//===-- llvm-rtdyld.cpp - MCJIT Testing Tool ------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This is a testing tool for use with the MC-JIT LLVM components. // //===----------------------------------------------------------------------===// #include "llvm/ADT/StringMap.h" #include "llvm/DebugInfo/DIContext.h" #include "llvm/DebugInfo/DWARF/DWARFContext.h" #include "llvm/ExecutionEngine/RTDyldMemoryManager.h" #include "llvm/ExecutionEngine/RuntimeDyld.h" #include "llvm/ExecutionEngine/RuntimeDyldChecker.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCDisassembler/MCDisassembler.h" #include "llvm/MC/MCInstPrinter.h" #include "llvm/MC/MCInstrInfo.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/Object/SymbolSize.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/DynamicLibrary.h" #include "llvm/Support/ManagedStatic.h" #include "llvm/Support/Memory.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/PrettyStackTrace.h" #include "llvm/Support/Signals.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Support/TargetSelect.h" #include "llvm/Support/raw_ostream.h" #include using namespace llvm; using namespace llvm::object; static cl::list InputFileList(cl::Positional, cl::ZeroOrMore, cl::desc("")); enum ActionType { AC_Execute, AC_PrintObjectLineInfo, AC_PrintLineInfo, AC_PrintDebugLineInfo, AC_Verify }; static cl::opt Action(cl::desc("Action to perform:"), cl::init(AC_Execute), cl::values(clEnumValN(AC_Execute, "execute", "Load, link, and execute the inputs."), clEnumValN(AC_PrintLineInfo, "printline", "Load, link, and print line information for each function."), clEnumValN(AC_PrintDebugLineInfo, "printdebugline", "Load, link, and print line information for each function using the debug object"), clEnumValN(AC_PrintObjectLineInfo, "printobjline", "Like -printlineinfo but does not load the object first"), clEnumValN(AC_Verify, "verify", "Load, link and verify the resulting memory image."))); static cl::opt EntryPoint("entry", cl::desc("Function to call as entry point."), cl::init("_main")); static cl::list Dylibs("dylib", cl::desc("Add library."), cl::ZeroOrMore); static cl::opt TripleName("triple", cl::desc("Target triple for disassembler")); static cl::opt MCPU("mcpu", cl::desc("Target a specific cpu type (-mcpu=help for details)"), cl::value_desc("cpu-name"), cl::init("")); static cl::list CheckFiles("check", cl::desc("File containing RuntimeDyld verifier checks."), cl::ZeroOrMore); static cl::opt PreallocMemory("preallocate", cl::desc("Allocate memory upfront rather than on-demand"), cl::init(0)); static cl::opt TargetAddrStart("target-addr-start", cl::desc("For -verify only: start of phony target address " "range."), cl::init(4096), // Start at "page 1" - no allocating at "null". cl::Hidden); static cl::opt TargetAddrEnd("target-addr-end", cl::desc("For -verify only: end of phony target address range."), cl::init(~0ULL), cl::Hidden); static cl::opt TargetSectionSep("target-section-sep", cl::desc("For -verify only: Separation between sections in " "phony target address space."), cl::init(0), cl::Hidden); static cl::list SpecificSectionMappings("map-section", cl::desc("For -verify only: Map a section to a " "specific address."), cl::ZeroOrMore, cl::Hidden); static cl::list DummySymbolMappings("dummy-extern", cl::desc("For -verify only: Inject a symbol into the extern " "symbol table."), cl::ZeroOrMore, cl::Hidden); static cl::opt PrintAllocationRequests("print-alloc-requests", cl::desc("Print allocation requests made to the memory " "manager by RuntimeDyld"), cl::Hidden); /* *** */ // A trivial memory manager that doesn't do anything fancy, just uses the // support library allocation routines directly. class TrivialMemoryManager : public RTDyldMemoryManager { public: SmallVector FunctionMemory; SmallVector DataMemory; uint8_t *allocateCodeSection(uintptr_t Size, unsigned Alignment, unsigned SectionID, StringRef SectionName) override; uint8_t *allocateDataSection(uintptr_t Size, unsigned Alignment, unsigned SectionID, StringRef SectionName, bool IsReadOnly) override; void *getPointerToNamedFunction(const std::string &Name, bool AbortOnFailure = true) override { return nullptr; } bool finalizeMemory(std::string *ErrMsg) override { return false; } void addDummySymbol(const std::string &Name, uint64_t Addr) { DummyExterns[Name] = Addr; } JITSymbol findSymbol(const std::string &Name) override { auto I = DummyExterns.find(Name); if (I != DummyExterns.end()) return JITSymbol(I->second, JITSymbolFlags::Exported); return RTDyldMemoryManager::findSymbol(Name); } void registerEHFrames(uint8_t *Addr, uint64_t LoadAddr, size_t Size) override {} void deregisterEHFrames() override {} void preallocateSlab(uint64_t Size) { std::error_code EC; sys::MemoryBlock MB = sys::Memory::allocateMappedMemory(Size, nullptr, sys::Memory::MF_READ | sys::Memory::MF_WRITE, EC); if (!MB.base()) report_fatal_error("Can't allocate enough memory: " + EC.message()); PreallocSlab = MB; UsePreallocation = true; SlabSize = Size; } uint8_t *allocateFromSlab(uintptr_t Size, unsigned Alignment, bool isCode) { Size = alignTo(Size, Alignment); if (CurrentSlabOffset + Size > SlabSize) report_fatal_error("Can't allocate enough memory. Tune --preallocate"); uintptr_t OldSlabOffset = CurrentSlabOffset; sys::MemoryBlock MB((void *)OldSlabOffset, Size); if (isCode) FunctionMemory.push_back(MB); else DataMemory.push_back(MB); CurrentSlabOffset += Size; return (uint8_t*)OldSlabOffset; } private: std::map DummyExterns; sys::MemoryBlock PreallocSlab; bool UsePreallocation = false; uintptr_t SlabSize = 0; uintptr_t CurrentSlabOffset = 0; }; uint8_t *TrivialMemoryManager::allocateCodeSection(uintptr_t Size, unsigned Alignment, unsigned SectionID, StringRef SectionName) { if (PrintAllocationRequests) outs() << "allocateCodeSection(Size = " << Size << ", Alignment = " << Alignment << ", SectionName = " << SectionName << ")\n"; if (UsePreallocation) return allocateFromSlab(Size, Alignment, true /* isCode */); std::error_code EC; sys::MemoryBlock MB = sys::Memory::allocateMappedMemory(Size, nullptr, sys::Memory::MF_READ | sys::Memory::MF_WRITE, EC); if (!MB.base()) report_fatal_error("MemoryManager allocation failed: " + EC.message()); FunctionMemory.push_back(MB); return (uint8_t*)MB.base(); } uint8_t *TrivialMemoryManager::allocateDataSection(uintptr_t Size, unsigned Alignment, unsigned SectionID, StringRef SectionName, bool IsReadOnly) { if (PrintAllocationRequests) outs() << "allocateDataSection(Size = " << Size << ", Alignment = " << Alignment << ", SectionName = " << SectionName << ")\n"; if (UsePreallocation) return allocateFromSlab(Size, Alignment, false /* isCode */); std::error_code EC; sys::MemoryBlock MB = sys::Memory::allocateMappedMemory(Size, nullptr, sys::Memory::MF_READ | sys::Memory::MF_WRITE, EC); if (!MB.base()) report_fatal_error("MemoryManager allocation failed: " + EC.message()); DataMemory.push_back(MB); return (uint8_t*)MB.base(); } static const char *ProgramName; static void ErrorAndExit(const Twine &Msg) { errs() << ProgramName << ": error: " << Msg << "\n"; exit(1); } static void loadDylibs() { for (const std::string &Dylib : Dylibs) { if (!sys::fs::is_regular_file(Dylib)) report_fatal_error("Dylib not found: '" + Dylib + "'."); std::string ErrMsg; if (sys::DynamicLibrary::LoadLibraryPermanently(Dylib.c_str(), &ErrMsg)) report_fatal_error("Error loading '" + Dylib + "': " + ErrMsg); } } /* *** */ static int printLineInfoForInput(bool LoadObjects, bool UseDebugObj) { assert(LoadObjects || !UseDebugObj); // Load any dylibs requested on the command line. loadDylibs(); // If we don't have any input files, read from stdin. if (!InputFileList.size()) InputFileList.push_back("-"); for (auto &File : InputFileList) { // Instantiate a dynamic linker. TrivialMemoryManager MemMgr; RuntimeDyld Dyld(MemMgr, MemMgr); // Load the input memory buffer. ErrorOr> InputBuffer = MemoryBuffer::getFileOrSTDIN(File); if (std::error_code EC = InputBuffer.getError()) ErrorAndExit("unable to read input: '" + EC.message() + "'"); Expected> MaybeObj( ObjectFile::createObjectFile((*InputBuffer)->getMemBufferRef())); if (!MaybeObj) { std::string Buf; raw_string_ostream OS(Buf); logAllUnhandledErrors(MaybeObj.takeError(), OS, ""); OS.flush(); ErrorAndExit("unable to create object file: '" + Buf + "'"); } ObjectFile &Obj = **MaybeObj; OwningBinary DebugObj; std::unique_ptr LoadedObjInfo = nullptr; ObjectFile *SymbolObj = &Obj; if (LoadObjects) { // Load the object file LoadedObjInfo = Dyld.loadObject(Obj); if (Dyld.hasError()) ErrorAndExit(Dyld.getErrorString()); // Resolve all the relocations we can. Dyld.resolveRelocations(); if (UseDebugObj) { DebugObj = LoadedObjInfo->getObjectForDebug(Obj); SymbolObj = DebugObj.getBinary(); LoadedObjInfo.reset(); } } std::unique_ptr Context = DWARFContext::create(*SymbolObj, LoadedObjInfo.get()); std::vector> SymAddr = object::computeSymbolSizes(*SymbolObj); // Use symbol info to iterate functions in the object. for (const auto &P : SymAddr) { object::SymbolRef Sym = P.first; Expected TypeOrErr = Sym.getType(); if (!TypeOrErr) { // TODO: Actually report errors helpfully. consumeError(TypeOrErr.takeError()); continue; } SymbolRef::Type Type = *TypeOrErr; if (Type == object::SymbolRef::ST_Function) { Expected Name = Sym.getName(); if (!Name) { // TODO: Actually report errors helpfully. consumeError(Name.takeError()); continue; } Expected AddrOrErr = Sym.getAddress(); if (!AddrOrErr) { // TODO: Actually report errors helpfully. consumeError(AddrOrErr.takeError()); continue; } uint64_t Addr = *AddrOrErr; uint64_t Size = P.second; // If we're not using the debug object, compute the address of the // symbol in memory (rather than that in the unrelocated object file) // and use that to query the DWARFContext. if (!UseDebugObj && LoadObjects) { auto SecOrErr = Sym.getSection(); if (!SecOrErr) { // TODO: Actually report errors helpfully. consumeError(SecOrErr.takeError()); continue; } object::section_iterator Sec = *SecOrErr; StringRef SecName; Sec->getName(SecName); uint64_t SectionLoadAddress = LoadedObjInfo->getSectionLoadAddress(*Sec); if (SectionLoadAddress != 0) Addr += SectionLoadAddress - Sec->getAddress(); } outs() << "Function: " << *Name << ", Size = " << Size << ", Addr = " << Addr << "\n"; DILineInfoTable Lines = Context->getLineInfoForAddressRange(Addr, Size); for (auto &D : Lines) { outs() << " Line info @ " << D.first - Addr << ": " << D.second.FileName << ", line:" << D.second.Line << "\n"; } } } } return 0; } static void doPreallocation(TrivialMemoryManager &MemMgr) { // Allocate a slab of memory upfront, if required. This is used if // we want to test small code models. if (static_cast(PreallocMemory) < 0) report_fatal_error("Pre-allocated bytes of memory must be a positive integer."); // FIXME: Limit the amount of memory that can be preallocated? if (PreallocMemory != 0) MemMgr.preallocateSlab(PreallocMemory); } static int executeInput() { // Load any dylibs requested on the command line. loadDylibs(); // Instantiate a dynamic linker. TrivialMemoryManager MemMgr; doPreallocation(MemMgr); RuntimeDyld Dyld(MemMgr, MemMgr); // If we don't have any input files, read from stdin. if (!InputFileList.size()) InputFileList.push_back("-"); for (auto &File : InputFileList) { // Load the input memory buffer. ErrorOr> InputBuffer = MemoryBuffer::getFileOrSTDIN(File); if (std::error_code EC = InputBuffer.getError()) ErrorAndExit("unable to read input: '" + EC.message() + "'"); Expected> MaybeObj( ObjectFile::createObjectFile((*InputBuffer)->getMemBufferRef())); if (!MaybeObj) { std::string Buf; raw_string_ostream OS(Buf); logAllUnhandledErrors(MaybeObj.takeError(), OS, ""); OS.flush(); ErrorAndExit("unable to create object file: '" + Buf + "'"); } ObjectFile &Obj = **MaybeObj; // Load the object file Dyld.loadObject(Obj); if (Dyld.hasError()) { ErrorAndExit(Dyld.getErrorString()); } } // Resove all the relocations we can. // FIXME: Error out if there are unresolved relocations. Dyld.resolveRelocations(); // Get the address of the entry point (_main by default). void *MainAddress = Dyld.getSymbolLocalAddress(EntryPoint); if (!MainAddress) ErrorAndExit("no definition for '" + EntryPoint + "'"); // Invalidate the instruction cache for each loaded function. for (auto &FM : MemMgr.FunctionMemory) { // Make sure the memory is executable. // setExecutable will call InvalidateInstructionCache. if (auto EC = sys::Memory::protectMappedMemory(FM, sys::Memory::MF_READ | sys::Memory::MF_EXEC)) ErrorAndExit("unable to mark function executable: '" + EC.message() + "'"); } // Dispatch to _main(). errs() << "loaded '" << EntryPoint << "' at: " << (void*)MainAddress << "\n"; int (*Main)(int, const char**) = (int(*)(int,const char**)) uintptr_t(MainAddress); const char **Argv = new const char*[2]; // Use the name of the first input object module as argv[0] for the target. Argv[0] = InputFileList[0].c_str(); Argv[1] = nullptr; return Main(1, Argv); } static int checkAllExpressions(RuntimeDyldChecker &Checker) { for (const auto& CheckerFileName : CheckFiles) { ErrorOr> CheckerFileBuf = MemoryBuffer::getFileOrSTDIN(CheckerFileName); if (std::error_code EC = CheckerFileBuf.getError()) ErrorAndExit("unable to read input '" + CheckerFileName + "': " + EC.message()); if (!Checker.checkAllRulesInBuffer("# rtdyld-check:", CheckerFileBuf.get().get())) ErrorAndExit("some checks in '" + CheckerFileName + "' failed"); } return 0; } void applySpecificSectionMappings(RuntimeDyldChecker &Checker) { for (StringRef Mapping : SpecificSectionMappings) { size_t EqualsIdx = Mapping.find_first_of("="); std::string SectionIDStr = Mapping.substr(0, EqualsIdx); size_t ComaIdx = Mapping.find_first_of(","); if (ComaIdx == StringRef::npos) report_fatal_error("Invalid section specification '" + Mapping + "'. Should be ',
='"); std::string FileName = SectionIDStr.substr(0, ComaIdx); std::string SectionName = SectionIDStr.substr(ComaIdx + 1); uint64_t OldAddrInt; std::string ErrorMsg; std::tie(OldAddrInt, ErrorMsg) = Checker.getSectionAddr(FileName, SectionName, true); if (ErrorMsg != "") report_fatal_error(ErrorMsg); void* OldAddr = reinterpret_cast(static_cast(OldAddrInt)); std::string NewAddrStr = Mapping.substr(EqualsIdx + 1); uint64_t NewAddr; if (StringRef(NewAddrStr).getAsInteger(0, NewAddr)) report_fatal_error("Invalid section address in mapping '" + Mapping + "'."); Checker.getRTDyld().mapSectionAddress(OldAddr, NewAddr); } } // Scatter sections in all directions! // Remaps section addresses for -verify mode. The following command line options // can be used to customize the layout of the memory within the phony target's // address space: // -target-addr-start -- Specify where the phony target address range starts. // -target-addr-end -- Specify where the phony target address range ends. // -target-section-sep -- Specify how big a gap should be left between the // end of one section and the start of the next. // Defaults to zero. Set to something big // (e.g. 1 << 32) to stress-test stubs, GOTs, etc. // static void remapSectionsAndSymbols(const llvm::Triple &TargetTriple, TrivialMemoryManager &MemMgr, RuntimeDyldChecker &Checker) { // Set up a work list (section addr/size pairs). typedef std::list> WorklistT; WorklistT Worklist; for (const auto& CodeSection : MemMgr.FunctionMemory) Worklist.push_back(std::make_pair(CodeSection.base(), CodeSection.size())); for (const auto& DataSection : MemMgr.DataMemory) Worklist.push_back(std::make_pair(DataSection.base(), DataSection.size())); // Apply any section-specific mappings that were requested on the command // line. applySpecificSectionMappings(Checker); // Keep an "already allocated" mapping of section target addresses to sizes. // Sections whose address mappings aren't specified on the command line will // allocated around the explicitly mapped sections while maintaining the // minimum separation. std::map AlreadyAllocated; // Move the previously applied mappings (whether explicitly specified on the // command line, or implicitly set by RuntimeDyld) into the already-allocated // map. for (WorklistT::iterator I = Worklist.begin(), E = Worklist.end(); I != E;) { WorklistT::iterator Tmp = I; ++I; auto LoadAddr = Checker.getSectionLoadAddress(Tmp->first); if (LoadAddr && *LoadAddr != static_cast( reinterpret_cast(Tmp->first))) { AlreadyAllocated[*LoadAddr] = Tmp->second; Worklist.erase(Tmp); } } // If the -target-addr-end option wasn't explicitly passed, then set it to a // sensible default based on the target triple. if (TargetAddrEnd.getNumOccurrences() == 0) { if (TargetTriple.isArch16Bit()) TargetAddrEnd = (1ULL << 16) - 1; else if (TargetTriple.isArch32Bit()) TargetAddrEnd = (1ULL << 32) - 1; // TargetAddrEnd already has a sensible default for 64-bit systems, so // there's nothing to do in the 64-bit case. } // Process any elements remaining in the worklist. while (!Worklist.empty()) { std::pair CurEntry = Worklist.front(); Worklist.pop_front(); uint64_t NextSectionAddr = TargetAddrStart; for (const auto &Alloc : AlreadyAllocated) if (NextSectionAddr + CurEntry.second + TargetSectionSep <= Alloc.first) break; else NextSectionAddr = Alloc.first + Alloc.second + TargetSectionSep; AlreadyAllocated[NextSectionAddr] = CurEntry.second; Checker.getRTDyld().mapSectionAddress(CurEntry.first, NextSectionAddr); } // Add dummy symbols to the memory manager. for (const auto &Mapping : DummySymbolMappings) { size_t EqualsIdx = Mapping.find_first_of('='); if (EqualsIdx == StringRef::npos) report_fatal_error("Invalid dummy symbol specification '" + Mapping + "'. Should be '='"); std::string Symbol = Mapping.substr(0, EqualsIdx); std::string AddrStr = Mapping.substr(EqualsIdx + 1); uint64_t Addr; if (StringRef(AddrStr).getAsInteger(0, Addr)) report_fatal_error("Invalid symbol mapping '" + Mapping + "'."); MemMgr.addDummySymbol(Symbol, Addr); } } // Load and link the objects specified on the command line, but do not execute // anything. Instead, attach a RuntimeDyldChecker instance and call it to // verify the correctness of the linked memory. static int linkAndVerify() { // Check for missing triple. if (TripleName == "") ErrorAndExit("-triple required when running in -verify mode."); // Look up the target and build the disassembler. Triple TheTriple(Triple::normalize(TripleName)); std::string ErrorStr; const Target *TheTarget = TargetRegistry::lookupTarget("", TheTriple, ErrorStr); if (!TheTarget) ErrorAndExit("Error accessing target '" + TripleName + "': " + ErrorStr); TripleName = TheTriple.getTriple(); std::unique_ptr STI( TheTarget->createMCSubtargetInfo(TripleName, MCPU, "")); if (!STI) ErrorAndExit("Unable to create subtarget info!"); std::unique_ptr MRI(TheTarget->createMCRegInfo(TripleName)); if (!MRI) ErrorAndExit("Unable to create target register info!"); std::unique_ptr MAI(TheTarget->createMCAsmInfo(*MRI, TripleName)); if (!MAI) ErrorAndExit("Unable to create target asm info!"); MCContext Ctx(MAI.get(), MRI.get(), nullptr); std::unique_ptr Disassembler( TheTarget->createMCDisassembler(*STI, Ctx)); if (!Disassembler) ErrorAndExit("Unable to create disassembler!"); std::unique_ptr MII(TheTarget->createMCInstrInfo()); std::unique_ptr InstPrinter( TheTarget->createMCInstPrinter(Triple(TripleName), 0, *MAI, *MII, *MRI)); // Load any dylibs requested on the command line. loadDylibs(); // Instantiate a dynamic linker. TrivialMemoryManager MemMgr; doPreallocation(MemMgr); RuntimeDyld Dyld(MemMgr, MemMgr); Dyld.setProcessAllSections(true); RuntimeDyldChecker Checker(Dyld, Disassembler.get(), InstPrinter.get(), llvm::dbgs()); // If we don't have any input files, read from stdin. if (!InputFileList.size()) InputFileList.push_back("-"); for (auto &Filename : InputFileList) { // Load the input memory buffer. ErrorOr> InputBuffer = MemoryBuffer::getFileOrSTDIN(Filename); if (std::error_code EC = InputBuffer.getError()) ErrorAndExit("unable to read input: '" + EC.message() + "'"); Expected> MaybeObj( ObjectFile::createObjectFile((*InputBuffer)->getMemBufferRef())); if (!MaybeObj) { std::string Buf; raw_string_ostream OS(Buf); logAllUnhandledErrors(MaybeObj.takeError(), OS, ""); OS.flush(); ErrorAndExit("unable to create object file: '" + Buf + "'"); } ObjectFile &Obj = **MaybeObj; // Load the object file Dyld.loadObject(Obj); if (Dyld.hasError()) { ErrorAndExit(Dyld.getErrorString()); } } // Re-map the section addresses into the phony target address space and add // dummy symbols. remapSectionsAndSymbols(TheTriple, MemMgr, Checker); // Resolve all the relocations we can. Dyld.resolveRelocations(); // Register EH frames. Dyld.registerEHFrames(); int ErrorCode = checkAllExpressions(Checker); if (Dyld.hasError()) ErrorAndExit("RTDyld reported an error applying relocations:\n " + Dyld.getErrorString()); return ErrorCode; } int main(int argc, char **argv) { sys::PrintStackTraceOnErrorSignal(argv[0]); PrettyStackTraceProgram X(argc, argv); ProgramName = argv[0]; llvm_shutdown_obj Y; // Call llvm_shutdown() on exit. llvm::InitializeAllTargetInfos(); llvm::InitializeAllTargetMCs(); llvm::InitializeAllDisassemblers(); cl::ParseCommandLineOptions(argc, argv, "llvm MC-JIT tool\n"); switch (Action) { case AC_Execute: return executeInput(); case AC_PrintDebugLineInfo: return printLineInfoForInput(/* LoadObjects */ true,/* UseDebugObj */ true); case AC_PrintLineInfo: return printLineInfoForInput(/* LoadObjects */ true,/* UseDebugObj */false); case AC_PrintObjectLineInfo: return printLineInfoForInput(/* LoadObjects */false,/* UseDebugObj */false); case AC_Verify: return linkAndVerify(); } }