs. Thus we can merge all of the SCCs in this closed range into
///    a single SCC.
///
/// This process has various important properties:
/// - Only mutates the SCCs when adding the edge actually changes the SCC
///   structure.
/// - Never mutates SCCs which are unaffected by the change.
/// - Updates the postorder sequence to correctly satisfy the postorder
///   constraint after the edge is inserted.
/// - Only reorders SCCs in the closed postorder sequence from the source to
///   the target, so easy to bound how much has changed even in the ordering.
/// - Big-O is the number of edges in the closed postorder range of SCCs from
///   source to target.
///
/// This helper routine, in addition to updating the postorder sequence itself
/// will also update a map from SCCs to indices within that sequecne.
///
/// The sequence and the map must operate on pointers to the SCC type.
///
/// Two callbacks must be provided. The first computes the subset of SCCs in
/// the postorder closed range from the source to the target which connect to
/// the source SCC via some (transitive) set of edges. The second computes the
/// subset of the same range which the target SCC connects to via some
/// (transitive) set of edges. Both callbacks should populate the set argument
/// provided.
template <typename SCCT, typename PostorderSequenceT, typename SCCIndexMapT,
          typename ComputeSourceConnectedSetCallableT,
          typename ComputeTargetConnectedSetCallableT>
static iterator_range<typename PostorderSequenceT::iterator>
updatePostorderSequenceForEdgeInsertion(
    SCCT &SourceSCC, SCCT &TargetSCC, PostorderSequenceT &SCCs,
    SCCIndexMapT &SCCIndices,
    ComputeSourceConnectedSetCallableT ComputeSourceConnectedSet,
    ComputeTargetConnectedSetCallableT ComputeTargetConnectedSet) {
  int SourceIdx = SCCIndices[&SourceSCC];
  int TargetIdx = SCCIndices[&TargetSCC];
  assert(SourceIdx < TargetIdx && "Cannot have equal indices here!");

  SmallPtrSet<SCCT *, 4> ConnectedSet;

  // Compute the SCCs which (transitively) reach the source.
  ComputeSourceConnectedSet(ConnectedSet);

  // Partition the SCCs in this part of the port-order sequence so only SCCs
  // connecting to the source remain between it and the target. This is
  // a benign partition as it preserves postorder.
  auto SourceI = std::stable_partition(
      SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx + 1,
      [&ConnectedSet](SCCT *C) { return !ConnectedSet.count(C); });
  for (int i = SourceIdx, e = TargetIdx + 1; i < e; ++i)
    SCCIndices.find(SCCs[i])->second = i;

  // If the target doesn't connect to the source, then we've corrected the
  // post-order and there are no cycles formed.
  if (!ConnectedSet.count(&TargetSCC)) {
    assert(SourceI > (SCCs.begin() + SourceIdx) &&
           "Must have moved the source to fix the post-order.");
    assert(*std::prev(SourceI) == &TargetSCC &&
           "Last SCC to move should have bene the target.");

    // Return an empty range at the target SCC indicating there is nothing to
    // merge.
    return make_range(std::prev(SourceI), std::prev(SourceI));
  }

  assert(SCCs[TargetIdx] == &TargetSCC &&
         "Should not have moved target if connected!");
  SourceIdx = SourceI - SCCs.begin();
  assert(SCCs[SourceIdx] == &SourceSCC &&
         "Bad updated index computation for the source SCC!");


  // See whether there are any remaining intervening SCCs between the source
  // and target. If so we need to make sure they all are reachable form the
  // target.
  if (SourceIdx + 1 < TargetIdx) {
    ConnectedSet.clear();
    ComputeTargetConnectedSet(ConnectedSet);

    // Partition SCCs so that only SCCs reached from the target remain between
    // the source and the target. This preserves postorder.
    auto TargetI = std::stable_partition(
        SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1,
        [&ConnectedSet](SCCT *C) { return ConnectedSet.count(C); });
    for (int i = SourceIdx + 1, e = TargetIdx + 1; i < e; ++i)
      SCCIndices.find(SCCs[i])->second = i;
    TargetIdx = std::prev(TargetI) - SCCs.begin();
    assert(SCCs[TargetIdx] == &TargetSCC &&
           "Should always end with the target!");
  }

  // At this point, we know that connecting source to target forms a cycle
  // because target connects back to source, and we know that all of the SCCs
  // between the source and target in the postorder sequence participate in that
  // cycle.
  return make_range(SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx);
}

bool
LazyCallGraph::RefSCC::switchInternalEdgeToCall(
    Node &SourceN, Node &TargetN,
    function_ref<void(ArrayRef<SCC *> MergeSCCs)> MergeCB) {
  assert(!(*SourceN)[TargetN].isCall() && "Must start with a ref edge!");
  SmallVector<SCC *, 1> DeletedSCCs;

#ifndef NDEBUG
  // In a debug build, verify the RefSCC is valid to start with and when this
  // routine finishes.
  verify();
  auto VerifyOnExit = make_scope_exit([&]() { verify(); });
#endif

  SCC &SourceSCC = *G->lookupSCC(SourceN);
  SCC &TargetSCC = *G->lookupSCC(TargetN);

  // If the two nodes are already part of the same SCC, we're also done as
  // we've just added more connectivity.
  if (&SourceSCC == &TargetSCC) {
    SourceN->setEdgeKind(TargetN, Edge::Call);
    return false; // No new cycle.
  }

  // At this point we leverage the postorder list of SCCs to detect when the
  // insertion of an edge changes the SCC structure in any way.
  //
  // First and foremost, we can eliminate the need for any changes when the
  // edge is toward the beginning of the postorder sequence because all edges
  // flow in that direction already. Thus adding a new one cannot form a cycle.
  int SourceIdx = SCCIndices[&SourceSCC];
  int TargetIdx = SCCIndices[&TargetSCC];
  if (TargetIdx < SourceIdx) {
    SourceN->setEdgeKind(TargetN, Edge::Call);
    return false; // No new cycle.
  }

  // Compute the SCCs which (transitively) reach the source.
  auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) {
#ifndef NDEBUG
    // Check that the RefSCC is still valid before computing this as the
    // results will be nonsensical of we've broken its invariants.
    verify();
#endif
    ConnectedSet.insert(&SourceSCC);
    auto IsConnected = [&](SCC &C) {
      for (Node &N : C)
        for (Edge &E : N->calls())
          if (ConnectedSet.count(G->lookupSCC(E.getNode())))
            return true;

      return false;
    };

    for (SCC *C :
         make_range(SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1))
      if (IsConnected(*C))
        ConnectedSet.insert(C);
  };

  // Use a normal worklist to find which SCCs the target connects to. We still
  // bound the search based on the range in the postorder list we care about,
  // but because this is forward connectivity we just "recurse" through the
  // edges.
  auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) {
#ifndef NDEBUG
    // Check that the RefSCC is still valid before computing this as the
    // results will be nonsensical of we've broken its invariants.
    verify();
#endif
    ConnectedSet.insert(&TargetSCC);
    SmallVector<SCC *, 4> Worklist;
    Worklist.push_back(&TargetSCC);
    do {
      SCC &C = *Worklist.pop_back_val();
      for (Node &N : C)
        for (Edge &E : *N) {
          if (!E.isCall())
            continue;
          SCC &EdgeC = *G->lookupSCC(E.getNode());
          if (&EdgeC.getOuterRefSCC() != this)
            // Not in this RefSCC...
            continue;
          if (SCCIndices.find(&EdgeC)->second <= SourceIdx)
            // Not in the postorder sequence between source and target.
            continue;

          if (ConnectedSet.insert(&EdgeC).second)
            Worklist.push_back(&EdgeC);
        }
    } while (!Worklist.empty());
  };

  // Use a generic helper to update the postorder sequence of SCCs and return
  // a range of any SCCs connected into a cycle by inserting this edge. This
  // routine will also take care of updating the indices into the postorder
  // sequence.
  auto MergeRange = updatePostorderSequenceForEdgeInsertion(
      SourceSCC, TargetSCC, SCCs, SCCIndices, ComputeSourceConnectedSet,
      ComputeTargetConnectedSet);

  // Run the user's callback on the merged SCCs before we actually merge them.
  if (MergeCB)
    MergeCB(makeArrayRef(MergeRange.begin(), MergeRange.end()));

  // If the merge range is empty, then adding the edge didn't actually form any
  // new cycles. We're done.
  if (MergeRange.begin() == MergeRange.end()) {
    // Now that the SCC structure is finalized, flip the kind to call.
    SourceN->setEdgeKind(TargetN, Edge::Call);
    return false; // No new cycle.
  }

#ifndef NDEBUG
  // Before merging, check that the RefSCC remains valid after all the
  // postorder updates.
  verify();
#endif

  // Otherwise we need to merge all of the SCCs in the cycle into a single
  // result SCC.
  //
  // NB: We merge into the target because all of these functions were already
  // reachable from the target, meaning any SCC-wide properties deduced about it
  // other than the set of functions within it will not have changed.
  for (SCC *C : MergeRange) {
    assert(C != &TargetSCC &&
           "We merge *into* the target and shouldn't process it here!");
    SCCIndices.erase(C);
    TargetSCC.Nodes.append(C->Nodes.begin(), C->Nodes.end());
    for (Node *N : C->Nodes)
      G->SCCMap[N] = &TargetSCC;
    C->clear();
    DeletedSCCs.push_back(C);
  }

  // Erase the merged SCCs from the list and update the indices of the
  // remaining SCCs.
  int IndexOffset = MergeRange.end() - MergeRange.begin();
  auto EraseEnd = SCCs.erase(MergeRange.begin(), MergeRange.end());
  for (SCC *C : make_range(EraseEnd, SCCs.end()))
    SCCIndices[C] -= IndexOffset;

  // Now that the SCC structure is finalized, flip the kind to call.
  SourceN->setEdgeKind(TargetN, Edge::Call);

  // And we're done, but we did form a new cycle.
  return true;
}

void LazyCallGraph::RefSCC::switchTrivialInternalEdgeToRef(Node &SourceN,
                                                           Node &TargetN) {
  assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!");

#ifndef NDEBUG
  // In a debug build, verify the RefSCC is valid to start with and when this
  // routine finishes.
  verify();
  auto VerifyOnExit = make_scope_exit([&]() { verify(); });
#endif

  assert(G->lookupRefSCC(SourceN) == this &&
         "Source must be in this RefSCC.");
  assert(G->lookupRefSCC(TargetN) == this &&
         "Target must be in this RefSCC.");
  assert(G->lookupSCC(SourceN) != G->lookupSCC(TargetN) &&
         "Source and Target must be in separate SCCs for this to be trivial!");

  // Set the edge kind.
  SourceN->setEdgeKind(TargetN, Edge::Ref);
}

iterator_range<LazyCallGraph::RefSCC::iterator>
LazyCallGraph::RefSCC::switchInternalEdgeToRef(Node &SourceN, Node &TargetN) {
  assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!");

#ifndef NDEBUG
  // In a debug build, verify the RefSCC is valid to start with and when this
  // routine finishes.
  verify();
  auto VerifyOnExit = make_scope_exit([&]() { verify(); });
#endif

  assert(G->lookupRefSCC(SourceN) == this &&
         "Source must be in this RefSCC.");
  assert(G->lookupRefSCC(TargetN) == this &&
         "Target must be in this RefSCC.");

  SCC &TargetSCC = *G->lookupSCC(TargetN);
  assert(G->lookupSCC(SourceN) == &TargetSCC && "Source and Target must be in "
                                                "the same SCC to require the "
                                                "full CG update.");

  // Set the edge kind.
  SourceN->setEdgeKind(TargetN, Edge::Ref);

  // Otherwise we are removing a call edge from a single SCC. This may break
  // the cycle. In order to compute the new set of SCCs, we need to do a small
  // DFS over the nodes within the SCC to form any sub-cycles that remain as
  // distinct SCCs and compute a postorder over the resulting SCCs.
  //
  // However, we specially handle the target node. The target node is known to
  // reach all other nodes in the original SCC by definition. This means that
  // we want the old SCC to be replaced with an SCC contaning that node as it
  // will be the root of whatever SCC DAG results from the DFS. Assumptions
  // about an SCC such as the set of functions called will continue to hold,
  // etc.

  SCC &OldSCC = TargetSCC;
  SmallVector<std::pair<Node *, EdgeSequence::call_iterator>, 16> DFSStack;
  SmallVector<Node *, 16> PendingSCCStack;
  SmallVector<SCC *, 4> NewSCCs;

  // Prepare the nodes for a fresh DFS.
  SmallVector<Node *, 16> Worklist;
  Worklist.swap(OldSCC.Nodes);
  for (Node *N : Worklist) {
    N->DFSNumber = N->LowLink = 0;
    G->SCCMap.erase(N);
  }

  // Force the target node to be in the old SCC. This also enables us to take
  // a very significant short-cut in the standard Tarjan walk to re-form SCCs
  // below: whenever we build an edge that reaches the target node, we know
  // that the target node eventually connects back to all other nodes in our
  // walk. As a consequence, we can detect and handle participants in that
  // cycle without walking all the edges that form this connection, and instead
  // by relying on the fundamental guarantee coming into this operation (all
  // nodes are reachable from the target due to previously forming an SCC).
  TargetN.DFSNumber = TargetN.LowLink = -1;
  OldSCC.Nodes.push_back(&TargetN);
  G->SCCMap[&TargetN] = &OldSCC;

  // Scan down the stack and DFS across the call edges.
  for (Node *RootN : Worklist) {
    assert(DFSStack.empty() &&
           "Cannot begin a new root with a non-empty DFS stack!");
    assert(PendingSCCStack.empty() &&
           "Cannot begin a new root with pending nodes for an SCC!");

    // Skip any nodes we've already reached in the DFS.
    if (RootN->DFSNumber != 0) {
      assert(RootN->DFSNumber == -1 &&
             "Shouldn't have any mid-DFS root nodes!");
      continue;
    }

    RootN->DFSNumber = RootN->LowLink = 1;
    int NextDFSNumber = 2;

    DFSStack.push_back({RootN, (*RootN)->call_begin()});
    do {
      Node *N;
      EdgeSequence::call_iterator I;
      std::tie(N, I) = DFSStack.pop_back_val();
      auto E = (*N)->call_end();
      while (I != E) {
        Node &ChildN = I->getNode();
        if (ChildN.DFSNumber == 0) {
          // We haven't yet visited this child, so descend, pushing the current
          // node onto the stack.
          DFSStack.push_back({N, I});

          assert(!G->SCCMap.count(&ChildN) &&
                 "Found a node with 0 DFS number but already in an SCC!");
          ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++;
          N = &ChildN;
          I = (*N)->call_begin();
          E = (*N)->call_end();
          continue;
        }

        // Check for the child already being part of some component.
        if (ChildN.DFSNumber == -1) {
          if (G->lookupSCC(ChildN) == &OldSCC) {
            // If the child is part of the old SCC, we know that it can reach
            // every other node, so we have formed a cycle. Pull the entire DFS
            // and pending stacks into it. See the comment above about setting
            // up the old SCC for why we do this.
            int OldSize = OldSCC.size();
            OldSCC.Nodes.push_back(N);
            OldSCC.Nodes.append(PendingSCCStack.begin(), PendingSCCStack.end());
            PendingSCCStack.clear();
            while (!DFSStack.empty())
              OldSCC.Nodes.push_back(DFSStack.pop_back_val().first);
            for (Node &N : make_range(OldSCC.begin() + OldSize, OldSCC.end())) {
              N.DFSNumber = N.LowLink = -1;
              G->SCCMap[&N] = &OldSCC;
            }
            N = nullptr;
            break;
          }

          // If the child has already been added to some child component, it
          // couldn't impact the low-link of this parent because it isn't
          // connected, and thus its low-link isn't relevant so skip it.
          ++I;
          continue;
        }

        // Track the lowest linked child as the lowest link for this node.
        assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
        if (ChildN.LowLink < N->LowLink)
          N->LowLink = ChildN.LowLink;

        // Move to the next edge.
        ++I;
      }
      if (!N)
        // Cleared the DFS early, start another round.
        break;

      // We've finished processing N and its descendents, put it on our pending
      // SCC stack to eventually get merged into an SCC of nodes.
      PendingSCCStack.push_back(N);

      // If this node is linked to some lower entry, continue walking up the
      // stack.
      if (N->LowLink != N->DFSNumber)
        continue;

      // Otherwise, we've completed an SCC. Append it to our post order list of
      // SCCs.
      int RootDFSNumber = N->DFSNumber;
      // Find the range of the node stack by walking down until we pass the
      // root DFS number.
      auto SCCNodes = make_range(
          PendingSCCStack.rbegin(),
          find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) {
            return N->DFSNumber < RootDFSNumber;
          }));

      // Form a new SCC out of these nodes and then clear them off our pending
      // stack.
      NewSCCs.push_back(G->createSCC(*this, SCCNodes));
      for (Node &N : *NewSCCs.back()) {
        N.DFSNumber = N.LowLink = -1;
        G->SCCMap[&N] = NewSCCs.back();
      }
      PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end());
    } while (!DFSStack.empty());
  }

  // Insert the remaining SCCs before the old one. The old SCC can reach all
  // other SCCs we form because it contains the target node of the removed edge
  // of the old SCC. This means that we will have edges into all of the new
  // SCCs, which means the old one must come last for postorder.
  int OldIdx = SCCIndices[&OldSCC];
  SCCs.insert(SCCs.begin() + OldIdx, NewSCCs.begin(), NewSCCs.end());

  // Update the mapping from SCC* to index to use the new SCC*s, and remove the
  // old SCC from the mapping.
  for (int Idx = OldIdx, Size = SCCs.size(); Idx < Size; ++Idx)
    SCCIndices[SCCs[Idx]] = Idx;

  return make_range(SCCs.begin() + OldIdx,
                    SCCs.begin() + OldIdx + NewSCCs.size());
}

void LazyCallGraph::RefSCC::switchOutgoingEdgeToCall(Node &SourceN,
                                                     Node &TargetN) {
  assert(!(*SourceN)[TargetN].isCall() && "Must start with a ref edge!");

  assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
  assert(G->lookupRefSCC(TargetN) != this &&
         "Target must not be in this RefSCC.");
#ifdef EXPENSIVE_CHECKS
  assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
         "Target must be a descendant of the Source.");
#endif

  // Edges between RefSCCs are the same regardless of call or ref, so we can
  // just flip the edge here.
  SourceN->setEdgeKind(TargetN, Edge::Call);

#ifndef NDEBUG
  // Check that the RefSCC is still valid.
  verify();
#endif
}

void LazyCallGraph::RefSCC::switchOutgoingEdgeToRef(Node &SourceN,
                                                    Node &TargetN) {
  assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!");

  assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
  assert(G->lookupRefSCC(TargetN) != this &&
         "Target must not be in this RefSCC.");
#ifdef EXPENSIVE_CHECKS
  assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
         "Target must be a descendant of the Source.");
#endif

  // Edges between RefSCCs are the same regardless of call or ref, so we can
  // just flip the edge here.
  SourceN->setEdgeKind(TargetN, Edge::Ref);

#ifndef NDEBUG
  // Check that the RefSCC is still valid.
  verify();
#endif
}

void LazyCallGraph::RefSCC::insertInternalRefEdge(Node &SourceN,
                                                  Node &TargetN) {
  assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
  assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC.");

  SourceN->insertEdgeInternal(TargetN, Edge::Ref);

#ifndef NDEBUG
  // Check that the RefSCC is still valid.
  verify();
#endif
}

void LazyCallGraph::RefSCC::insertOutgoingEdge(Node &SourceN, Node &TargetN,
                                               Edge::Kind EK) {
  // First insert it into the caller.
  SourceN->insertEdgeInternal(TargetN, EK);

  assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");

  assert(G->lookupRefSCC(TargetN) != this &&
         "Target must not be in this RefSCC.");
#ifdef EXPENSIVE_CHECKS
  assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
         "Target must be a descendant of the Source.");
#endif

#ifndef NDEBUG
  // Check that the RefSCC is still valid.
  verify();
#endif
}

SmallVector<LazyCallGraph::RefSCC *, 1>
LazyCallGraph::RefSCC::insertIncomingRefEdge(Node &SourceN, Node &TargetN) {
  assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC.");
  RefSCC &SourceC = *G->lookupRefSCC(SourceN);
  assert(&SourceC != this && "Source must not be in this RefSCC.");
#ifdef EXPENSIVE_CHECKS
  assert(SourceC.isDescendantOf(*this) &&
         "Source must be a descendant of the Target.");
#endif

  SmallVector<RefSCC *, 1> DeletedRefSCCs;

#ifndef NDEBUG
  // In a debug build, verify the RefSCC is valid to start with and when this
  // routine finishes.
  verify();
  auto VerifyOnExit = make_scope_exit([&]() { verify(); });
#endif

  int SourceIdx = G->RefSCCIndices[&SourceC];
  int TargetIdx = G->RefSCCIndices[this];
  assert(SourceIdx < TargetIdx &&
         "Postorder list doesn't see edge as incoming!");

  // Compute the RefSCCs which (transitively) reach the source. We do this by
  // working backwards from the source using the parent set in each RefSCC,
  // skipping any RefSCCs that don't fall in the postorder range. This has the
  // advantage of walking the sparser parent edge (in high fan-out graphs) but
  // more importantly this removes examining all forward edges in all RefSCCs
  // within the postorder range which aren't in fact connected. Only connected
  // RefSCCs (and their edges) are visited here.
  auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) {
    Set.insert(&SourceC);
    auto IsConnected = [&](RefSCC &RC) {
      for (SCC &C : RC)
        for (Node &N : C)
          for (Edge &E : *N)
            if (Set.count(G->lookupRefSCC(E.getNode())))
              return true;

      return false;
    };

    for (RefSCC *C : make_range(G->PostOrderRefSCCs.begin() + SourceIdx + 1,
                                G->PostOrderRefSCCs.begin() + TargetIdx + 1))
      if (IsConnected(*C))
        Set.insert(C);
  };

  // Use a normal worklist to find which SCCs the target connects to. We still
  // bound the search based on the range in the postorder list we care about,
  // but because this is forward connectivity we just "recurse" through the
  // edges.
  auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) {
    Set.insert(this);
    SmallVector<RefSCC *, 4> Worklist;
    Worklist.push_back(this);
    do {
      RefSCC &RC = *Worklist.pop_back_val();
      for (SCC &C : RC)
        for (Node &N : C)
          for (Edge &E : *N) {
            RefSCC &EdgeRC = *G->lookupRefSCC(E.getNode());
            if (G->getRefSCCIndex(EdgeRC) <= SourceIdx)
              // Not in the postorder sequence between source and target.
              continue;

            if (Set.insert(&EdgeRC).second)
              Worklist.push_back(&EdgeRC);
          }
    } while (!Worklist.empty());
  };

  // Use a generic helper to update the postorder sequence of RefSCCs and return
  // a range of any RefSCCs connected into a cycle by inserting this edge. This
  // routine will also take care of updating the indices into the postorder
  // sequence.
  iterator_range<SmallVectorImpl<RefSCC *>::iterator> MergeRange =
      updatePostorderSequenceForEdgeInsertion(
          SourceC, *this, G->PostOrderRefSCCs, G->RefSCCIndices,
          ComputeSourceConnectedSet, ComputeTargetConnectedSet);

  // Build a set so we can do fast tests for whether a RefSCC will end up as
  // part of the merged RefSCC.
  SmallPtrSet<RefSCC *, 16> MergeSet(MergeRange.begin(), MergeRange.end());

  // This RefSCC will always be part of that set, so just insert it here.
  MergeSet.insert(this);

  // Now that we have identified all of the SCCs which need to be merged into
  // a connected set with the inserted edge, merge all of them into this SCC.
  SmallVector<SCC *, 16> MergedSCCs;
  int SCCIndex = 0;
  for (RefSCC *RC : MergeRange) {
    assert(RC != this && "We're merging into the target RefSCC, so it "
                         "shouldn't be in the range.");

    // Walk the inner SCCs to update their up-pointer and walk all the edges to
    // update any parent sets.
    // FIXME: We should try to find a way to avoid this (rather expensive) edge
    // walk by updating the parent sets in some other manner.
    for (SCC &InnerC : *RC) {
      InnerC.OuterRefSCC = this;
      SCCIndices[&InnerC] = SCCIndex++;
      for (Node &N : InnerC)
        G->SCCMap[&N] = &InnerC;
    }

    // Now merge in the SCCs. We can actually move here so try to reuse storage
    // the first time through.
    if (MergedSCCs.empty())
      MergedSCCs = std::move(RC->SCCs);
    else
      MergedSCCs.append(RC->SCCs.begin(), RC->SCCs.end());
    RC->SCCs.clear();
    DeletedRefSCCs.push_back(RC);
  }

  // Append our original SCCs to the merged list and move it into place.
  for (SCC &InnerC : *this)
    SCCIndices[&InnerC] = SCCIndex++;
  MergedSCCs.append(SCCs.begin(), SCCs.end());
  SCCs = std::move(MergedSCCs);

  // Remove the merged away RefSCCs from the post order sequence.
  for (RefSCC *RC : MergeRange)
    G->RefSCCIndices.erase(RC);
  int IndexOffset = MergeRange.end() - MergeRange.begin();
  auto EraseEnd =
      G->PostOrderRefSCCs.erase(MergeRange.begin(), MergeRange.end());
  for (RefSCC *RC : make_range(EraseEnd, G->PostOrderRefSCCs.end()))
    G->RefSCCIndices[RC] -= IndexOffset;

  // At this point we have a merged RefSCC with a post-order SCCs list, just
  // connect the nodes to form the new edge.
  SourceN->insertEdgeInternal(TargetN, Edge::Ref);

  // We return the list of SCCs which were merged so that callers can
  // invalidate any data they have associated with those SCCs. Note that these
  // SCCs are no longer in an interesting state (they are totally empty) but
  // the pointers will remain stable for the life of the graph itself.
  return DeletedRefSCCs;
}

void LazyCallGraph::RefSCC::removeOutgoingEdge(Node &SourceN, Node &TargetN) {
  assert(G->lookupRefSCC(SourceN) == this &&
         "The source must be a member of this RefSCC.");
  assert(G->lookupRefSCC(TargetN) != this &&
         "The target must not be a member of this RefSCC");

#ifndef NDEBUG
  // In a debug build, verify the RefSCC is valid to start with and when this
  // routine finishes.
  verify();
  auto VerifyOnExit = make_scope_exit([&]() { verify(); });
#endif

  // First remove it from the node.
  bool Removed = SourceN->removeEdgeInternal(TargetN);
  (void)Removed;
  assert(Removed && "Target not in the edge set for this caller?");
}

SmallVector<LazyCallGraph::RefSCC *, 1>
LazyCallGraph::RefSCC::removeInternalRefEdge(Node &SourceN,
                                             ArrayRef<Node *> TargetNs) {
  // We return a list of the resulting *new* RefSCCs in post-order.
  SmallVector<RefSCC *, 1> Result;

#ifndef NDEBUG
  // In a debug build, verify the RefSCC is valid to start with and that either
  // we return an empty list of result RefSCCs and this RefSCC remains valid,
  // or we return new RefSCCs and this RefSCC is dead.
  verify();
  auto VerifyOnExit = make_scope_exit([&]() {
    // If we didn't replace our RefSCC with new ones, check that this one
    // remains valid.
    if (G)
      verify();
  });
#endif

  // First remove the actual edges.
  for (Node *TargetN : TargetNs) {
    assert(!(*SourceN)[*TargetN].isCall() &&
           "Cannot remove a call edge, it must first be made a ref edge");

    bool Removed = SourceN->removeEdgeInternal(*TargetN);
    (void)Removed;
    assert(Removed && "Target not in the edge set for this caller?");
  }

  // Direct self references don't impact the ref graph at all.
  if (llvm::all_of(TargetNs,
                   [&](Node *TargetN) { return &SourceN == TargetN; }))
    return Result;

  // If all targets are in the same SCC as the source, because no call edges
  // were removed there is no RefSCC structure change.
  SCC &SourceC = *G->lookupSCC(SourceN);
  if (llvm::all_of(TargetNs, [&](Node *TargetN) {
        return G->lookupSCC(*TargetN) == &SourceC;
      }))
    return Result;

  // We build somewhat synthetic new RefSCCs by providing a postorder mapping
  // for each inner SCC. We store these inside the low-link field of the nodes
  // rather than associated with SCCs because this saves a round-trip through
  // the node->SCC map and in the common case, SCCs are small. We will verify
  // that we always give the same number to every node in the SCC such that
  // these are equivalent.
  int PostOrderNumber = 0;

  // Reset all the other nodes to prepare for a DFS over them, and add them to
  // our worklist.
  SmallVector<Node *, 8> Worklist;
  for (SCC *C : SCCs) {
    for (Node &N : *C)
      N.DFSNumber = N.LowLink = 0;

    Worklist.append(C->Nodes.begin(), C->Nodes.end());
  }

  // Track the number of nodes in this RefSCC so that we can quickly recognize
  // an important special case of the edge removal not breaking the cycle of
  // this RefSCC.
  const int NumRefSCCNodes = Worklist.size();

  SmallVector<std::pair<Node *, EdgeSequence::iterator>, 4> DFSStack;
  SmallVector<Node *, 4> PendingRefSCCStack;
  do {
    assert(DFSStack.empty() &&
           "Cannot begin a new root with a non-empty DFS stack!");
    assert(PendingRefSCCStack.empty() &&
           "Cannot begin a new root with pending nodes for an SCC!");

    Node *RootN = Worklist.pop_back_val();
    // Skip any nodes we've already reached in the DFS.
    if (RootN->DFSNumber != 0) {
      assert(RootN->DFSNumber == -1 &&
             "Shouldn't have any mid-DFS root nodes!");
      continue;
    }

    RootN->DFSNumber = RootN->LowLink = 1;
    int NextDFSNumber = 2;

    DFSStack.push_back({RootN, (*RootN)->begin()});
    do {
      Node *N;
      EdgeSequence::iterator I;
      std::tie(N, I) = DFSStack.pop_back_val();
      auto E = (*N)->end();

      assert(N->DFSNumber != 0 && "We should always assign a DFS number "
                                  "before processing a node.");

      while (I != E) {
        Node &ChildN = I->getNode();
        if (ChildN.DFSNumber == 0) {
          // Mark that we should start at this child when next this node is the
          // top of the stack. We don't start at the next child to ensure this
          // child's lowlink is reflected.
          DFSStack.push_back({N, I});

          // Continue, resetting to the child node.
          ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++;
          N = &ChildN;
          I = ChildN->begin();
          E = ChildN->end();
          continue;
        }
        if (ChildN.DFSNumber == -1) {
          // If this child isn't currently in this RefSCC, no need to process
          // it.
          ++I;
          continue;
        }

        // Track the lowest link of the children, if any are still in the stack.
        // Any child not on the stack will have a LowLink of -1.
        assert(ChildN.LowLink != 0 &&
               "Low-link must not be zero with a non-zero DFS number.");
        if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink)
          N->LowLink = ChildN.LowLink;
        ++I;
      }

      // We've finished processing N and its descendents, put it on our pending
      // stack to eventually get merged into a RefSCC.
      PendingRefSCCStack.push_back(N);

      // If this node is linked to some lower entry, continue walking up the
      // stack.
      if (N->LowLink != N->DFSNumber) {
        assert(!DFSStack.empty() &&
               "We never found a viable root for a RefSCC to pop off!");
        continue;
      }

      // Otherwise, form a new RefSCC from the top of the pending node stack.
      int RefSCCNumber = PostOrderNumber++;
      int RootDFSNumber = N->DFSNumber;

      // Find the range of the node stack by walking down until we pass the
      // root DFS number. Update the DFS numbers and low link numbers in the
      // process to avoid re-walking this list where possible.
      auto StackRI = find_if(reverse(PendingRefSCCStack), [&](Node *N) {
        if (N->DFSNumber < RootDFSNumber)
          // We've found the bottom.
          return true;

        // Update this node and keep scanning.
        N->DFSNumber = -1;
        // Save the post-order number in the lowlink field so that we can use
        // it to map SCCs into new RefSCCs after we finish the DFS.
        N->LowLink = RefSCCNumber;
        return false;
      });
      auto RefSCCNodes = make_range(StackRI.base(), PendingRefSCCStack.end());

      // If we find a cycle containing all nodes originally in this RefSCC then
      // the removal hasn't changed the structure at all. This is an important
      // special case and we can directly exit the entire routine more
      // efficiently as soon as we discover it.
      if (std::distance(RefSCCNodes.begin(), RefSCCNodes.end()) ==
          NumRefSCCNodes) {
        // Clear out the low link field as we won't need it.
        for (Node *N : RefSCCNodes)
          N->LowLink = -1;
        // Return the empty result immediately.
        return Result;
      }

      // We've already marked the nodes internally with the RefSCC number so
      // just clear them off the stack and continue.
      PendingRefSCCStack.erase(RefSCCNodes.begin(), PendingRefSCCStack.end());
    } while (!DFSStack.empty());

    assert(DFSStack.empty() && "Didn't flush the entire DFS stack!");
    assert(PendingRefSCCStack.empty() && "Didn't flush all pending nodes!");
  } while (!Worklist.empty());

  assert(PostOrderNumber > 1 &&
         "Should never finish the DFS when the existing RefSCC remains valid!");

  // Otherwise we create a collection of new RefSCC nodes and build
  // a radix-sort style map from postorder number to these new RefSCCs. We then
  // append SCCs to each of these RefSCCs in the order they occured in the
  // original SCCs container.
  for (int i = 0; i < PostOrderNumber; ++i)
    Result.push_back(G->createRefSCC(*G));

  // Insert the resulting postorder sequence into the global graph postorder
  // sequence before the current RefSCC in that sequence, and then remove the
  // current one.
  //
  // FIXME: It'd be nice to change the APIs so that we returned an iterator
  // range over the global postorder sequence and generally use that sequence
  // rather than building a separate result vector here.
  int Idx = G->getRefSCCIndex(*this);
  G->PostOrderRefSCCs.erase(G->PostOrderRefSCCs.begin() + Idx);
  G->PostOrderRefSCCs.insert(G->PostOrderRefSCCs.begin() + Idx, Result.begin(),
                             Result.end());
  for (int i : seq<int>(Idx, G->PostOrderRefSCCs.size()))
    G->RefSCCIndices[G->PostOrderRefSCCs[i]] = i;

  for (SCC *C : SCCs) {
    // We store the SCC number in the node's low-link field above.
    int SCCNumber = C->begin()->LowLink;
    // Clear out all of the SCC's node's low-link fields now that we're done
    // using them as side-storage.
    for (Node &N : *C) {
      assert(N.LowLink == SCCNumber &&
             "Cannot have different numbers for nodes in the same SCC!");
      N.LowLink = -1;
    }

    RefSCC &RC = *Result[SCCNumber];
    int SCCIndex = RC.SCCs.size();
    RC.SCCs.push_back(C);
    RC.SCCIndices[C] = SCCIndex;
    C->OuterRefSCC = &RC;
  }

  // Now that we've moved things into the new RefSCCs, clear out our current
  // one.
  G = nullptr;
  SCCs.clear();
  SCCIndices.clear();

#ifndef NDEBUG
  // Verify the new RefSCCs we've built.
  for (RefSCC *RC : Result)
    RC->verify();
#endif

  // Return the new list of SCCs.
  return Result;
}

void LazyCallGraph::RefSCC::handleTrivialEdgeInsertion(Node &SourceN,
                                                       Node &TargetN) {
  // The only trivial case that requires any graph updates is when we add new
  // ref edge and may connect different RefSCCs along that path. This is only
  // because of the parents set. Every other part of the graph remains constant
  // after this edge insertion.
  assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
  RefSCC &TargetRC = *G->lookupRefSCC(TargetN);
  if (&TargetRC == this)
    return;

#ifdef EXPENSIVE_CHECKS
  assert(TargetRC.isDescendantOf(*this) &&
         "Target must be a descendant of the Source.");
#endif
}

void LazyCallGraph::RefSCC::insertTrivialCallEdge(Node &SourceN,
                                                  Node &TargetN) {
#ifndef NDEBUG
  // Check that the RefSCC is still valid when we finish.
  auto ExitVerifier = make_scope_exit([this] { verify(); });

#ifdef EXPENSIVE_CHECKS
  // Check that we aren't breaking some invariants of the SCC graph. Note that
  // this is quadratic in the number of edges in the call graph!
  SCC &SourceC = *G->lookupSCC(SourceN);
  SCC &TargetC = *G->lookupSCC(TargetN);
  if (&SourceC != &TargetC)
    assert(SourceC.isAncestorOf(TargetC) &&
           "Call edge is not trivial in the SCC graph!");
#endif // EXPENSIVE_CHECKS
#endif // NDEBUG

  // First insert it into the source or find the existing edge.
  auto InsertResult =
      SourceN->EdgeIndexMap.insert({&TargetN, SourceN->Edges.size()});
  if (!InsertResult.second) {
    // Already an edge, just update it.
    Edge &E = SourceN->Edges[InsertResult.first->second];
    if (E.isCall())
      return; // Nothing to do!
    E.setKind(Edge::Call);
  } else {
    // Create the new edge.
    SourceN->Edges.emplace_back(TargetN, Edge::Call);
  }

  // Now that we have the edge, handle the graph fallout.
  handleTrivialEdgeInsertion(SourceN, TargetN);
}

void LazyCallGraph::RefSCC::insertTrivialRefEdge(Node &SourceN, Node &TargetN) {
#ifndef NDEBUG
  // Check that the RefSCC is still valid when we finish.
  auto ExitVerifier = make_scope_exit([this] { verify(); });

#ifdef EXPENSIVE_CHECKS
  // Check that we aren't breaking some invariants of the RefSCC graph.
  RefSCC &SourceRC = *G->lookupRefSCC(SourceN);
  RefSCC &TargetRC = *G->lookupRefSCC(TargetN);
  if (&SourceRC != &TargetRC)
    assert(SourceRC.isAncestorOf(TargetRC) &&
           "Ref edge is not trivial in the RefSCC graph!");
#endif // EXPENSIVE_CHECKS
#endif // NDEBUG

  // First insert it into the source or find the existing edge.
  auto InsertResult =
      SourceN->EdgeIndexMap.insert({&TargetN, SourceN->Edges.size()});
  if (!InsertResult.second)
    // Already an edge, we're done.
    return;

  // Create the new edge.
  SourceN->Edges.emplace_back(TargetN, Edge::Ref);

  // Now that we have the edge, handle the graph fallout.
  handleTrivialEdgeInsertion(SourceN, TargetN);
}

void LazyCallGraph::RefSCC::replaceNodeFunction(Node &N, Function &NewF) {
  Function &OldF = N.getFunction();

#ifndef NDEBUG
  // Check that the RefSCC is still valid when we finish.
  auto ExitVerifier = make_scope_exit([this] { verify(); });

  assert(G->lookupRefSCC(N) == this &&
         "Cannot replace the function of a node outside this RefSCC.");

  assert(G->NodeMap.find(&NewF) == G->NodeMap.end() &&
         "Must not have already walked the new function!'");

  // It is important that this replacement not introduce graph changes so we
  // insist that the caller has already removed every use of the original
  // function and that all uses of the new function correspond to existing
  // edges in the graph. The common and expected way to use this is when
  // replacing the function itself in the IR without changing the call graph
  // shape and just updating the analysis based on that.
  assert(&OldF != &NewF && "Cannot replace a function with itself!");
  assert(OldF.use_empty() &&
         "Must have moved all uses from the old function to the new!");
#endif

  N.replaceFunction(NewF);

  // Update various call graph maps.
  G->NodeMap.erase(&OldF);
  G->NodeMap[&NewF] = &N;
}

void LazyCallGraph::insertEdge(Node &SourceN, Node &TargetN, Edge::Kind EK) {
  assert(SCCMap.empty() &&
         "This method cannot be called after SCCs have been formed!");

  return SourceN->insertEdgeInternal(TargetN, EK);
}

void LazyCallGraph::removeEdge(Node &SourceN, Node &TargetN) {
  assert(SCCMap.empty() &&
         "This method cannot be called after SCCs have been formed!");

  bool Removed = SourceN->removeEdgeInternal(TargetN);
  (void)Removed;
  assert(Removed && "Target not in the edge set for this caller?");
}

void LazyCallGraph::removeDeadFunction(Function &F) {
  // FIXME: This is unnecessarily restrictive. We should be able to remove
  // functions which recursively call themselves.
  assert(F.use_empty() &&
         "This routine should only be called on trivially dead functions!");

  // We shouldn't remove library functions as they are never really dead while
  // the call graph is in use -- every function definition refers to them.
  assert(!isLibFunction(F) &&
         "Must not remove lib functions from the call graph!");

  auto NI = NodeMap.find(&F);
  if (NI == NodeMap.end())
    // Not in the graph at all!
    return;

  Node &N = *NI->second;
  NodeMap.erase(NI);

  // Remove this from the entry edges if present.
  EntryEdges.removeEdgeInternal(N);

  if (SCCMap.empty()) {
    // No SCCs have been formed, so removing this is fine and there is nothing
    // else necessary at this point but clearing out the node.
    N.clear();
    return;
  }

  // Cannot remove a function which has yet to be visited in the DFS walk, so
  // if we have a node at all then we must have an SCC and RefSCC.
  auto CI = SCCMap.find(&N);
  assert(CI != SCCMap.end() &&
         "Tried to remove a node without an SCC after DFS walk started!");
  SCC &C = *CI->second;
  SCCMap.erase(CI);
  RefSCC &RC = C.getOuterRefSCC();

  // This node must be the only member of its SCC as it has no callers, and
  // that SCC must be the only member of a RefSCC as it has no references.
  // Validate these properties first.
  assert(C.size() == 1 && "Dead functions must be in a singular SCC");
  assert(RC.size() == 1 && "Dead functions must be in a singular RefSCC");

  auto RCIndexI = RefSCCIndices.find(&RC);
  int RCIndex = RCIndexI->second;
  PostOrderRefSCCs.erase(PostOrderRefSCCs.begin() + RCIndex);
  RefSCCIndices.erase(RCIndexI);
  for (int i = RCIndex, Size = PostOrderRefSCCs.size(); i < Size; ++i)
    RefSCCIndices[PostOrderRefSCCs[i]] = i;

  // Finally clear out all the data structures from the node down through the
  // components.
  N.clear();
  N.G = nullptr;
  N.F = nullptr;
  C.clear();
  RC.clear();
  RC.G = nullptr;

  // Nothing to delete as all the objects are allocated in stable bump pointer
  // allocators.
}

LazyCallGraph::Node &LazyCallGraph::insertInto(Function &F, Node *&MappedN) {
  return *new (MappedN = BPA.Allocate()) Node(*this, F);
}

void LazyCallGraph::updateGraphPtrs() {
  // Walk the node map to update their graph pointers. While this iterates in
  // an unstable order, the order has no effect so it remains correct.
  for (auto &FunctionNodePair : NodeMap)
    FunctionNodePair.second->G = this;

  for (auto *RC : PostOrderRefSCCs)
    RC->G = this;
}

template <typename RootsT, typename GetBeginT, typename GetEndT,
          typename GetNodeT, typename FormSCCCallbackT>
void LazyCallGraph::buildGenericSCCs(RootsT &&Roots, GetBeginT &&GetBegin,
                                     GetEndT &&GetEnd, GetNodeT &&GetNode,
                                     FormSCCCallbackT &&FormSCC) {
  using EdgeItT = decltype(GetBegin(std::declval<Node &>()));

  SmallVector<std::pair<Node *, EdgeItT>, 16> DFSStack;
  SmallVector<Node *, 16> PendingSCCStack;

  // Scan down the stack and DFS across the call edges.
  for (Node *RootN : Roots) {
    assert(DFSStack.empty() &&
           "Cannot begin a new root with a non-empty DFS stack!");
    assert(PendingSCCStack.empty() &&
           "Cannot begin a new root with pending nodes for an SCC!");

    // Skip any nodes we've already reached in the DFS.
    if (RootN->DFSNumber != 0) {
      assert(RootN->DFSNumber == -1 &&
             "Shouldn't have any mid-DFS root nodes!");
      continue;
    }

    RootN->DFSNumber = RootN->LowLink = 1;
    int NextDFSNumber = 2;

    DFSStack.push_back({RootN, GetBegin(*RootN)});
    do {
      Node *N;
      EdgeItT I;
      std::tie(N, I) = DFSStack.pop_back_val();
      auto E = GetEnd(*N);
      while (I != E) {
        Node &ChildN = GetNode(I);
        if (ChildN.DFSNumber == 0) {
          // We haven't yet visited this child, so descend, pushing the current
          // node onto the stack.
          DFSStack.push_back({N, I});

          ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++;
          N = &ChildN;
          I = GetBegin(*N);
          E = GetEnd(*N);
          continue;
        }

        // If the child has already been added to some child component, it
        // couldn't impact the low-link of this parent because it isn't
        // connected, and thus its low-link isn't relevant so skip it.
        if (ChildN.DFSNumber == -1) {
          ++I;
          continue;
        }

        // Track the lowest linked child as the lowest link for this node.
        assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
        if (ChildN.LowLink < N->LowLink)
          N->LowLink = ChildN.LowLink;

        // Move to the next edge.
        ++I;
      }

      // We've finished processing N and its descendents, put it on our pending
      // SCC stack to eventually get merged into an SCC of nodes.
      PendingSCCStack.push_back(N);

      // If this node is linked to some lower entry, continue walking up the
      // stack.
      if (N->LowLink != N->DFSNumber)
        continue;

      // Otherwise, we've completed an SCC. Append it to our post order list of
      // SCCs.
      int RootDFSNumber = N->DFSNumber;
      // Find the range of the node stack by walking down until we pass the
      // root DFS number.
      auto SCCNodes = make_range(
          PendingSCCStack.rbegin(),
          find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) {
            return N->DFSNumber < RootDFSNumber;
          }));
      // Form a new SCC out of these nodes and then clear them off our pending
      // stack.
      FormSCC(SCCNodes);
      PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end());
    } while (!DFSStack.empty());
  }
}

/// Build the internal SCCs for a RefSCC from a sequence of nodes.
///
/// Appends the SCCs to the provided vector and updates the map with their
/// indices. Both the vector and map must be empty when passed into this
/// routine.
void LazyCallGraph::buildSCCs(RefSCC &RC, node_stack_range Nodes) {
  assert(RC.SCCs.empty() && "Already built SCCs!");
  assert(RC.SCCIndices.empty() && "Already mapped SCC indices!");

  for (Node *N : Nodes) {
    assert(N->LowLink >= (*Nodes.begin())->LowLink &&
           "We cannot have a low link in an SCC lower than its root on the "
           "stack!");

    // This node will go into the next RefSCC, clear out its DFS and low link
    // as we scan.
    N->DFSNumber = N->LowLink = 0;
  }

  // Each RefSCC contains a DAG of the call SCCs. To build these, we do
  // a direct walk of the call edges using Tarjan's algorithm. We reuse the
  // internal storage as we won't need it for the outer graph's DFS any longer.
  buildGenericSCCs(
      Nodes, [](Node &N) { return N->call_begin(); },
      [](Node &N) { return N->call_end(); },
      [](EdgeSequence::call_iterator I) -> Node & { return I->getNode(); },
      [this, &RC](node_stack_range Nodes) {
        RC.SCCs.push_back(createSCC(RC, Nodes));
        for (Node &N : *RC.SCCs.back()) {
          N.DFSNumber = N.LowLink = -1;
          SCCMap[&N] = RC.SCCs.back();
        }
      });

  // Wire up the SCC indices.
  for (int i = 0, Size = RC.SCCs.size(); i < Size; ++i)
    RC.SCCIndices[RC.SCCs[i]] = i;
}

void LazyCallGraph::buildRefSCCs() {
  if (EntryEdges.empty() || !PostOrderRefSCCs.empty())
    // RefSCCs are either non-existent or already built!
    return;

  assert(RefSCCIndices.empty() && "Already mapped RefSCC indices!");

  SmallVector<Node *, 16> Roots;
  for (Edge &E : *this)
    Roots.push_back(&E.getNode());

  // The roots will be popped of a stack, so use reverse to get a less
  // surprising order. This doesn't change any of the semantics anywhere.
  std::reverse(Roots.begin(), Roots.end());

  buildGenericSCCs(
      Roots,
      [](Node &N) {
        // We need to populate each node as we begin to walk its edges.
        N.populate();
        return N->begin();
      },
      [](Node &N) { return N->end(); },
      [](EdgeSequence::iterator I) -> Node & { return I->getNode(); },
      [this](node_stack_range Nodes) {
        RefSCC *NewRC = createRefSCC(*this);
        buildSCCs(*NewRC, Nodes);

        // Push the new node into the postorder list and remember its position
        // in the index map.
        bool Inserted =
            RefSCCIndices.insert({NewRC, PostOrderRefSCCs.size()}).second;
        (void)Inserted;
        assert(Inserted && "Cannot already have this RefSCC in the index map!");
        PostOrderRefSCCs.push_back(NewRC);
#ifndef NDEBUG
        NewRC->verify();
#endif
      });
}

AnalysisKey LazyCallGraphAnalysis::Key;

LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream &OS) : OS(OS) {}

static void printNode(raw_ostream &OS, LazyCallGraph::Node &N) {
  OS << "  Edges in function: " << N.getFunction().getName() << "\n";
  for (LazyCallGraph::Edge &E : N.populate())
    OS << "    " << (E.isCall() ? "call" : "ref ") << " -> "
       << E.getFunction().getName() << "\n";

  OS << "\n";
}

static void printSCC(raw_ostream &OS, LazyCallGraph::SCC &C) {
  ptrdiff_t Size = std::distance(C.begin(), C.end());
  OS << "    SCC with " << Size << " functions:\n";

  for (LazyCallGraph::Node &N : C)
    OS << "      " << N.getFunction().getName() << "\n";
}

static void printRefSCC(raw_ostream &OS, LazyCallGraph::RefSCC &C) {
  ptrdiff_t Size = std::distance(C.begin(), C.end());
  OS << "  RefSCC with " << Size << " call SCCs:\n";

  for (LazyCallGraph::SCC &InnerC : C)
    printSCC(OS, InnerC);

  OS << "\n";
}

PreservedAnalyses LazyCallGraphPrinterPass::run(Module &M,
                                                ModuleAnalysisManager &AM) {
  LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M);

  OS << "Printing the call graph for module: " << M.getModuleIdentifier()
     << "\n\n";

  for (Function &F : M)
    printNode(OS, G.get(F));

  G.buildRefSCCs();
  for (LazyCallGraph::RefSCC &C : G.postorder_ref_sccs())
    printRefSCC(OS, C);

  return PreservedAnalyses::all();
}

LazyCallGraphDOTPrinterPass::LazyCallGraphDOTPrinterPass(raw_ostream &OS)
    : OS(OS) {}

static void printNodeDOT(raw_ostream &OS, LazyCallGraph::Node &N) {
  std::string Name = "\"" + DOT::EscapeString(N.getFunction().getName()) + "\"";

  for (LazyCallGraph::Edge &E : N.populate()) {
    OS << "  " << Name << " -> \""
       << DOT::EscapeString(E.getFunction().getName()) << "\"";
    if (!E.isCall()) // It is a ref edge.
      OS << " [style=dashed,label=\"ref\"]";
    OS << ";\n";
  }

  OS << "\n";
}

PreservedAnalyses LazyCallGraphDOTPrinterPass::run(Module &M,
                                                   ModuleAnalysisManager &AM) {
  LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M);

  OS << "digraph \"" << DOT::EscapeString(M.getModuleIdentifier()) << "\" {\n";

  for (Function &F : M)
    printNodeDOT(OS, G.get(F));

  OS << "}\n";

  return PreservedAnalyses::all();
}