//===---- llvm/unittest/IR/PatternMatch.cpp - PatternMatch unit tests ----===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "llvm/IR/PatternMatch.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/MDBuilder.h" #include "llvm/IR/Module.h" #include "llvm/IR/NoFolder.h" #include "llvm/IR/Operator.h" #include "llvm/IR/Type.h" #include "gtest/gtest.h" using namespace llvm; using namespace llvm::PatternMatch; namespace { struct PatternMatchTest : ::testing::Test { LLVMContext Ctx; std::unique_ptr M; Function *F; BasicBlock *BB; IRBuilder IRB; PatternMatchTest() : M(new Module("PatternMatchTestModule", Ctx)), F(Function::Create( FunctionType::get(Type::getVoidTy(Ctx), /* IsVarArg */ false), Function::ExternalLinkage, "f", M.get())), BB(BasicBlock::Create(Ctx, "entry", F)), IRB(BB) {} }; TEST_F(PatternMatchTest, OneUse) { // Build up a little tree of values: // // One = (1 + 2) + 42 // Two = One + 42 // Leaf = (Two + 8) + (Two + 13) Value *One = IRB.CreateAdd(IRB.CreateAdd(IRB.getInt32(1), IRB.getInt32(2)), IRB.getInt32(42)); Value *Two = IRB.CreateAdd(One, IRB.getInt32(42)); Value *Leaf = IRB.CreateAdd(IRB.CreateAdd(Two, IRB.getInt32(8)), IRB.CreateAdd(Two, IRB.getInt32(13))); Value *V; EXPECT_TRUE(m_OneUse(m_Value(V)).match(One)); EXPECT_EQ(One, V); EXPECT_FALSE(m_OneUse(m_Value()).match(Two)); EXPECT_FALSE(m_OneUse(m_Value()).match(Leaf)); } TEST_F(PatternMatchTest, CommutativeDeferredValue) { Value *X = IRB.getInt32(1); Value *Y = IRB.getInt32(2); { Value *tX = X; EXPECT_TRUE(match(X, m_Deferred(tX))); EXPECT_FALSE(match(Y, m_Deferred(tX))); } { const Value *tX = X; EXPECT_TRUE(match(X, m_Deferred(tX))); EXPECT_FALSE(match(Y, m_Deferred(tX))); } { Value *const tX = X; EXPECT_TRUE(match(X, m_Deferred(tX))); EXPECT_FALSE(match(Y, m_Deferred(tX))); } { const Value *const tX = X; EXPECT_TRUE(match(X, m_Deferred(tX))); EXPECT_FALSE(match(Y, m_Deferred(tX))); } { Value *tX = nullptr; EXPECT_TRUE(match(IRB.CreateAnd(X, X), m_And(m_Value(tX), m_Deferred(tX)))); EXPECT_EQ(tX, X); } { Value *tX = nullptr; EXPECT_FALSE( match(IRB.CreateAnd(X, Y), m_c_And(m_Value(tX), m_Deferred(tX)))); } auto checkMatch = [X, Y](Value *Pattern) { Value *tX = nullptr, *tY = nullptr; EXPECT_TRUE(match( Pattern, m_c_And(m_Value(tX), m_c_And(m_Deferred(tX), m_Value(tY))))); EXPECT_EQ(tX, X); EXPECT_EQ(tY, Y); }; checkMatch(IRB.CreateAnd(X, IRB.CreateAnd(X, Y))); checkMatch(IRB.CreateAnd(X, IRB.CreateAnd(Y, X))); checkMatch(IRB.CreateAnd(IRB.CreateAnd(X, Y), X)); checkMatch(IRB.CreateAnd(IRB.CreateAnd(Y, X), X)); } TEST_F(PatternMatchTest, FloatingPointOrderedMin) { Type *FltTy = IRB.getFloatTy(); Value *L = ConstantFP::get(FltTy, 1.0); Value *R = ConstantFP::get(FltTy, 2.0); Value *MatchL, *MatchR; // Test OLT. EXPECT_TRUE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR)) .match(IRB.CreateSelect(IRB.CreateFCmpOLT(L, R), L, R))); EXPECT_EQ(L, MatchL); EXPECT_EQ(R, MatchR); // Test OLE. EXPECT_TRUE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR)) .match(IRB.CreateSelect(IRB.CreateFCmpOLE(L, R), L, R))); EXPECT_EQ(L, MatchL); EXPECT_EQ(R, MatchR); // Test no match on OGE. EXPECT_FALSE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR)) .match(IRB.CreateSelect(IRB.CreateFCmpOGE(L, R), L, R))); // Test no match on OGT. EXPECT_FALSE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR)) .match(IRB.CreateSelect(IRB.CreateFCmpOGT(L, R), L, R))); // Test inverted selects. Note, that this "inverts" the ordering, e.g.: // %cmp = fcmp oge L, R // %min = select %cmp R, L // Given L == NaN // the above is expanded to %cmp == false ==> %min = L // which is true for UnordFMin, not OrdFMin, so test that: // [OU]GE with inverted select. EXPECT_FALSE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR)) .match(IRB.CreateSelect(IRB.CreateFCmpOGE(L, R), R, L))); EXPECT_TRUE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR)) .match(IRB.CreateSelect(IRB.CreateFCmpUGE(L, R), R, L))); EXPECT_EQ(L, MatchL); EXPECT_EQ(R, MatchR); // [OU]GT with inverted select. EXPECT_FALSE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR)) .match(IRB.CreateSelect(IRB.CreateFCmpOGT(L, R), R, L))); EXPECT_TRUE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR)) .match(IRB.CreateSelect(IRB.CreateFCmpUGT(L, R), R, L))); EXPECT_EQ(L, MatchL); EXPECT_EQ(R, MatchR); } TEST_F(PatternMatchTest, FloatingPointOrderedMax) { Type *FltTy = IRB.getFloatTy(); Value *L = ConstantFP::get(FltTy, 1.0); Value *R = ConstantFP::get(FltTy, 2.0); Value *MatchL, *MatchR; // Test OGT. EXPECT_TRUE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR)) .match(IRB.CreateSelect(IRB.CreateFCmpOGT(L, R), L, R))); EXPECT_EQ(L, MatchL); EXPECT_EQ(R, MatchR); // Test OGE. EXPECT_TRUE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR)) .match(IRB.CreateSelect(IRB.CreateFCmpOGE(L, R), L, R))); EXPECT_EQ(L, MatchL); EXPECT_EQ(R, MatchR); // Test no match on OLE. EXPECT_FALSE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR)) .match(IRB.CreateSelect(IRB.CreateFCmpOLE(L, R), L, R))); // Test no match on OLT. EXPECT_FALSE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR)) .match(IRB.CreateSelect(IRB.CreateFCmpOLT(L, R), L, R))); // Test inverted selects. Note, that this "inverts" the ordering, e.g.: // %cmp = fcmp ole L, R // %max = select %cmp, R, L // Given L == NaN, // the above is expanded to %cmp == false ==> %max == L // which is true for UnordFMax, not OrdFMax, so test that: // [OU]LE with inverted select. EXPECT_FALSE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR)) .match(IRB.CreateSelect(IRB.CreateFCmpOLE(L, R), R, L))); EXPECT_TRUE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR)) .match(IRB.CreateSelect(IRB.CreateFCmpULE(L, R), R, L))); EXPECT_EQ(L, MatchL); EXPECT_EQ(R, MatchR); // [OUT]LT with inverted select. EXPECT_FALSE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR)) .match(IRB.CreateSelect(IRB.CreateFCmpOLT(L, R), R, L))); EXPECT_TRUE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR)) .match(IRB.CreateSelect(IRB.CreateFCmpULT(L, R), R, L))); EXPECT_EQ(L, MatchL); EXPECT_EQ(R, MatchR); } TEST_F(PatternMatchTest, FloatingPointUnorderedMin) { Type *FltTy = IRB.getFloatTy(); Value *L = ConstantFP::get(FltTy, 1.0); Value *R = ConstantFP::get(FltTy, 2.0); Value *MatchL, *MatchR; // Test ULT. EXPECT_TRUE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR)) .match(IRB.CreateSelect(IRB.CreateFCmpULT(L, R), L, R))); EXPECT_EQ(L, MatchL); EXPECT_EQ(R, MatchR); // Test ULE. EXPECT_TRUE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR)) .match(IRB.CreateSelect(IRB.CreateFCmpULE(L, R), L, R))); EXPECT_EQ(L, MatchL); EXPECT_EQ(R, MatchR); // Test no match on UGE. EXPECT_FALSE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR)) .match(IRB.CreateSelect(IRB.CreateFCmpUGE(L, R), L, R))); // Test no match on UGT. EXPECT_FALSE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR)) .match(IRB.CreateSelect(IRB.CreateFCmpUGT(L, R), L, R))); // Test inverted selects. Note, that this "inverts" the ordering, e.g.: // %cmp = fcmp uge L, R // %min = select %cmp R, L // Given L == NaN // the above is expanded to %cmp == true ==> %min = R // which is true for OrdFMin, not UnordFMin, so test that: // [UO]GE with inverted select. EXPECT_FALSE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR)) .match(IRB.CreateSelect(IRB.CreateFCmpUGE(L, R), R, L))); EXPECT_TRUE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR)) .match(IRB.CreateSelect(IRB.CreateFCmpOGE(L, R), R, L))); EXPECT_EQ(L, MatchL); EXPECT_EQ(R, MatchR); // [UO]GT with inverted select. EXPECT_FALSE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR)) .match(IRB.CreateSelect(IRB.CreateFCmpUGT(L, R), R, L))); EXPECT_TRUE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR)) .match(IRB.CreateSelect(IRB.CreateFCmpOGT(L, R), R, L))); EXPECT_EQ(L, MatchL); EXPECT_EQ(R, MatchR); } TEST_F(PatternMatchTest, FloatingPointUnorderedMax) { Type *FltTy = IRB.getFloatTy(); Value *L = ConstantFP::get(FltTy, 1.0); Value *R = ConstantFP::get(FltTy, 2.0); Value *MatchL, *MatchR; // Test UGT. EXPECT_TRUE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR)) .match(IRB.CreateSelect(IRB.CreateFCmpUGT(L, R), L, R))); EXPECT_EQ(L, MatchL); EXPECT_EQ(R, MatchR); // Test UGE. EXPECT_TRUE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR)) .match(IRB.CreateSelect(IRB.CreateFCmpUGE(L, R), L, R))); EXPECT_EQ(L, MatchL); EXPECT_EQ(R, MatchR); // Test no match on ULE. EXPECT_FALSE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR)) .match(IRB.CreateSelect(IRB.CreateFCmpULE(L, R), L, R))); // Test no match on ULT. EXPECT_FALSE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR)) .match(IRB.CreateSelect(IRB.CreateFCmpULT(L, R), L, R))); // Test inverted selects. Note, that this "inverts" the ordering, e.g.: // %cmp = fcmp ule L, R // %max = select %cmp R, L // Given L == NaN // the above is expanded to %cmp == true ==> %max = R // which is true for OrdFMax, not UnordFMax, so test that: // [UO]LE with inverted select. EXPECT_FALSE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR)) .match(IRB.CreateSelect(IRB.CreateFCmpULE(L, R), R, L))); EXPECT_TRUE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR)) .match(IRB.CreateSelect(IRB.CreateFCmpOLE(L, R), R, L))); EXPECT_EQ(L, MatchL); EXPECT_EQ(R, MatchR); // [UO]LT with inverted select. EXPECT_FALSE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR)) .match(IRB.CreateSelect(IRB.CreateFCmpULT(L, R), R, L))); EXPECT_TRUE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR)) .match(IRB.CreateSelect(IRB.CreateFCmpOLT(L, R), R, L))); EXPECT_EQ(L, MatchL); EXPECT_EQ(R, MatchR); } TEST_F(PatternMatchTest, OverflowingBinOps) { Value *L = IRB.getInt32(1); Value *R = IRB.getInt32(2); Value *MatchL, *MatchR; EXPECT_TRUE( m_NSWAdd(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNSWAdd(L, R))); EXPECT_EQ(L, MatchL); EXPECT_EQ(R, MatchR); MatchL = MatchR = nullptr; EXPECT_TRUE( m_NSWSub(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNSWSub(L, R))); EXPECT_EQ(L, MatchL); EXPECT_EQ(R, MatchR); MatchL = MatchR = nullptr; EXPECT_TRUE( m_NSWMul(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNSWMul(L, R))); EXPECT_EQ(L, MatchL); EXPECT_EQ(R, MatchR); MatchL = MatchR = nullptr; EXPECT_TRUE(m_NSWShl(m_Value(MatchL), m_Value(MatchR)).match( IRB.CreateShl(L, R, "", /* NUW */ false, /* NSW */ true))); EXPECT_EQ(L, MatchL); EXPECT_EQ(R, MatchR); EXPECT_TRUE( m_NUWAdd(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNUWAdd(L, R))); EXPECT_EQ(L, MatchL); EXPECT_EQ(R, MatchR); MatchL = MatchR = nullptr; EXPECT_TRUE( m_NUWSub(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNUWSub(L, R))); EXPECT_EQ(L, MatchL); EXPECT_EQ(R, MatchR); MatchL = MatchR = nullptr; EXPECT_TRUE( m_NUWMul(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNUWMul(L, R))); EXPECT_EQ(L, MatchL); EXPECT_EQ(R, MatchR); MatchL = MatchR = nullptr; EXPECT_TRUE(m_NUWShl(m_Value(MatchL), m_Value(MatchR)).match( IRB.CreateShl(L, R, "", /* NUW */ true, /* NSW */ false))); EXPECT_EQ(L, MatchL); EXPECT_EQ(R, MatchR); EXPECT_FALSE(m_NSWAdd(m_Value(), m_Value()).match(IRB.CreateAdd(L, R))); EXPECT_FALSE(m_NSWAdd(m_Value(), m_Value()).match(IRB.CreateNUWAdd(L, R))); EXPECT_FALSE(m_NSWAdd(m_Value(), m_Value()).match(IRB.CreateNSWSub(L, R))); EXPECT_FALSE(m_NSWSub(m_Value(), m_Value()).match(IRB.CreateSub(L, R))); EXPECT_FALSE(m_NSWSub(m_Value(), m_Value()).match(IRB.CreateNUWSub(L, R))); EXPECT_FALSE(m_NSWSub(m_Value(), m_Value()).match(IRB.CreateNSWAdd(L, R))); EXPECT_FALSE(m_NSWMul(m_Value(), m_Value()).match(IRB.CreateMul(L, R))); EXPECT_FALSE(m_NSWMul(m_Value(), m_Value()).match(IRB.CreateNUWMul(L, R))); EXPECT_FALSE(m_NSWMul(m_Value(), m_Value()).match(IRB.CreateNSWAdd(L, R))); EXPECT_FALSE(m_NSWShl(m_Value(), m_Value()).match(IRB.CreateShl(L, R))); EXPECT_FALSE(m_NSWShl(m_Value(), m_Value()).match( IRB.CreateShl(L, R, "", /* NUW */ true, /* NSW */ false))); EXPECT_FALSE(m_NSWShl(m_Value(), m_Value()).match(IRB.CreateNSWAdd(L, R))); EXPECT_FALSE(m_NUWAdd(m_Value(), m_Value()).match(IRB.CreateAdd(L, R))); EXPECT_FALSE(m_NUWAdd(m_Value(), m_Value()).match(IRB.CreateNSWAdd(L, R))); EXPECT_FALSE(m_NUWAdd(m_Value(), m_Value()).match(IRB.CreateNUWSub(L, R))); EXPECT_FALSE(m_NUWSub(m_Value(), m_Value()).match(IRB.CreateSub(L, R))); EXPECT_FALSE(m_NUWSub(m_Value(), m_Value()).match(IRB.CreateNSWSub(L, R))); EXPECT_FALSE(m_NUWSub(m_Value(), m_Value()).match(IRB.CreateNUWAdd(L, R))); EXPECT_FALSE(m_NUWMul(m_Value(), m_Value()).match(IRB.CreateMul(L, R))); EXPECT_FALSE(m_NUWMul(m_Value(), m_Value()).match(IRB.CreateNSWMul(L, R))); EXPECT_FALSE(m_NUWMul(m_Value(), m_Value()).match(IRB.CreateNUWAdd(L, R))); EXPECT_FALSE(m_NUWShl(m_Value(), m_Value()).match(IRB.CreateShl(L, R))); EXPECT_FALSE(m_NUWShl(m_Value(), m_Value()).match( IRB.CreateShl(L, R, "", /* NUW */ false, /* NSW */ true))); EXPECT_FALSE(m_NUWShl(m_Value(), m_Value()).match(IRB.CreateNUWAdd(L, R))); } TEST_F(PatternMatchTest, LoadStoreOps) { // Create this load/store sequence: // // %p = alloca i32* // %0 = load i32*, i32** %p // store i32 42, i32* %0 Value *Alloca = IRB.CreateAlloca(IRB.getInt32Ty()); Value *LoadInst = IRB.CreateLoad(Alloca); Value *FourtyTwo = IRB.getInt32(42); Value *StoreInst = IRB.CreateStore(FourtyTwo, Alloca); Value *MatchLoad, *MatchStoreVal, *MatchStorePointer; EXPECT_TRUE(m_Load(m_Value(MatchLoad)).match(LoadInst)); EXPECT_EQ(Alloca, MatchLoad); EXPECT_TRUE(m_Load(m_Specific(Alloca)).match(LoadInst)); EXPECT_FALSE(m_Load(m_Value(MatchLoad)).match(Alloca)); EXPECT_TRUE(m_Store(m_Value(MatchStoreVal), m_Value(MatchStorePointer)) .match(StoreInst)); EXPECT_EQ(FourtyTwo, MatchStoreVal); EXPECT_EQ(Alloca, MatchStorePointer); EXPECT_FALSE(m_Store(m_Value(MatchStoreVal), m_Value(MatchStorePointer)) .match(Alloca)); EXPECT_TRUE(m_Store(m_SpecificInt(42), m_Specific(Alloca)) .match(StoreInst)); EXPECT_FALSE(m_Store(m_SpecificInt(42), m_Specific(FourtyTwo)) .match(StoreInst)); EXPECT_FALSE(m_Store(m_SpecificInt(43), m_Specific(Alloca)) .match(StoreInst)); } TEST_F(PatternMatchTest, VectorOps) { // Build up small tree of vector operations // // Val = 0 + 1 // Val2 = Val + 3 // VI1 = insertelement <2 x i8> undef, i8 1, i32 0 = <1, undef> // VI2 = insertelement <2 x i8> %VI1, i8 %Val2, i8 %Val = <1, 4> // VI3 = insertelement <2 x i8> %VI1, i8 %Val2, i32 1 = <1, 4> // VI4 = insertelement <2 x i8> %VI1, i8 2, i8 %Val = <1, 2> // // SI1 = shufflevector <2 x i8> %VI1, <2 x i8> undef, zeroinitializer // SI2 = shufflevector <2 x i8> %VI3, <2 x i8> %VI4, <2 x i8> // SI3 = shufflevector <2 x i8> %VI3, <2 x i8> undef, zeroinitializer // SI4 = shufflevector <2 x i8> %VI4, <2 x i8> undef, zeroinitializer // // SP1 = VectorSplat(2, i8 2) // SP2 = VectorSplat(2, i8 %Val) Type *VecTy = VectorType::get(IRB.getInt8Ty(), 2); Type *i32 = IRB.getInt32Ty(); Type *i32VecTy = VectorType::get(i32, 2); Value *Val = IRB.CreateAdd(IRB.getInt8(0), IRB.getInt8(1)); Value *Val2 = IRB.CreateAdd(Val, IRB.getInt8(3)); SmallVector VecElemIdxs; VecElemIdxs.push_back(ConstantInt::get(i32, 0)); VecElemIdxs.push_back(ConstantInt::get(i32, 2)); auto *IdxVec = ConstantVector::get(VecElemIdxs); Value *UndefVec = UndefValue::get(VecTy); Value *VI1 = IRB.CreateInsertElement(UndefVec, IRB.getInt8(1), (uint64_t)0); Value *VI2 = IRB.CreateInsertElement(VI1, Val2, Val); Value *VI3 = IRB.CreateInsertElement(VI1, Val2, (uint64_t)1); Value *VI4 = IRB.CreateInsertElement(VI1, IRB.getInt8(2), Val); Value *EX1 = IRB.CreateExtractElement(VI4, Val); Value *EX2 = IRB.CreateExtractElement(VI4, (uint64_t)0); Value *EX3 = IRB.CreateExtractElement(IdxVec, (uint64_t)1); Value *Zero = ConstantAggregateZero::get(i32VecTy); Value *SI1 = IRB.CreateShuffleVector(VI1, UndefVec, Zero); Value *SI2 = IRB.CreateShuffleVector(VI3, VI4, IdxVec); Value *SI3 = IRB.CreateShuffleVector(VI3, UndefVec, Zero); Value *SI4 = IRB.CreateShuffleVector(VI4, UndefVec, Zero); Value *SP1 = IRB.CreateVectorSplat(2, IRB.getInt8(2)); Value *SP2 = IRB.CreateVectorSplat(2, Val); Value *A = nullptr, *B = nullptr, *C = nullptr; // Test matching insertelement EXPECT_TRUE(match(VI1, m_InsertElement(m_Value(), m_Value(), m_Value()))); EXPECT_TRUE( match(VI1, m_InsertElement(m_Undef(), m_ConstantInt(), m_ConstantInt()))); EXPECT_TRUE( match(VI1, m_InsertElement(m_Undef(), m_ConstantInt(), m_Zero()))); EXPECT_TRUE( match(VI1, m_InsertElement(m_Undef(), m_SpecificInt(1), m_Zero()))); EXPECT_TRUE(match(VI2, m_InsertElement(m_Value(), m_Value(), m_Value()))); EXPECT_FALSE( match(VI2, m_InsertElement(m_Value(), m_Value(), m_ConstantInt()))); EXPECT_FALSE( match(VI2, m_InsertElement(m_Value(), m_ConstantInt(), m_Value()))); EXPECT_FALSE(match(VI2, m_InsertElement(m_Constant(), m_Value(), m_Value()))); EXPECT_TRUE(match(VI3, m_InsertElement(m_Value(A), m_Value(B), m_Value(C)))); EXPECT_TRUE(A == VI1); EXPECT_TRUE(B == Val2); EXPECT_TRUE(isa(C)); A = B = C = nullptr; // reset // Test matching extractelement EXPECT_TRUE(match(EX1, m_ExtractElement(m_Value(A), m_Value(B)))); EXPECT_TRUE(A == VI4); EXPECT_TRUE(B == Val); A = B = C = nullptr; // reset EXPECT_FALSE(match(EX1, m_ExtractElement(m_Value(), m_ConstantInt()))); EXPECT_TRUE(match(EX2, m_ExtractElement(m_Value(), m_ConstantInt()))); EXPECT_TRUE(match(EX3, m_ExtractElement(m_Constant(), m_ConstantInt()))); // Test matching shufflevector EXPECT_TRUE(match(SI1, m_ShuffleVector(m_Value(), m_Undef(), m_Zero()))); EXPECT_TRUE(match(SI2, m_ShuffleVector(m_Value(A), m_Value(B), m_Value(C)))); EXPECT_TRUE(A == VI3); EXPECT_TRUE(B == VI4); EXPECT_TRUE(C == IdxVec); A = B = C = nullptr; // reset // Test matching the vector splat pattern EXPECT_TRUE(match( SI1, m_ShuffleVector(m_InsertElement(m_Undef(), m_SpecificInt(1), m_Zero()), m_Undef(), m_Zero()))); EXPECT_FALSE(match( SI3, m_ShuffleVector(m_InsertElement(m_Undef(), m_Value(), m_Zero()), m_Undef(), m_Zero()))); EXPECT_FALSE(match( SI4, m_ShuffleVector(m_InsertElement(m_Undef(), m_Value(), m_Zero()), m_Undef(), m_Zero()))); EXPECT_TRUE(match( SP1, m_ShuffleVector(m_InsertElement(m_Undef(), m_SpecificInt(2), m_Zero()), m_Undef(), m_Zero()))); EXPECT_TRUE(match( SP2, m_ShuffleVector(m_InsertElement(m_Undef(), m_Value(A), m_Zero()), m_Undef(), m_Zero()))); EXPECT_TRUE(A == Val); } template struct MutableConstTest : PatternMatchTest { }; typedef ::testing::Types, std::tuple> MutableConstTestTypes; TYPED_TEST_CASE(MutableConstTest, MutableConstTestTypes); TYPED_TEST(MutableConstTest, ICmp) { auto &IRB = PatternMatchTest::IRB; typedef typename std::tuple_element<0, TypeParam>::type ValueType; typedef typename std::tuple_element<1, TypeParam>::type InstructionType; Value *L = IRB.getInt32(1); Value *R = IRB.getInt32(2); ICmpInst::Predicate Pred = ICmpInst::ICMP_UGT; ValueType MatchL; ValueType MatchR; ICmpInst::Predicate MatchPred; EXPECT_TRUE(m_ICmp(MatchPred, m_Value(MatchL), m_Value(MatchR)) .match((InstructionType)IRB.CreateICmp(Pred, L, R))); EXPECT_EQ(L, MatchL); EXPECT_EQ(R, MatchR); } } // anonymous namespace.