//===- xray-converter.cc - XRay Trace Conversion --------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Implements the trace conversion functions. // //===----------------------------------------------------------------------===// #include "xray-converter.h" #include "trie-node.h" #include "xray-registry.h" #include "llvm/DebugInfo/Symbolize/Symbolize.h" #include "llvm/Support/EndianStream.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/FormatVariadic.h" #include "llvm/Support/ScopedPrinter.h" #include "llvm/Support/YAMLTraits.h" #include "llvm/Support/raw_ostream.h" #include "llvm/XRay/InstrumentationMap.h" #include "llvm/XRay/Trace.h" #include "llvm/XRay/YAMLXRayRecord.h" using namespace llvm; using namespace xray; // llvm-xray convert // ---------------------------------------------------------------------------- static cl::SubCommand Convert("convert", "Trace Format Conversion"); static cl::opt ConvertInput(cl::Positional, cl::desc(""), cl::Required, cl::sub(Convert)); enum class ConvertFormats { BINARY, YAML, CHROME_TRACE_EVENT }; static cl::opt ConvertOutputFormat( "output-format", cl::desc("output format"), cl::values(clEnumValN(ConvertFormats::BINARY, "raw", "output in binary"), clEnumValN(ConvertFormats::YAML, "yaml", "output in yaml"), clEnumValN(ConvertFormats::CHROME_TRACE_EVENT, "trace_event", "Output in chrome's trace event format. " "May be visualized with the Catapult trace viewer.")), cl::sub(Convert)); static cl::alias ConvertOutputFormat2("f", cl::aliasopt(ConvertOutputFormat), cl::desc("Alias for -output-format"), cl::sub(Convert)); static cl::opt ConvertOutput("output", cl::value_desc("output file"), cl::init("-"), cl::desc("output file; use '-' for stdout"), cl::sub(Convert)); static cl::alias ConvertOutput2("o", cl::aliasopt(ConvertOutput), cl::desc("Alias for -output"), cl::sub(Convert)); static cl::opt ConvertSymbolize("symbolize", cl::desc("symbolize function ids from the input log"), cl::init(false), cl::sub(Convert)); static cl::alias ConvertSymbolize2("y", cl::aliasopt(ConvertSymbolize), cl::desc("Alias for -symbolize"), cl::sub(Convert)); static cl::opt ConvertInstrMap("instr_map", cl::desc("binary with the instrumentation map, or " "a separate instrumentation map"), cl::value_desc("binary with xray_instr_map"), cl::sub(Convert), cl::init("")); static cl::alias ConvertInstrMap2("m", cl::aliasopt(ConvertInstrMap), cl::desc("Alias for -instr_map"), cl::sub(Convert)); static cl::opt ConvertSortInput( "sort", cl::desc("determines whether to sort input log records by timestamp"), cl::sub(Convert), cl::init(true)); static cl::alias ConvertSortInput2("s", cl::aliasopt(ConvertSortInput), cl::desc("Alias for -sort"), cl::sub(Convert)); using llvm::yaml::Output; void TraceConverter::exportAsYAML(const Trace &Records, raw_ostream &OS) { YAMLXRayTrace Trace; const auto &FH = Records.getFileHeader(); Trace.Header = {FH.Version, FH.Type, FH.ConstantTSC, FH.NonstopTSC, FH.CycleFrequency}; Trace.Records.reserve(Records.size()); for (const auto &R : Records) { Trace.Records.push_back({R.RecordType, R.CPU, R.Type, R.FuncId, Symbolize ? FuncIdHelper.SymbolOrNumber(R.FuncId) : llvm::to_string(R.FuncId), R.TSC, R.TId, R.CallArgs}); } Output Out(OS, nullptr, 0); Out << Trace; } void TraceConverter::exportAsRAWv1(const Trace &Records, raw_ostream &OS) { // First write out the file header, in the correct endian-appropriate format // (XRay assumes currently little endian). support::endian::Writer Writer(OS); const auto &FH = Records.getFileHeader(); Writer.write(FH.Version); Writer.write(FH.Type); uint32_t Bitfield{0}; if (FH.ConstantTSC) Bitfield |= 1uL; if (FH.NonstopTSC) Bitfield |= 1uL << 1; Writer.write(Bitfield); Writer.write(FH.CycleFrequency); // There's 16 bytes of padding at the end of the file header. static constexpr uint32_t Padding4B = 0; Writer.write(Padding4B); Writer.write(Padding4B); Writer.write(Padding4B); Writer.write(Padding4B); // Then write out the rest of the records, still in an endian-appropriate // format. for (const auto &R : Records) { Writer.write(R.RecordType); // The on disk naive raw format uses 8 bit CPUs, but the record has 16. // There's no choice but truncation. Writer.write(static_cast(R.CPU)); switch (R.Type) { case RecordTypes::ENTER: case RecordTypes::ENTER_ARG: Writer.write(uint8_t{0}); break; case RecordTypes::EXIT: Writer.write(uint8_t{1}); break; case RecordTypes::TAIL_EXIT: Writer.write(uint8_t{2}); break; } Writer.write(R.FuncId); Writer.write(R.TSC); Writer.write(R.TId); Writer.write(Padding4B); Writer.write(Padding4B); Writer.write(Padding4B); } } namespace { // A structure that allows building a dictionary of stack ids for the Chrome // trace event format. struct StackIdData { // Each Stack of function calls has a unique ID. unsigned id; // Bookkeeping so that IDs can be maintained uniquely across threads. // Traversal keeps sibling pointers to other threads stacks. This is helpful // to determine when a thread encounters a new stack and should assign a new // unique ID. SmallVector *, 4> siblings; }; using StackTrieNode = TrieNode; // A helper function to find the sibling nodes for an encountered function in a // thread of execution. Relies on the invariant that each time a new node is // traversed in a thread, sibling bidirectional pointers are maintained. SmallVector findSiblings(StackTrieNode *parent, int32_t FnId, uint32_t TId, const DenseMap> &StackRootsByThreadId) { SmallVector Siblings{}; if (parent == nullptr) { for (auto map_iter : StackRootsByThreadId) { // Only look for siblings in other threads. if (map_iter.first != TId) for (auto node_iter : map_iter.second) { if (node_iter->FuncId == FnId) Siblings.push_back(node_iter); } } return Siblings; } for (auto *ParentSibling : parent->ExtraData.siblings) for (auto node_iter : ParentSibling->Callees) if (node_iter->FuncId == FnId) Siblings.push_back(node_iter); return Siblings; } // Given a function being invoked in a thread with id TId, finds and returns the // StackTrie representing the function call stack. If no node exists, creates // the node. Assigns unique IDs to stacks newly encountered among all threads // and keeps sibling links up to when creating new nodes. StackTrieNode *findOrCreateStackNode( StackTrieNode *Parent, int32_t FuncId, uint32_t TId, DenseMap> &StackRootsByThreadId, DenseMap &StacksByStackId, unsigned *id_counter, std::forward_list &NodeStore) { SmallVector &ParentCallees = Parent == nullptr ? StackRootsByThreadId[TId] : Parent->Callees; auto match = find_if(ParentCallees, [FuncId](StackTrieNode *ParentCallee) { return FuncId == ParentCallee->FuncId; }); if (match != ParentCallees.end()) return *match; SmallVector siblings = findSiblings(Parent, FuncId, TId, StackRootsByThreadId); if (siblings.empty()) { NodeStore.push_front({FuncId, Parent, {}, {(*id_counter)++, {}}}); StackTrieNode *CurrentStack = &NodeStore.front(); StacksByStackId[*id_counter - 1] = CurrentStack; ParentCallees.push_back(CurrentStack); return CurrentStack; } unsigned stack_id = siblings[0]->ExtraData.id; NodeStore.push_front({FuncId, Parent, {}, {stack_id, std::move(siblings)}}); StackTrieNode *CurrentStack = &NodeStore.front(); for (auto *sibling : CurrentStack->ExtraData.siblings) sibling->ExtraData.siblings.push_back(CurrentStack); ParentCallees.push_back(CurrentStack); return CurrentStack; } void writeTraceViewerRecord(raw_ostream &OS, int32_t FuncId, uint32_t TId, bool Symbolize, const FuncIdConversionHelper &FuncIdHelper, double EventTimestampUs, const StackTrieNode &StackCursor, StringRef FunctionPhenotype) { OS << " "; OS << llvm::formatv( R"({ "name" : "{0}", "ph" : "{1}", "tid" : "{2}", "pid" : "1", )" R"("ts" : "{3:f3}", "sf" : "{4}" })", (Symbolize ? FuncIdHelper.SymbolOrNumber(FuncId) : llvm::to_string(FuncId)), FunctionPhenotype, TId, EventTimestampUs, StackCursor.ExtraData.id); } } // namespace void TraceConverter::exportAsChromeTraceEventFormat(const Trace &Records, raw_ostream &OS) { const auto &FH = Records.getFileHeader(); auto CycleFreq = FH.CycleFrequency; unsigned id_counter = 0; OS << "{\n \"traceEvents\": ["; DenseMap StackCursorByThreadId{}; DenseMap> StackRootsByThreadId{}; DenseMap StacksByStackId{}; std::forward_list NodeStore{}; int loop_count = 0; for (const auto &R : Records) { if (loop_count++ == 0) OS << "\n"; else OS << ",\n"; // Chrome trace event format always wants data in micros. // CyclesPerMicro = CycleHertz / 10^6 // TSC / CyclesPerMicro == TSC * 10^6 / CycleHertz == MicroTimestamp // Could lose some precision here by converting the TSC to a double to // multiply by the period in micros. 52 bit mantissa is a good start though. // TODO: Make feature request to Chrome Trace viewer to accept ticks and a // frequency or do some more involved calculation to avoid dangers of // conversion. double EventTimestampUs = double(1000000) / CycleFreq * double(R.TSC); StackTrieNode *&StackCursor = StackCursorByThreadId[R.TId]; switch (R.Type) { case RecordTypes::ENTER: case RecordTypes::ENTER_ARG: StackCursor = findOrCreateStackNode(StackCursor, R.FuncId, R.TId, StackRootsByThreadId, StacksByStackId, &id_counter, NodeStore); // Each record is represented as a json dictionary with function name, // type of B for begin or E for end, thread id, process id (faked), // timestamp in microseconds, and a stack frame id. The ids are logged // in an id dictionary after the events. writeTraceViewerRecord(OS, R.FuncId, R.TId, Symbolize, FuncIdHelper, EventTimestampUs, *StackCursor, "B"); break; case RecordTypes::EXIT: case RecordTypes::TAIL_EXIT: // No entries to record end for. if (StackCursor == nullptr) break; // Should we emit an END record anyway or account this condition? // (And/Or in loop termination below) StackTrieNode *PreviousCursor = nullptr; do { writeTraceViewerRecord(OS, StackCursor->FuncId, R.TId, Symbolize, FuncIdHelper, EventTimestampUs, *StackCursor, "E"); PreviousCursor = StackCursor; StackCursor = StackCursor->Parent; } while (PreviousCursor->FuncId != R.FuncId && StackCursor != nullptr); break; } } OS << "\n ],\n"; // Close the Trace Events array. OS << " " << "\"displayTimeUnit\": \"ns\",\n"; // The stackFrames dictionary substantially reduces size of the output file by // avoiding repeating the entire call stack of function names for each entry. OS << R"( "stackFrames": {)"; int stack_frame_count = 0; for (auto map_iter : StacksByStackId) { if (stack_frame_count++ == 0) OS << "\n"; else OS << ",\n"; OS << " "; OS << llvm::formatv( R"("{0}" : { "name" : "{1}")", map_iter.first, (Symbolize ? FuncIdHelper.SymbolOrNumber(map_iter.second->FuncId) : llvm::to_string(map_iter.second->FuncId))); if (map_iter.second->Parent != nullptr) OS << llvm::formatv(R"(, "parent": "{0}")", map_iter.second->Parent->ExtraData.id); OS << " }"; } OS << "\n }\n"; // Close the stack frames map. OS << "}\n"; // Close the JSON entry. } namespace llvm { namespace xray { static CommandRegistration Unused(&Convert, []() -> Error { // FIXME: Support conversion to BINARY when upgrading XRay trace versions. InstrumentationMap Map; if (!ConvertInstrMap.empty()) { auto InstrumentationMapOrError = loadInstrumentationMap(ConvertInstrMap); if (!InstrumentationMapOrError) return joinErrors(make_error( Twine("Cannot open instrumentation map '") + ConvertInstrMap + "'", std::make_error_code(std::errc::invalid_argument)), InstrumentationMapOrError.takeError()); Map = std::move(*InstrumentationMapOrError); } const auto &FunctionAddresses = Map.getFunctionAddresses(); symbolize::LLVMSymbolizer::Options Opts( symbolize::FunctionNameKind::LinkageName, true, true, false, ""); symbolize::LLVMSymbolizer Symbolizer(Opts); llvm::xray::FuncIdConversionHelper FuncIdHelper(ConvertInstrMap, Symbolizer, FunctionAddresses); llvm::xray::TraceConverter TC(FuncIdHelper, ConvertSymbolize); std::error_code EC; raw_fd_ostream OS(ConvertOutput, EC, ConvertOutputFormat == ConvertFormats::BINARY ? sys::fs::OpenFlags::F_None : sys::fs::OpenFlags::F_Text); if (EC) return make_error( Twine("Cannot open file '") + ConvertOutput + "' for writing.", EC); auto TraceOrErr = loadTraceFile(ConvertInput, ConvertSortInput); if (!TraceOrErr) return joinErrors( make_error( Twine("Failed loading input file '") + ConvertInput + "'.", std::make_error_code(std::errc::executable_format_error)), TraceOrErr.takeError()); auto &T = *TraceOrErr; switch (ConvertOutputFormat) { case ConvertFormats::YAML: TC.exportAsYAML(T, OS); break; case ConvertFormats::BINARY: TC.exportAsRAWv1(T, OS); break; case ConvertFormats::CHROME_TRACE_EVENT: TC.exportAsChromeTraceEventFormat(T, OS); break; } return Error::success(); }); } // namespace xray } // namespace llvm