summaryrefslogtreecommitdiff
path: root/include/llvm/Transforms/Utils/Cloning.h
blob: e4d6053b70b610a787b2ec7ea41ef918007f5ebe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
//===- Cloning.h - Clone various parts of LLVM programs ---------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines various functions that are used to clone chunks of LLVM
// code for various purposes.  This varies from copying whole modules into new
// modules, to cloning functions with different arguments, to inlining
// functions, to copying basic blocks to support loop unrolling or superblock
// formation, etc.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_TRANSFORMS_UTILS_CLONING_H
#define LLVM_TRANSFORMS_UTILS_CLONING_H

#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/InlineCost.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/Transforms/Utils/ValueMapper.h"
#include <functional>
#include <memory>
#include <vector>

namespace llvm {

class AllocaInst;
class BasicBlock;
class BlockFrequencyInfo;
class CallInst;
class CallGraph;
class DebugInfoFinder;
class DominatorTree;
class Function;
class Instruction;
class InvokeInst;
class Loop;
class LoopInfo;
class Module;
class ProfileSummaryInfo;
class ReturnInst;

/// Return an exact copy of the specified module
///
std::unique_ptr<Module> CloneModule(const Module &M);
std::unique_ptr<Module> CloneModule(const Module &M, ValueToValueMapTy &VMap);

/// Return a copy of the specified module. The ShouldCloneDefinition function
/// controls whether a specific GlobalValue's definition is cloned. If the
/// function returns false, the module copy will contain an external reference
/// in place of the global definition.
std::unique_ptr<Module>
CloneModule(const Module &M, ValueToValueMapTy &VMap,
            function_ref<bool(const GlobalValue *)> ShouldCloneDefinition);

/// ClonedCodeInfo - This struct can be used to capture information about code
/// being cloned, while it is being cloned.
struct ClonedCodeInfo {
  /// ContainsCalls - This is set to true if the cloned code contains a normal
  /// call instruction.
  bool ContainsCalls = false;

  /// ContainsDynamicAllocas - This is set to true if the cloned code contains
  /// a 'dynamic' alloca.  Dynamic allocas are allocas that are either not in
  /// the entry block or they are in the entry block but are not a constant
  /// size.
  bool ContainsDynamicAllocas = false;

  /// All cloned call sites that have operand bundles attached are appended to
  /// this vector.  This vector may contain nulls or undefs if some of the
  /// originally inserted callsites were DCE'ed after they were cloned.
  std::vector<WeakTrackingVH> OperandBundleCallSites;

  ClonedCodeInfo() = default;
};

/// CloneBasicBlock - Return a copy of the specified basic block, but without
/// embedding the block into a particular function.  The block returned is an
/// exact copy of the specified basic block, without any remapping having been
/// performed.  Because of this, this is only suitable for applications where
/// the basic block will be inserted into the same function that it was cloned
/// from (loop unrolling would use this, for example).
///
/// Also, note that this function makes a direct copy of the basic block, and
/// can thus produce illegal LLVM code.  In particular, it will copy any PHI
/// nodes from the original block, even though there are no predecessors for the
/// newly cloned block (thus, phi nodes will have to be updated).  Also, this
/// block will branch to the old successors of the original block: these
/// successors will have to have any PHI nodes updated to account for the new
/// incoming edges.
///
/// The correlation between instructions in the source and result basic blocks
/// is recorded in the VMap map.
///
/// If you have a particular suffix you'd like to use to add to any cloned
/// names, specify it as the optional third parameter.
///
/// If you would like the basic block to be auto-inserted into the end of a
/// function, you can specify it as the optional fourth parameter.
///
/// If you would like to collect additional information about the cloned
/// function, you can specify a ClonedCodeInfo object with the optional fifth
/// parameter.
///
BasicBlock *CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap,
                            const Twine &NameSuffix = "", Function *F = nullptr,
                            ClonedCodeInfo *CodeInfo = nullptr,
                            DebugInfoFinder *DIFinder = nullptr);

/// CloneFunction - Return a copy of the specified function and add it to that
/// function's module.  Also, any references specified in the VMap are changed
/// to refer to their mapped value instead of the original one.  If any of the
/// arguments to the function are in the VMap, the arguments are deleted from
/// the resultant function.  The VMap is updated to include mappings from all of
/// the instructions and basicblocks in the function from their old to new
/// values.  The final argument captures information about the cloned code if
/// non-null.
///
/// VMap contains no non-identity GlobalValue mappings and debug info metadata
/// will not be cloned.
///
Function *CloneFunction(Function *F, ValueToValueMapTy &VMap,
                        ClonedCodeInfo *CodeInfo = nullptr);

/// Clone OldFunc into NewFunc, transforming the old arguments into references
/// to VMap values.  Note that if NewFunc already has basic blocks, the ones
/// cloned into it will be added to the end of the function.  This function
/// fills in a list of return instructions, and can optionally remap types
/// and/or append the specified suffix to all values cloned.
///
/// If ModuleLevelChanges is false, VMap contains no non-identity GlobalValue
/// mappings.
///
void CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
                       ValueToValueMapTy &VMap, bool ModuleLevelChanges,
                       SmallVectorImpl<ReturnInst*> &Returns,
                       const char *NameSuffix = "",
                       ClonedCodeInfo *CodeInfo = nullptr,
                       ValueMapTypeRemapper *TypeMapper = nullptr,
                       ValueMaterializer *Materializer = nullptr);

void CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc,
                               const Instruction *StartingInst,
                               ValueToValueMapTy &VMap, bool ModuleLevelChanges,
                               SmallVectorImpl<ReturnInst *> &Returns,
                               const char *NameSuffix = "",
                               ClonedCodeInfo *CodeInfo = nullptr);

/// CloneAndPruneFunctionInto - This works exactly like CloneFunctionInto,
/// except that it does some simple constant prop and DCE on the fly.  The
/// effect of this is to copy significantly less code in cases where (for
/// example) a function call with constant arguments is inlined, and those
/// constant arguments cause a significant amount of code in the callee to be
/// dead.  Since this doesn't produce an exactly copy of the input, it can't be
/// used for things like CloneFunction or CloneModule.
///
/// If ModuleLevelChanges is false, VMap contains no non-identity GlobalValue
/// mappings.
///
void CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
                               ValueToValueMapTy &VMap, bool ModuleLevelChanges,
                               SmallVectorImpl<ReturnInst*> &Returns,
                               const char *NameSuffix = "",
                               ClonedCodeInfo *CodeInfo = nullptr,
                               Instruction *TheCall = nullptr);

/// InlineFunctionInfo - This class captures the data input to the
/// InlineFunction call, and records the auxiliary results produced by it.
class InlineFunctionInfo {
public:
  explicit InlineFunctionInfo(CallGraph *cg = nullptr,
                              std::function<AssumptionCache &(Function &)>
                                  *GetAssumptionCache = nullptr,
                              ProfileSummaryInfo *PSI = nullptr,
                              BlockFrequencyInfo *CallerBFI = nullptr,
                              BlockFrequencyInfo *CalleeBFI = nullptr)
      : CG(cg), GetAssumptionCache(GetAssumptionCache), PSI(PSI),
        CallerBFI(CallerBFI), CalleeBFI(CalleeBFI) {}

  /// CG - If non-null, InlineFunction will update the callgraph to reflect the
  /// changes it makes.
  CallGraph *CG;
  std::function<AssumptionCache &(Function &)> *GetAssumptionCache;
  ProfileSummaryInfo *PSI;
  BlockFrequencyInfo *CallerBFI, *CalleeBFI;

  /// StaticAllocas - InlineFunction fills this in with all static allocas that
  /// get copied into the caller.
  SmallVector<AllocaInst *, 4> StaticAllocas;

  /// InlinedCalls - InlineFunction fills this in with callsites that were
  /// inlined from the callee.  This is only filled in if CG is non-null.
  SmallVector<WeakTrackingVH, 8> InlinedCalls;

  /// All of the new call sites inlined into the caller.
  ///
  /// 'InlineFunction' fills this in by scanning the inlined instructions, and
  /// only if CG is null. If CG is non-null, instead the value handle
  /// `InlinedCalls` above is used.
  SmallVector<CallSite, 8> InlinedCallSites;

  void reset() {
    StaticAllocas.clear();
    InlinedCalls.clear();
    InlinedCallSites.clear();
  }
};

/// InlineFunction - This function inlines the called function into the basic
/// block of the caller.  This returns false if it is not possible to inline
/// this call.  The program is still in a well defined state if this occurs
/// though.
///
/// Note that this only does one level of inlining.  For example, if the
/// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
/// exists in the instruction stream.  Similarly this will inline a recursive
/// function by one level.
///
/// Note that while this routine is allowed to cleanup and optimize the
/// *inlined* code to minimize the actual inserted code, it must not delete
/// code in the caller as users of this routine may have pointers to
/// instructions in the caller that need to remain stable.
///
/// If ForwardVarArgsTo is passed, inlining a function with varargs is allowed
/// and all varargs at the callsite will be passed to any calls to
/// ForwardVarArgsTo. The caller of InlineFunction has to make sure any varargs
/// are only used by ForwardVarArgsTo.
InlineResult InlineFunction(CallInst *C, InlineFunctionInfo &IFI,
                            AAResults *CalleeAAR = nullptr,
                            bool InsertLifetime = true);
InlineResult InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI,
                            AAResults *CalleeAAR = nullptr,
                            bool InsertLifetime = true);
InlineResult InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
                            AAResults *CalleeAAR = nullptr,
                            bool InsertLifetime = true,
                            Function *ForwardVarArgsTo = nullptr);

/// Clones a loop \p OrigLoop.  Returns the loop and the blocks in \p
/// Blocks.
///
/// Updates LoopInfo and DominatorTree assuming the loop is dominated by block
/// \p LoopDomBB.  Insert the new blocks before block specified in \p Before.
/// Note: Only innermost loops are supported.
Loop *cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB,
                             Loop *OrigLoop, ValueToValueMapTy &VMap,
                             const Twine &NameSuffix, LoopInfo *LI,
                             DominatorTree *DT,
                             SmallVectorImpl<BasicBlock *> &Blocks);

/// Remaps instructions in \p Blocks using the mapping in \p VMap.
void remapInstructionsInBlocks(const SmallVectorImpl<BasicBlock *> &Blocks,
                               ValueToValueMapTy &VMap);

/// Split edge between BB and PredBB and duplicate all non-Phi instructions
/// from BB between its beginning and the StopAt instruction into the split
/// block. Phi nodes are not duplicated, but their uses are handled correctly:
/// we replace them with the uses of corresponding Phi inputs. ValueMapping
/// is used to map the original instructions from BB to their newly-created
/// copies. Returns the split block.
BasicBlock *
DuplicateInstructionsInSplitBetween(BasicBlock *BB, BasicBlock *PredBB,
                                    Instruction *StopAt,
                                    ValueToValueMapTy &ValueMapping,
                                    DominatorTree *DT = nullptr);
} // end namespace llvm

#endif // LLVM_TRANSFORMS_UTILS_CLONING_H