//===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This program is a utility that works like binutils "objdump", that is, it // dumps out a plethora of information about an object file depending on the // flags. // // The flags and output of this program should be near identical to those of // binutils objdump. // //===----------------------------------------------------------------------===// #include "llvm-objdump.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/Triple.h" #include "llvm/CodeGen/FaultMaps.h" #include "llvm/DebugInfo/DWARF/DWARFContext.h" #include "llvm/DebugInfo/Symbolize/Symbolize.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCDisassembler/MCDisassembler.h" #include "llvm/MC/MCDisassembler/MCRelocationInfo.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCInstPrinter.h" #include "llvm/MC/MCInstrAnalysis.h" #include "llvm/MC/MCInstrInfo.h" #include "llvm/MC/MCObjectFileInfo.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/Object/Archive.h" #include "llvm/Object/COFF.h" #include "llvm/Object/COFFImportFile.h" #include "llvm/Object/ELFObjectFile.h" #include "llvm/Object/MachO.h" #include "llvm/Object/ObjectFile.h" #include "llvm/Object/Wasm.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Errc.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/Format.h" #include "llvm/Support/GraphWriter.h" #include "llvm/Support/Host.h" #include "llvm/Support/ManagedStatic.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/PrettyStackTrace.h" #include "llvm/Support/Signals.h" #include "llvm/Support/SourceMgr.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Support/TargetSelect.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include #include using namespace llvm; using namespace object; static cl::list InputFilenames(cl::Positional, cl::desc(""),cl::ZeroOrMore); cl::opt llvm::Disassemble("disassemble", cl::desc("Display assembler mnemonics for the machine instructions")); static cl::alias Disassembled("d", cl::desc("Alias for --disassemble"), cl::aliasopt(Disassemble)); cl::opt llvm::DisassembleAll("disassemble-all", cl::desc("Display assembler mnemonics for the machine instructions")); static cl::alias DisassembleAlld("D", cl::desc("Alias for --disassemble-all"), cl::aliasopt(DisassembleAll)); cl::opt llvm::Relocations("r", cl::desc("Display the relocation entries in the file")); cl::opt llvm::SectionContents("s", cl::desc("Display the content of each section")); cl::opt llvm::SymbolTable("t", cl::desc("Display the symbol table")); cl::opt llvm::ExportsTrie("exports-trie", cl::desc("Display mach-o exported symbols")); cl::opt llvm::Rebase("rebase", cl::desc("Display mach-o rebasing info")); cl::opt llvm::Bind("bind", cl::desc("Display mach-o binding info")); cl::opt llvm::LazyBind("lazy-bind", cl::desc("Display mach-o lazy binding info")); cl::opt llvm::WeakBind("weak-bind", cl::desc("Display mach-o weak binding info")); cl::opt llvm::RawClangAST("raw-clang-ast", cl::desc("Dump the raw binary contents of the clang AST section")); static cl::opt MachOOpt("macho", cl::desc("Use MachO specific object file parser")); static cl::alias MachOm("m", cl::desc("Alias for --macho"), cl::aliasopt(MachOOpt)); cl::opt llvm::TripleName("triple", cl::desc("Target triple to disassemble for, " "see -version for available targets")); cl::opt llvm::MCPU("mcpu", cl::desc("Target a specific cpu type (-mcpu=help for details)"), cl::value_desc("cpu-name"), cl::init("")); cl::opt llvm::ArchName("arch-name", cl::desc("Target arch to disassemble for, " "see -version for available targets")); cl::opt llvm::SectionHeaders("section-headers", cl::desc("Display summaries of the " "headers for each section.")); static cl::alias SectionHeadersShort("headers", cl::desc("Alias for --section-headers"), cl::aliasopt(SectionHeaders)); static cl::alias SectionHeadersShorter("h", cl::desc("Alias for --section-headers"), cl::aliasopt(SectionHeaders)); cl::list llvm::FilterSections("section", cl::desc("Operate on the specified sections only. " "With -macho dump segment,section")); cl::alias static FilterSectionsj("j", cl::desc("Alias for --section"), cl::aliasopt(llvm::FilterSections)); cl::list llvm::MAttrs("mattr", cl::CommaSeparated, cl::desc("Target specific attributes"), cl::value_desc("a1,+a2,-a3,...")); cl::opt llvm::NoShowRawInsn("no-show-raw-insn", cl::desc("When disassembling " "instructions, do not print " "the instruction bytes.")); cl::opt llvm::NoLeadingAddr("no-leading-addr", cl::desc("Print no leading address")); cl::opt llvm::UnwindInfo("unwind-info", cl::desc("Display unwind information")); static cl::alias UnwindInfoShort("u", cl::desc("Alias for --unwind-info"), cl::aliasopt(UnwindInfo)); cl::opt llvm::PrivateHeaders("private-headers", cl::desc("Display format specific file headers")); cl::opt llvm::FirstPrivateHeader("private-header", cl::desc("Display only the first format specific file " "header")); static cl::alias PrivateHeadersShort("p", cl::desc("Alias for --private-headers"), cl::aliasopt(PrivateHeaders)); cl::opt llvm::PrintImmHex("print-imm-hex", cl::desc("Use hex format for immediate values")); cl::opt PrintFaultMaps("fault-map-section", cl::desc("Display contents of faultmap section")); cl::opt llvm::DwarfDumpType( "dwarf", cl::init(DIDT_Null), cl::desc("Dump of dwarf debug sections:"), cl::values(clEnumValN(DIDT_DebugFrame, "frames", ".debug_frame"))); cl::opt PrintSource( "source", cl::desc( "Display source inlined with disassembly. Implies disassmble object")); cl::alias PrintSourceShort("S", cl::desc("Alias for -source"), cl::aliasopt(PrintSource)); cl::opt PrintLines("line-numbers", cl::desc("Display source line numbers with " "disassembly. Implies disassemble object")); cl::alias PrintLinesShort("l", cl::desc("Alias for -line-numbers"), cl::aliasopt(PrintLines)); cl::opt StartAddress("start-address", cl::desc("Disassemble beginning at address"), cl::value_desc("address"), cl::init(0)); cl::opt StopAddress("stop-address", cl::desc("Stop disassembly at address"), cl::value_desc("address"), cl::init(UINT64_MAX)); static StringRef ToolName; typedef std::vector> SectionSymbolsTy; namespace { typedef std::function FilterPredicate; class SectionFilterIterator { public: SectionFilterIterator(FilterPredicate P, llvm::object::section_iterator const &I, llvm::object::section_iterator const &E) : Predicate(std::move(P)), Iterator(I), End(E) { ScanPredicate(); } const llvm::object::SectionRef &operator*() const { return *Iterator; } SectionFilterIterator &operator++() { ++Iterator; ScanPredicate(); return *this; } bool operator!=(SectionFilterIterator const &Other) const { return Iterator != Other.Iterator; } private: void ScanPredicate() { while (Iterator != End && !Predicate(*Iterator)) { ++Iterator; } } FilterPredicate Predicate; llvm::object::section_iterator Iterator; llvm::object::section_iterator End; }; class SectionFilter { public: SectionFilter(FilterPredicate P, llvm::object::ObjectFile const &O) : Predicate(std::move(P)), Object(O) {} SectionFilterIterator begin() { return SectionFilterIterator(Predicate, Object.section_begin(), Object.section_end()); } SectionFilterIterator end() { return SectionFilterIterator(Predicate, Object.section_end(), Object.section_end()); } private: FilterPredicate Predicate; llvm::object::ObjectFile const &Object; }; SectionFilter ToolSectionFilter(llvm::object::ObjectFile const &O) { return SectionFilter( [](llvm::object::SectionRef const &S) { if (FilterSections.empty()) return true; llvm::StringRef String; std::error_code error = S.getName(String); if (error) return false; return is_contained(FilterSections, String); }, O); } } void llvm::error(std::error_code EC) { if (!EC) return; errs() << ToolName << ": error reading file: " << EC.message() << ".\n"; errs().flush(); exit(1); } LLVM_ATTRIBUTE_NORETURN void llvm::error(Twine Message) { errs() << ToolName << ": " << Message << ".\n"; errs().flush(); exit(1); } LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File, Twine Message) { errs() << ToolName << ": '" << File << "': " << Message << ".\n"; exit(1); } LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File, std::error_code EC) { assert(EC); errs() << ToolName << ": '" << File << "': " << EC.message() << ".\n"; exit(1); } LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File, llvm::Error E) { assert(E); std::string Buf; raw_string_ostream OS(Buf); logAllUnhandledErrors(std::move(E), OS, ""); OS.flush(); errs() << ToolName << ": '" << File << "': " << Buf; exit(1); } LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef ArchiveName, StringRef FileName, llvm::Error E, StringRef ArchitectureName) { assert(E); errs() << ToolName << ": "; if (ArchiveName != "") errs() << ArchiveName << "(" << FileName << ")"; else errs() << "'" << FileName << "'"; if (!ArchitectureName.empty()) errs() << " (for architecture " << ArchitectureName << ")"; std::string Buf; raw_string_ostream OS(Buf); logAllUnhandledErrors(std::move(E), OS, ""); OS.flush(); errs() << ": " << Buf; exit(1); } LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef ArchiveName, const object::Archive::Child &C, llvm::Error E, StringRef ArchitectureName) { Expected NameOrErr = C.getName(); // TODO: if we have a error getting the name then it would be nice to print // the index of which archive member this is and or its offset in the // archive instead of "???" as the name. if (!NameOrErr) { consumeError(NameOrErr.takeError()); llvm::report_error(ArchiveName, "???", std::move(E), ArchitectureName); } else llvm::report_error(ArchiveName, NameOrErr.get(), std::move(E), ArchitectureName); } static const Target *getTarget(const ObjectFile *Obj = nullptr) { // Figure out the target triple. llvm::Triple TheTriple("unknown-unknown-unknown"); if (TripleName.empty()) { if (Obj) { TheTriple = Obj->makeTriple(); } } else { TheTriple.setTriple(Triple::normalize(TripleName)); // Use the triple, but also try to combine with ARM build attributes. if (Obj) { auto Arch = Obj->getArch(); if (Arch == Triple::arm || Arch == Triple::armeb) { Obj->setARMSubArch(TheTriple); } } } // Get the target specific parser. std::string Error; const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple, Error); if (!TheTarget) { if (Obj) report_error(Obj->getFileName(), "can't find target: " + Error); else error("can't find target: " + Error); } // Update the triple name and return the found target. TripleName = TheTriple.getTriple(); return TheTarget; } bool llvm::RelocAddressLess(RelocationRef a, RelocationRef b) { return a.getOffset() < b.getOffset(); } namespace { class SourcePrinter { protected: DILineInfo OldLineInfo; const ObjectFile *Obj = nullptr; std::unique_ptr Symbolizer; // File name to file contents of source std::unordered_map> SourceCache; // Mark the line endings of the cached source std::unordered_map> LineCache; private: bool cacheSource(const std::string& File); public: SourcePrinter() = default; SourcePrinter(const ObjectFile *Obj, StringRef DefaultArch) : Obj(Obj) { symbolize::LLVMSymbolizer::Options SymbolizerOpts( DILineInfoSpecifier::FunctionNameKind::None, true, false, false, DefaultArch); Symbolizer.reset(new symbolize::LLVMSymbolizer(SymbolizerOpts)); } virtual ~SourcePrinter() = default; virtual void printSourceLine(raw_ostream &OS, uint64_t Address, StringRef Delimiter = "; "); }; bool SourcePrinter::cacheSource(const std::string& File) { auto BufferOrError = MemoryBuffer::getFile(File); if (!BufferOrError) return false; // Chomp the file to get lines size_t BufferSize = (*BufferOrError)->getBufferSize(); const char *BufferStart = (*BufferOrError)->getBufferStart(); for (const char *Start = BufferStart, *End = BufferStart; End < BufferStart + BufferSize; End++) if (*End == '\n' || End == BufferStart + BufferSize - 1 || (*End == '\r' && *(End + 1) == '\n')) { LineCache[File].push_back(StringRef(Start, End - Start)); if (*End == '\r') End++; Start = End + 1; } SourceCache[File] = std::move(*BufferOrError); return true; } void SourcePrinter::printSourceLine(raw_ostream &OS, uint64_t Address, StringRef Delimiter) { if (!Symbolizer) return; DILineInfo LineInfo = DILineInfo(); auto ExpectecLineInfo = Symbolizer->symbolizeCode(Obj->getFileName(), Address); if (!ExpectecLineInfo) consumeError(ExpectecLineInfo.takeError()); else LineInfo = *ExpectecLineInfo; if ((LineInfo.FileName == "") || OldLineInfo.Line == LineInfo.Line || LineInfo.Line == 0) return; if (PrintLines) OS << Delimiter << LineInfo.FileName << ":" << LineInfo.Line << "\n"; if (PrintSource) { if (SourceCache.find(LineInfo.FileName) == SourceCache.end()) if (!cacheSource(LineInfo.FileName)) return; auto FileBuffer = SourceCache.find(LineInfo.FileName); if (FileBuffer != SourceCache.end()) { auto LineBuffer = LineCache.find(LineInfo.FileName); if (LineBuffer != LineCache.end()) { if (LineInfo.Line > LineBuffer->second.size()) return; // Vector begins at 0, line numbers are non-zero OS << Delimiter << LineBuffer->second[LineInfo.Line - 1].ltrim() << "\n"; } } } OldLineInfo = LineInfo; } static bool isArmElf(const ObjectFile *Obj) { return (Obj->isELF() && (Obj->getArch() == Triple::aarch64 || Obj->getArch() == Triple::aarch64_be || Obj->getArch() == Triple::arm || Obj->getArch() == Triple::armeb || Obj->getArch() == Triple::thumb || Obj->getArch() == Triple::thumbeb)); } class PrettyPrinter { public: virtual ~PrettyPrinter() = default; virtual void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef Bytes, uint64_t Address, raw_ostream &OS, StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP) { if (SP && (PrintSource || PrintLines)) SP->printSourceLine(OS, Address); if (!NoLeadingAddr) OS << format("%8" PRIx64 ":", Address); if (!NoShowRawInsn) { OS << "\t"; dumpBytes(Bytes, OS); } if (MI) IP.printInst(MI, OS, "", STI); else OS << " "; } }; PrettyPrinter PrettyPrinterInst; class HexagonPrettyPrinter : public PrettyPrinter { public: void printLead(ArrayRef Bytes, uint64_t Address, raw_ostream &OS) { uint32_t opcode = (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0]; if (!NoLeadingAddr) OS << format("%8" PRIx64 ":", Address); if (!NoShowRawInsn) { OS << "\t"; dumpBytes(Bytes.slice(0, 4), OS); OS << format("%08" PRIx32, opcode); } } void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef Bytes, uint64_t Address, raw_ostream &OS, StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP) override { if (SP && (PrintSource || PrintLines)) SP->printSourceLine(OS, Address, ""); if (!MI) { printLead(Bytes, Address, OS); OS << " "; return; } std::string Buffer; { raw_string_ostream TempStream(Buffer); IP.printInst(MI, TempStream, "", STI); } StringRef Contents(Buffer); // Split off bundle attributes auto PacketBundle = Contents.rsplit('\n'); // Split off first instruction from the rest auto HeadTail = PacketBundle.first.split('\n'); auto Preamble = " { "; auto Separator = ""; while(!HeadTail.first.empty()) { OS << Separator; Separator = "\n"; if (SP && (PrintSource || PrintLines)) SP->printSourceLine(OS, Address, ""); printLead(Bytes, Address, OS); OS << Preamble; Preamble = " "; StringRef Inst; auto Duplex = HeadTail.first.split('\v'); if(!Duplex.second.empty()){ OS << Duplex.first; OS << "; "; Inst = Duplex.second; } else Inst = HeadTail.first; OS << Inst; Bytes = Bytes.slice(4); Address += 4; HeadTail = HeadTail.second.split('\n'); } OS << " } " << PacketBundle.second; } }; HexagonPrettyPrinter HexagonPrettyPrinterInst; class AMDGCNPrettyPrinter : public PrettyPrinter { public: void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef Bytes, uint64_t Address, raw_ostream &OS, StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP) override { if (SP && (PrintSource || PrintLines)) SP->printSourceLine(OS, Address); if (!MI) { OS << " "; return; } SmallString<40> InstStr; raw_svector_ostream IS(InstStr); IP.printInst(MI, IS, "", STI); OS << left_justify(IS.str(), 60) << format("// %012" PRIX64 ": ", Address); typedef support::ulittle32_t U32; for (auto D : makeArrayRef(reinterpret_cast(Bytes.data()), Bytes.size() / sizeof(U32))) // D should be explicitly casted to uint32_t here as it is passed // by format to snprintf as vararg. OS << format("%08" PRIX32 " ", static_cast(D)); if (!Annot.empty()) OS << "// " << Annot; } }; AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst; class BPFPrettyPrinter : public PrettyPrinter { public: void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef Bytes, uint64_t Address, raw_ostream &OS, StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP) override { if (SP && (PrintSource || PrintLines)) SP->printSourceLine(OS, Address); if (!NoLeadingAddr) OS << format("%8" PRId64 ":", Address / 8); if (!NoShowRawInsn) { OS << "\t"; dumpBytes(Bytes, OS); } if (MI) IP.printInst(MI, OS, "", STI); else OS << " "; } }; BPFPrettyPrinter BPFPrettyPrinterInst; PrettyPrinter &selectPrettyPrinter(Triple const &Triple) { switch(Triple.getArch()) { default: return PrettyPrinterInst; case Triple::hexagon: return HexagonPrettyPrinterInst; case Triple::amdgcn: return AMDGCNPrettyPrinterInst; case Triple::bpfel: case Triple::bpfeb: return BPFPrettyPrinterInst; } } } template static std::error_code getRelocationValueString(const ELFObjectFile *Obj, const RelocationRef &RelRef, SmallVectorImpl &Result) { DataRefImpl Rel = RelRef.getRawDataRefImpl(); typedef typename ELFObjectFile::Elf_Sym Elf_Sym; typedef typename ELFObjectFile::Elf_Shdr Elf_Shdr; typedef typename ELFObjectFile::Elf_Rela Elf_Rela; const ELFFile &EF = *Obj->getELFFile(); auto SecOrErr = EF.getSection(Rel.d.a); if (!SecOrErr) return errorToErrorCode(SecOrErr.takeError()); const Elf_Shdr *Sec = *SecOrErr; auto SymTabOrErr = EF.getSection(Sec->sh_link); if (!SymTabOrErr) return errorToErrorCode(SymTabOrErr.takeError()); const Elf_Shdr *SymTab = *SymTabOrErr; assert(SymTab->sh_type == ELF::SHT_SYMTAB || SymTab->sh_type == ELF::SHT_DYNSYM); auto StrTabSec = EF.getSection(SymTab->sh_link); if (!StrTabSec) return errorToErrorCode(StrTabSec.takeError()); auto StrTabOrErr = EF.getStringTable(*StrTabSec); if (!StrTabOrErr) return errorToErrorCode(StrTabOrErr.takeError()); StringRef StrTab = *StrTabOrErr; uint8_t type = RelRef.getType(); StringRef res; int64_t addend = 0; switch (Sec->sh_type) { default: return object_error::parse_failed; case ELF::SHT_REL: { // TODO: Read implicit addend from section data. break; } case ELF::SHT_RELA: { const Elf_Rela *ERela = Obj->getRela(Rel); addend = ERela->r_addend; break; } } symbol_iterator SI = RelRef.getSymbol(); const Elf_Sym *symb = Obj->getSymbol(SI->getRawDataRefImpl()); StringRef Target; if (symb->getType() == ELF::STT_SECTION) { Expected SymSI = SI->getSection(); if (!SymSI) return errorToErrorCode(SymSI.takeError()); const Elf_Shdr *SymSec = Obj->getSection((*SymSI)->getRawDataRefImpl()); auto SecName = EF.getSectionName(SymSec); if (!SecName) return errorToErrorCode(SecName.takeError()); Target = *SecName; } else { Expected SymName = symb->getName(StrTab); if (!SymName) return errorToErrorCode(SymName.takeError()); Target = *SymName; } switch (EF.getHeader()->e_machine) { case ELF::EM_X86_64: switch (type) { case ELF::R_X86_64_PC8: case ELF::R_X86_64_PC16: case ELF::R_X86_64_PC32: { std::string fmtbuf; raw_string_ostream fmt(fmtbuf); fmt << Target << (addend < 0 ? "" : "+") << addend << "-P"; fmt.flush(); Result.append(fmtbuf.begin(), fmtbuf.end()); } break; case ELF::R_X86_64_8: case ELF::R_X86_64_16: case ELF::R_X86_64_32: case ELF::R_X86_64_32S: case ELF::R_X86_64_64: { std::string fmtbuf; raw_string_ostream fmt(fmtbuf); fmt << Target << (addend < 0 ? "" : "+") << addend; fmt.flush(); Result.append(fmtbuf.begin(), fmtbuf.end()); } break; default: res = "Unknown"; } break; case ELF::EM_LANAI: case ELF::EM_AVR: case ELF::EM_AARCH64: { std::string fmtbuf; raw_string_ostream fmt(fmtbuf); fmt << Target; if (addend != 0) fmt << (addend < 0 ? "" : "+") << addend; fmt.flush(); Result.append(fmtbuf.begin(), fmtbuf.end()); break; } case ELF::EM_386: case ELF::EM_IAMCU: case ELF::EM_ARM: case ELF::EM_HEXAGON: case ELF::EM_MIPS: case ELF::EM_BPF: case ELF::EM_RISCV: res = Target; break; case ELF::EM_WEBASSEMBLY: switch (type) { case ELF::R_WEBASSEMBLY_DATA: { std::string fmtbuf; raw_string_ostream fmt(fmtbuf); fmt << Target << (addend < 0 ? "" : "+") << addend; fmt.flush(); Result.append(fmtbuf.begin(), fmtbuf.end()); break; } case ELF::R_WEBASSEMBLY_FUNCTION: res = Target; break; default: res = "Unknown"; } break; default: res = "Unknown"; } if (Result.empty()) Result.append(res.begin(), res.end()); return std::error_code(); } static std::error_code getRelocationValueString(const ELFObjectFileBase *Obj, const RelocationRef &Rel, SmallVectorImpl &Result) { if (auto *ELF32LE = dyn_cast(Obj)) return getRelocationValueString(ELF32LE, Rel, Result); if (auto *ELF64LE = dyn_cast(Obj)) return getRelocationValueString(ELF64LE, Rel, Result); if (auto *ELF32BE = dyn_cast(Obj)) return getRelocationValueString(ELF32BE, Rel, Result); auto *ELF64BE = cast(Obj); return getRelocationValueString(ELF64BE, Rel, Result); } static std::error_code getRelocationValueString(const COFFObjectFile *Obj, const RelocationRef &Rel, SmallVectorImpl &Result) { symbol_iterator SymI = Rel.getSymbol(); Expected SymNameOrErr = SymI->getName(); if (!SymNameOrErr) return errorToErrorCode(SymNameOrErr.takeError()); StringRef SymName = *SymNameOrErr; Result.append(SymName.begin(), SymName.end()); return std::error_code(); } static void printRelocationTargetName(const MachOObjectFile *O, const MachO::any_relocation_info &RE, raw_string_ostream &fmt) { bool IsScattered = O->isRelocationScattered(RE); // Target of a scattered relocation is an address. In the interest of // generating pretty output, scan through the symbol table looking for a // symbol that aligns with that address. If we find one, print it. // Otherwise, we just print the hex address of the target. if (IsScattered) { uint32_t Val = O->getPlainRelocationSymbolNum(RE); for (const SymbolRef &Symbol : O->symbols()) { std::error_code ec; Expected Addr = Symbol.getAddress(); if (!Addr) report_error(O->getFileName(), Addr.takeError()); if (*Addr != Val) continue; Expected Name = Symbol.getName(); if (!Name) report_error(O->getFileName(), Name.takeError()); fmt << *Name; return; } // If we couldn't find a symbol that this relocation refers to, try // to find a section beginning instead. for (const SectionRef &Section : ToolSectionFilter(*O)) { std::error_code ec; StringRef Name; uint64_t Addr = Section.getAddress(); if (Addr != Val) continue; if ((ec = Section.getName(Name))) report_error(O->getFileName(), ec); fmt << Name; return; } fmt << format("0x%x", Val); return; } StringRef S; bool isExtern = O->getPlainRelocationExternal(RE); uint64_t Val = O->getPlainRelocationSymbolNum(RE); if (O->getAnyRelocationType(RE) == MachO::ARM64_RELOC_ADDEND) { fmt << format("0x%0" PRIx64, Val); return; } else if (isExtern) { symbol_iterator SI = O->symbol_begin(); advance(SI, Val); Expected SOrErr = SI->getName(); if (!SOrErr) report_error(O->getFileName(), SOrErr.takeError()); S = *SOrErr; } else { section_iterator SI = O->section_begin(); // Adjust for the fact that sections are 1-indexed. if (Val == 0) { fmt << "0 (?,?)"; return; } uint32_t i = Val - 1; while (i != 0 && SI != O->section_end()) { i--; advance(SI, 1); } if (SI == O->section_end()) fmt << Val << " (?,?)"; else SI->getName(S); } fmt << S; } static std::error_code getRelocationValueString(const WasmObjectFile *Obj, const RelocationRef &RelRef, SmallVectorImpl &Result) { const wasm::WasmRelocation& Rel = Obj->getWasmRelocation(RelRef); std::string fmtbuf; raw_string_ostream fmt(fmtbuf); fmt << Rel.Index << (Rel.Addend < 0 ? "" : "+") << Rel.Addend; fmt.flush(); Result.append(fmtbuf.begin(), fmtbuf.end()); return std::error_code(); } static std::error_code getRelocationValueString(const MachOObjectFile *Obj, const RelocationRef &RelRef, SmallVectorImpl &Result) { DataRefImpl Rel = RelRef.getRawDataRefImpl(); MachO::any_relocation_info RE = Obj->getRelocation(Rel); unsigned Arch = Obj->getArch(); std::string fmtbuf; raw_string_ostream fmt(fmtbuf); unsigned Type = Obj->getAnyRelocationType(RE); bool IsPCRel = Obj->getAnyRelocationPCRel(RE); // Determine any addends that should be displayed with the relocation. // These require decoding the relocation type, which is triple-specific. // X86_64 has entirely custom relocation types. if (Arch == Triple::x86_64) { bool isPCRel = Obj->getAnyRelocationPCRel(RE); switch (Type) { case MachO::X86_64_RELOC_GOT_LOAD: case MachO::X86_64_RELOC_GOT: { printRelocationTargetName(Obj, RE, fmt); fmt << "@GOT"; if (isPCRel) fmt << "PCREL"; break; } case MachO::X86_64_RELOC_SUBTRACTOR: { DataRefImpl RelNext = Rel; Obj->moveRelocationNext(RelNext); MachO::any_relocation_info RENext = Obj->getRelocation(RelNext); // X86_64_RELOC_SUBTRACTOR must be followed by a relocation of type // X86_64_RELOC_UNSIGNED. // NOTE: Scattered relocations don't exist on x86_64. unsigned RType = Obj->getAnyRelocationType(RENext); if (RType != MachO::X86_64_RELOC_UNSIGNED) report_error(Obj->getFileName(), "Expected X86_64_RELOC_UNSIGNED after " "X86_64_RELOC_SUBTRACTOR."); // The X86_64_RELOC_UNSIGNED contains the minuend symbol; // X86_64_RELOC_SUBTRACTOR contains the subtrahend. printRelocationTargetName(Obj, RENext, fmt); fmt << "-"; printRelocationTargetName(Obj, RE, fmt); break; } case MachO::X86_64_RELOC_TLV: printRelocationTargetName(Obj, RE, fmt); fmt << "@TLV"; if (isPCRel) fmt << "P"; break; case MachO::X86_64_RELOC_SIGNED_1: printRelocationTargetName(Obj, RE, fmt); fmt << "-1"; break; case MachO::X86_64_RELOC_SIGNED_2: printRelocationTargetName(Obj, RE, fmt); fmt << "-2"; break; case MachO::X86_64_RELOC_SIGNED_4: printRelocationTargetName(Obj, RE, fmt); fmt << "-4"; break; default: printRelocationTargetName(Obj, RE, fmt); break; } // X86 and ARM share some relocation types in common. } else if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc) { // Generic relocation types... switch (Type) { case MachO::GENERIC_RELOC_PAIR: // prints no info return std::error_code(); case MachO::GENERIC_RELOC_SECTDIFF: { DataRefImpl RelNext = Rel; Obj->moveRelocationNext(RelNext); MachO::any_relocation_info RENext = Obj->getRelocation(RelNext); // X86 sect diff's must be followed by a relocation of type // GENERIC_RELOC_PAIR. unsigned RType = Obj->getAnyRelocationType(RENext); if (RType != MachO::GENERIC_RELOC_PAIR) report_error(Obj->getFileName(), "Expected GENERIC_RELOC_PAIR after " "GENERIC_RELOC_SECTDIFF."); printRelocationTargetName(Obj, RE, fmt); fmt << "-"; printRelocationTargetName(Obj, RENext, fmt); break; } } if (Arch == Triple::x86 || Arch == Triple::ppc) { switch (Type) { case MachO::GENERIC_RELOC_LOCAL_SECTDIFF: { DataRefImpl RelNext = Rel; Obj->moveRelocationNext(RelNext); MachO::any_relocation_info RENext = Obj->getRelocation(RelNext); // X86 sect diff's must be followed by a relocation of type // GENERIC_RELOC_PAIR. unsigned RType = Obj->getAnyRelocationType(RENext); if (RType != MachO::GENERIC_RELOC_PAIR) report_error(Obj->getFileName(), "Expected GENERIC_RELOC_PAIR after " "GENERIC_RELOC_LOCAL_SECTDIFF."); printRelocationTargetName(Obj, RE, fmt); fmt << "-"; printRelocationTargetName(Obj, RENext, fmt); break; } case MachO::GENERIC_RELOC_TLV: { printRelocationTargetName(Obj, RE, fmt); fmt << "@TLV"; if (IsPCRel) fmt << "P"; break; } default: printRelocationTargetName(Obj, RE, fmt); } } else { // ARM-specific relocations switch (Type) { case MachO::ARM_RELOC_HALF: case MachO::ARM_RELOC_HALF_SECTDIFF: { // Half relocations steal a bit from the length field to encode // whether this is an upper16 or a lower16 relocation. bool isUpper = (Obj->getAnyRelocationLength(RE) & 0x1) == 1; if (isUpper) fmt << ":upper16:("; else fmt << ":lower16:("; printRelocationTargetName(Obj, RE, fmt); DataRefImpl RelNext = Rel; Obj->moveRelocationNext(RelNext); MachO::any_relocation_info RENext = Obj->getRelocation(RelNext); // ARM half relocs must be followed by a relocation of type // ARM_RELOC_PAIR. unsigned RType = Obj->getAnyRelocationType(RENext); if (RType != MachO::ARM_RELOC_PAIR) report_error(Obj->getFileName(), "Expected ARM_RELOC_PAIR after " "ARM_RELOC_HALF"); // NOTE: The half of the target virtual address is stashed in the // address field of the secondary relocation, but we can't reverse // engineer the constant offset from it without decoding the movw/movt // instruction to find the other half in its immediate field. // ARM_RELOC_HALF_SECTDIFF encodes the second section in the // symbol/section pointer of the follow-on relocation. if (Type == MachO::ARM_RELOC_HALF_SECTDIFF) { fmt << "-"; printRelocationTargetName(Obj, RENext, fmt); } fmt << ")"; break; } default: { printRelocationTargetName(Obj, RE, fmt); } } } } else printRelocationTargetName(Obj, RE, fmt); fmt.flush(); Result.append(fmtbuf.begin(), fmtbuf.end()); return std::error_code(); } static std::error_code getRelocationValueString(const RelocationRef &Rel, SmallVectorImpl &Result) { const ObjectFile *Obj = Rel.getObject(); if (auto *ELF = dyn_cast(Obj)) return getRelocationValueString(ELF, Rel, Result); if (auto *COFF = dyn_cast(Obj)) return getRelocationValueString(COFF, Rel, Result); if (auto *Wasm = dyn_cast(Obj)) return getRelocationValueString(Wasm, Rel, Result); if (auto *MachO = dyn_cast(Obj)) return getRelocationValueString(MachO, Rel, Result); llvm_unreachable("unknown object file format"); } /// @brief Indicates whether this relocation should hidden when listing /// relocations, usually because it is the trailing part of a multipart /// relocation that will be printed as part of the leading relocation. static bool getHidden(RelocationRef RelRef) { const ObjectFile *Obj = RelRef.getObject(); auto *MachO = dyn_cast(Obj); if (!MachO) return false; unsigned Arch = MachO->getArch(); DataRefImpl Rel = RelRef.getRawDataRefImpl(); uint64_t Type = MachO->getRelocationType(Rel); // On arches that use the generic relocations, GENERIC_RELOC_PAIR // is always hidden. if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc) { if (Type == MachO::GENERIC_RELOC_PAIR) return true; } else if (Arch == Triple::x86_64) { // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows // an X86_64_RELOC_SUBTRACTOR. if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) { DataRefImpl RelPrev = Rel; RelPrev.d.a--; uint64_t PrevType = MachO->getRelocationType(RelPrev); if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR) return true; } } return false; } static uint8_t getElfSymbolType(const ObjectFile *Obj, const SymbolRef &Sym) { assert(Obj->isELF()); if (auto *Elf32LEObj = dyn_cast(Obj)) return Elf32LEObj->getSymbol(Sym.getRawDataRefImpl())->getType(); if (auto *Elf64LEObj = dyn_cast(Obj)) return Elf64LEObj->getSymbol(Sym.getRawDataRefImpl())->getType(); if (auto *Elf32BEObj = dyn_cast(Obj)) return Elf32BEObj->getSymbol(Sym.getRawDataRefImpl())->getType(); if (auto *Elf64BEObj = cast(Obj)) return Elf64BEObj->getSymbol(Sym.getRawDataRefImpl())->getType(); llvm_unreachable("Unsupported binary format"); } template static void addDynamicElfSymbols(const ELFObjectFile *Obj, std::map &AllSymbols) { for (auto Symbol : Obj->getDynamicSymbolIterators()) { uint8_t SymbolType = Symbol.getELFType(); if (SymbolType != ELF::STT_FUNC || Symbol.getSize() == 0) continue; Expected AddressOrErr = Symbol.getAddress(); if (!AddressOrErr) report_error(Obj->getFileName(), AddressOrErr.takeError()); uint64_t Address = *AddressOrErr; Expected Name = Symbol.getName(); if (!Name) report_error(Obj->getFileName(), Name.takeError()); if (Name->empty()) continue; Expected SectionOrErr = Symbol.getSection(); if (!SectionOrErr) report_error(Obj->getFileName(), SectionOrErr.takeError()); section_iterator SecI = *SectionOrErr; if (SecI == Obj->section_end()) continue; AllSymbols[*SecI].emplace_back(Address, *Name, SymbolType); } } static void addDynamicElfSymbols(const ObjectFile *Obj, std::map &AllSymbols) { assert(Obj->isELF()); if (auto *Elf32LEObj = dyn_cast(Obj)) addDynamicElfSymbols(Elf32LEObj, AllSymbols); else if (auto *Elf64LEObj = dyn_cast(Obj)) addDynamicElfSymbols(Elf64LEObj, AllSymbols); else if (auto *Elf32BEObj = dyn_cast(Obj)) addDynamicElfSymbols(Elf32BEObj, AllSymbols); else if (auto *Elf64BEObj = cast(Obj)) addDynamicElfSymbols(Elf64BEObj, AllSymbols); else llvm_unreachable("Unsupported binary format"); } static void DisassembleObject(const ObjectFile *Obj, bool InlineRelocs) { if (StartAddress > StopAddress) error("Start address should be less than stop address"); const Target *TheTarget = getTarget(Obj); // Package up features to be passed to target/subtarget SubtargetFeatures Features = Obj->getFeatures(); if (MAttrs.size()) { for (unsigned i = 0; i != MAttrs.size(); ++i) Features.AddFeature(MAttrs[i]); } std::unique_ptr MRI( TheTarget->createMCRegInfo(TripleName)); if (!MRI) report_error(Obj->getFileName(), "no register info for target " + TripleName); // Set up disassembler. std::unique_ptr AsmInfo( TheTarget->createMCAsmInfo(*MRI, TripleName)); if (!AsmInfo) report_error(Obj->getFileName(), "no assembly info for target " + TripleName); std::unique_ptr STI( TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString())); if (!STI) report_error(Obj->getFileName(), "no subtarget info for target " + TripleName); std::unique_ptr MII(TheTarget->createMCInstrInfo()); if (!MII) report_error(Obj->getFileName(), "no instruction info for target " + TripleName); MCObjectFileInfo MOFI; MCContext Ctx(AsmInfo.get(), MRI.get(), &MOFI); // FIXME: for now initialize MCObjectFileInfo with default values MOFI.InitMCObjectFileInfo(Triple(TripleName), false, Ctx); std::unique_ptr DisAsm( TheTarget->createMCDisassembler(*STI, Ctx)); if (!DisAsm) report_error(Obj->getFileName(), "no disassembler for target " + TripleName); std::unique_ptr MIA( TheTarget->createMCInstrAnalysis(MII.get())); int AsmPrinterVariant = AsmInfo->getAssemblerDialect(); std::unique_ptr IP(TheTarget->createMCInstPrinter( Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI)); if (!IP) report_error(Obj->getFileName(), "no instruction printer for target " + TripleName); IP->setPrintImmHex(PrintImmHex); PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName)); StringRef Fmt = Obj->getBytesInAddress() > 4 ? "\t\t%016" PRIx64 ": " : "\t\t\t%08" PRIx64 ": "; SourcePrinter SP(Obj, TheTarget->getName()); // Create a mapping, RelocSecs = SectionRelocMap[S], where sections // in RelocSecs contain the relocations for section S. std::error_code EC; std::map> SectionRelocMap; for (const SectionRef &Section : ToolSectionFilter(*Obj)) { section_iterator Sec2 = Section.getRelocatedSection(); if (Sec2 != Obj->section_end()) SectionRelocMap[*Sec2].push_back(Section); } // Create a mapping from virtual address to symbol name. This is used to // pretty print the symbols while disassembling. std::map AllSymbols; for (const SymbolRef &Symbol : Obj->symbols()) { Expected AddressOrErr = Symbol.getAddress(); if (!AddressOrErr) report_error(Obj->getFileName(), AddressOrErr.takeError()); uint64_t Address = *AddressOrErr; Expected Name = Symbol.getName(); if (!Name) report_error(Obj->getFileName(), Name.takeError()); if (Name->empty()) continue; Expected SectionOrErr = Symbol.getSection(); if (!SectionOrErr) report_error(Obj->getFileName(), SectionOrErr.takeError()); section_iterator SecI = *SectionOrErr; if (SecI == Obj->section_end()) continue; uint8_t SymbolType = ELF::STT_NOTYPE; if (Obj->isELF()) SymbolType = getElfSymbolType(Obj, Symbol); AllSymbols[*SecI].emplace_back(Address, *Name, SymbolType); } if (AllSymbols.empty() && Obj->isELF()) addDynamicElfSymbols(Obj, AllSymbols); // Create a mapping from virtual address to section. std::vector> SectionAddresses; for (SectionRef Sec : Obj->sections()) SectionAddresses.emplace_back(Sec.getAddress(), Sec); array_pod_sort(SectionAddresses.begin(), SectionAddresses.end()); // Linked executables (.exe and .dll files) typically don't include a real // symbol table but they might contain an export table. if (const auto *COFFObj = dyn_cast(Obj)) { for (const auto &ExportEntry : COFFObj->export_directories()) { StringRef Name; error(ExportEntry.getSymbolName(Name)); if (Name.empty()) continue; uint32_t RVA; error(ExportEntry.getExportRVA(RVA)); uint64_t VA = COFFObj->getImageBase() + RVA; auto Sec = std::upper_bound( SectionAddresses.begin(), SectionAddresses.end(), VA, [](uint64_t LHS, const std::pair &RHS) { return LHS < RHS.first; }); if (Sec != SectionAddresses.begin()) --Sec; else Sec = SectionAddresses.end(); if (Sec != SectionAddresses.end()) AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE); } } // Sort all the symbols, this allows us to use a simple binary search to find // a symbol near an address. for (std::pair &SecSyms : AllSymbols) array_pod_sort(SecSyms.second.begin(), SecSyms.second.end()); for (const SectionRef &Section : ToolSectionFilter(*Obj)) { if (!DisassembleAll && (!Section.isText() || Section.isVirtual())) continue; uint64_t SectionAddr = Section.getAddress(); uint64_t SectSize = Section.getSize(); if (!SectSize) continue; // Get the list of all the symbols in this section. SectionSymbolsTy &Symbols = AllSymbols[Section]; std::vector DataMappingSymsAddr; std::vector TextMappingSymsAddr; if (isArmElf(Obj)) { for (const auto &Symb : Symbols) { uint64_t Address = std::get<0>(Symb); StringRef Name = std::get<1>(Symb); if (Name.startswith("$d")) DataMappingSymsAddr.push_back(Address - SectionAddr); if (Name.startswith("$x")) TextMappingSymsAddr.push_back(Address - SectionAddr); if (Name.startswith("$a")) TextMappingSymsAddr.push_back(Address - SectionAddr); if (Name.startswith("$t")) TextMappingSymsAddr.push_back(Address - SectionAddr); } } std::sort(DataMappingSymsAddr.begin(), DataMappingSymsAddr.end()); std::sort(TextMappingSymsAddr.begin(), TextMappingSymsAddr.end()); if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) { // AMDGPU disassembler uses symbolizer for printing labels std::unique_ptr RelInfo( TheTarget->createMCRelocationInfo(TripleName, Ctx)); if (RelInfo) { std::unique_ptr Symbolizer( TheTarget->createMCSymbolizer( TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo))); DisAsm->setSymbolizer(std::move(Symbolizer)); } } // Make a list of all the relocations for this section. std::vector Rels; if (InlineRelocs) { for (const SectionRef &RelocSec : SectionRelocMap[Section]) { for (const RelocationRef &Reloc : RelocSec.relocations()) { Rels.push_back(Reloc); } } } // Sort relocations by address. std::sort(Rels.begin(), Rels.end(), RelocAddressLess); StringRef SegmentName = ""; if (const MachOObjectFile *MachO = dyn_cast(Obj)) { DataRefImpl DR = Section.getRawDataRefImpl(); SegmentName = MachO->getSectionFinalSegmentName(DR); } StringRef name; error(Section.getName(name)); if ((SectionAddr <= StopAddress) && (SectionAddr + SectSize) >= StartAddress) { outs() << "Disassembly of section "; if (!SegmentName.empty()) outs() << SegmentName << ","; outs() << name << ':'; } // If the section has no symbol at the start, just insert a dummy one. if (Symbols.empty() || std::get<0>(Symbols[0]) != 0) { Symbols.insert(Symbols.begin(), std::make_tuple(SectionAddr, name, Section.isText() ? ELF::STT_FUNC : ELF::STT_OBJECT)); } SmallString<40> Comments; raw_svector_ostream CommentStream(Comments); StringRef BytesStr; error(Section.getContents(BytesStr)); ArrayRef Bytes(reinterpret_cast(BytesStr.data()), BytesStr.size()); uint64_t Size; uint64_t Index; std::vector::const_iterator rel_cur = Rels.begin(); std::vector::const_iterator rel_end = Rels.end(); // Disassemble symbol by symbol. for (unsigned si = 0, se = Symbols.size(); si != se; ++si) { uint64_t Start = std::get<0>(Symbols[si]) - SectionAddr; // The end is either the section end or the beginning of the next // symbol. uint64_t End = (si == se - 1) ? SectSize : std::get<0>(Symbols[si + 1]) - SectionAddr; // Don't try to disassemble beyond the end of section contents. if (End > SectSize) End = SectSize; // If this symbol has the same address as the next symbol, then skip it. if (Start >= End) continue; // Check if we need to skip symbol // Skip if the symbol's data is not between StartAddress and StopAddress if (End + SectionAddr < StartAddress || Start + SectionAddr > StopAddress) { continue; } // Stop disassembly at the stop address specified if (End + SectionAddr > StopAddress) End = StopAddress - SectionAddr; if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) { // make size 4 bytes folded End = Start + ((End - Start) & ~0x3ull); if (std::get<2>(Symbols[si]) == ELF::STT_AMDGPU_HSA_KERNEL) { // skip amd_kernel_code_t at the begining of kernel symbol (256 bytes) Start += 256; } if (si == se - 1 || std::get<2>(Symbols[si + 1]) == ELF::STT_AMDGPU_HSA_KERNEL) { // cut trailing zeroes at the end of kernel // cut up to 256 bytes const uint64_t EndAlign = 256; const auto Limit = End - (std::min)(EndAlign, End - Start); while (End > Limit && *reinterpret_cast(&Bytes[End - 4]) == 0) End -= 4; } } outs() << '\n' << std::get<1>(Symbols[si]) << ":\n"; #ifndef NDEBUG raw_ostream &DebugOut = DebugFlag ? dbgs() : nulls(); #else raw_ostream &DebugOut = nulls(); #endif for (Index = Start; Index < End; Index += Size) { MCInst Inst; if (Index + SectionAddr < StartAddress || Index + SectionAddr > StopAddress) { // skip byte by byte till StartAddress is reached Size = 1; continue; } // AArch64 ELF binaries can interleave data and text in the // same section. We rely on the markers introduced to // understand what we need to dump. If the data marker is within a // function, it is denoted as a word/short etc if (isArmElf(Obj) && std::get<2>(Symbols[si]) != ELF::STT_OBJECT && !DisassembleAll) { uint64_t Stride = 0; auto DAI = std::lower_bound(DataMappingSymsAddr.begin(), DataMappingSymsAddr.end(), Index); if (DAI != DataMappingSymsAddr.end() && *DAI == Index) { // Switch to data. while (Index < End) { outs() << format("%8" PRIx64 ":", SectionAddr + Index); outs() << "\t"; if (Index + 4 <= End) { Stride = 4; dumpBytes(Bytes.slice(Index, 4), outs()); outs() << "\t.word\t"; uint32_t Data = 0; if (Obj->isLittleEndian()) { const auto Word = reinterpret_cast( Bytes.data() + Index); Data = *Word; } else { const auto Word = reinterpret_cast( Bytes.data() + Index); Data = *Word; } outs() << "0x" << format("%08" PRIx32, Data); } else if (Index + 2 <= End) { Stride = 2; dumpBytes(Bytes.slice(Index, 2), outs()); outs() << "\t\t.short\t"; uint16_t Data = 0; if (Obj->isLittleEndian()) { const auto Short = reinterpret_cast( Bytes.data() + Index); Data = *Short; } else { const auto Short = reinterpret_cast(Bytes.data() + Index); Data = *Short; } outs() << "0x" << format("%04" PRIx16, Data); } else { Stride = 1; dumpBytes(Bytes.slice(Index, 1), outs()); outs() << "\t\t.byte\t"; outs() << "0x" << format("%02" PRIx8, Bytes.slice(Index, 1)[0]); } Index += Stride; outs() << "\n"; auto TAI = std::lower_bound(TextMappingSymsAddr.begin(), TextMappingSymsAddr.end(), Index); if (TAI != TextMappingSymsAddr.end() && *TAI == Index) break; } } } // If there is a data symbol inside an ELF text section and we are only // disassembling text (applicable all architectures), // we are in a situation where we must print the data and not // disassemble it. if (Obj->isELF() && std::get<2>(Symbols[si]) == ELF::STT_OBJECT && !DisassembleAll && Section.isText()) { // print out data up to 8 bytes at a time in hex and ascii uint8_t AsciiData[9] = {'\0'}; uint8_t Byte; int NumBytes = 0; for (Index = Start; Index < End; Index += 1) { if (((SectionAddr + Index) < StartAddress) || ((SectionAddr + Index) > StopAddress)) continue; if (NumBytes == 0) { outs() << format("%8" PRIx64 ":", SectionAddr + Index); outs() << "\t"; } Byte = Bytes.slice(Index)[0]; outs() << format(" %02x", Byte); AsciiData[NumBytes] = isprint(Byte) ? Byte : '.'; uint8_t IndentOffset = 0; NumBytes++; if (Index == End - 1 || NumBytes > 8) { // Indent the space for less than 8 bytes data. // 2 spaces for byte and one for space between bytes IndentOffset = 3 * (8 - NumBytes); for (int Excess = 8 - NumBytes; Excess < 8; Excess++) AsciiData[Excess] = '\0'; NumBytes = 8; } if (NumBytes == 8) { AsciiData[8] = '\0'; outs() << std::string(IndentOffset, ' ') << " "; outs() << reinterpret_cast(AsciiData); outs() << '\n'; NumBytes = 0; } } } if (Index >= End) break; // Disassemble a real instruction or a data when disassemble all is // provided bool Disassembled = DisAsm->getInstruction(Inst, Size, Bytes.slice(Index), SectionAddr + Index, DebugOut, CommentStream); if (Size == 0) Size = 1; PIP.printInst(*IP, Disassembled ? &Inst : nullptr, Bytes.slice(Index, Size), SectionAddr + Index, outs(), "", *STI, &SP); outs() << CommentStream.str(); Comments.clear(); // Try to resolve the target of a call, tail call, etc. to a specific // symbol. if (MIA && (MIA->isCall(Inst) || MIA->isUnconditionalBranch(Inst) || MIA->isConditionalBranch(Inst))) { uint64_t Target; if (MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target)) { // In a relocatable object, the target's section must reside in // the same section as the call instruction or it is accessed // through a relocation. // // In a non-relocatable object, the target may be in any section. // // N.B. We don't walk the relocations in the relocatable case yet. auto *TargetSectionSymbols = &Symbols; if (!Obj->isRelocatableObject()) { auto SectionAddress = std::upper_bound( SectionAddresses.begin(), SectionAddresses.end(), Target, [](uint64_t LHS, const std::pair &RHS) { return LHS < RHS.first; }); if (SectionAddress != SectionAddresses.begin()) { --SectionAddress; TargetSectionSymbols = &AllSymbols[SectionAddress->second]; } else { TargetSectionSymbols = nullptr; } } // Find the first symbol in the section whose offset is less than // or equal to the target. if (TargetSectionSymbols) { auto TargetSym = std::upper_bound( TargetSectionSymbols->begin(), TargetSectionSymbols->end(), Target, [](uint64_t LHS, const std::tuple &RHS) { return LHS < std::get<0>(RHS); }); if (TargetSym != TargetSectionSymbols->begin()) { --TargetSym; uint64_t TargetAddress = std::get<0>(*TargetSym); StringRef TargetName = std::get<1>(*TargetSym); outs() << " <" << TargetName; uint64_t Disp = Target - TargetAddress; if (Disp) outs() << "+0x" << Twine::utohexstr(Disp); outs() << '>'; } } } } outs() << "\n"; // Print relocation for instruction. while (rel_cur != rel_end) { bool hidden = getHidden(*rel_cur); uint64_t addr = rel_cur->getOffset(); SmallString<16> name; SmallString<32> val; // If this relocation is hidden, skip it. if (hidden || ((SectionAddr + addr) < StartAddress)) { ++rel_cur; continue; } // Stop when rel_cur's address is past the current instruction. if (addr >= Index + Size) break; rel_cur->getTypeName(name); error(getRelocationValueString(*rel_cur, val)); outs() << format(Fmt.data(), SectionAddr + addr) << name << "\t" << val << "\n"; ++rel_cur; } } } } } void llvm::PrintRelocations(const ObjectFile *Obj) { StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64; // Regular objdump doesn't print relocations in non-relocatable object // files. if (!Obj->isRelocatableObject()) return; for (const SectionRef &Section : ToolSectionFilter(*Obj)) { if (Section.relocation_begin() == Section.relocation_end()) continue; StringRef secname; error(Section.getName(secname)); outs() << "RELOCATION RECORDS FOR [" << secname << "]:\n"; for (const RelocationRef &Reloc : Section.relocations()) { bool hidden = getHidden(Reloc); uint64_t address = Reloc.getOffset(); SmallString<32> relocname; SmallString<32> valuestr; if (address < StartAddress || address > StopAddress || hidden) continue; Reloc.getTypeName(relocname); error(getRelocationValueString(Reloc, valuestr)); outs() << format(Fmt.data(), address) << " " << relocname << " " << valuestr << "\n"; } outs() << "\n"; } } void llvm::PrintSectionHeaders(const ObjectFile *Obj) { outs() << "Sections:\n" "Idx Name Size Address Type\n"; unsigned i = 0; for (const SectionRef &Section : ToolSectionFilter(*Obj)) { StringRef Name; error(Section.getName(Name)); uint64_t Address = Section.getAddress(); uint64_t Size = Section.getSize(); bool Text = Section.isText(); bool Data = Section.isData(); bool BSS = Section.isBSS(); std::string Type = (std::string(Text ? "TEXT " : "") + (Data ? "DATA " : "") + (BSS ? "BSS" : "")); outs() << format("%3d %-13s %08" PRIx64 " %016" PRIx64 " %s\n", i, Name.str().c_str(), Size, Address, Type.c_str()); ++i; } } void llvm::PrintSectionContents(const ObjectFile *Obj) { std::error_code EC; for (const SectionRef &Section : ToolSectionFilter(*Obj)) { StringRef Name; StringRef Contents; error(Section.getName(Name)); uint64_t BaseAddr = Section.getAddress(); uint64_t Size = Section.getSize(); if (!Size) continue; outs() << "Contents of section " << Name << ":\n"; if (Section.isBSS()) { outs() << format("\n", BaseAddr, BaseAddr + Size); continue; } error(Section.getContents(Contents)); // Dump out the content as hex and printable ascii characters. for (std::size_t addr = 0, end = Contents.size(); addr < end; addr += 16) { outs() << format(" %04" PRIx64 " ", BaseAddr + addr); // Dump line of hex. for (std::size_t i = 0; i < 16; ++i) { if (i != 0 && i % 4 == 0) outs() << ' '; if (addr + i < end) outs() << hexdigit((Contents[addr + i] >> 4) & 0xF, true) << hexdigit(Contents[addr + i] & 0xF, true); else outs() << " "; } // Print ascii. outs() << " "; for (std::size_t i = 0; i < 16 && addr + i < end; ++i) { if (std::isprint(static_cast(Contents[addr + i]) & 0xFF)) outs() << Contents[addr + i]; else outs() << "."; } outs() << "\n"; } } } void llvm::PrintSymbolTable(const ObjectFile *o, StringRef ArchiveName, StringRef ArchitectureName) { outs() << "SYMBOL TABLE:\n"; if (const COFFObjectFile *coff = dyn_cast(o)) { printCOFFSymbolTable(coff); return; } for (const SymbolRef &Symbol : o->symbols()) { Expected AddressOrError = Symbol.getAddress(); if (!AddressOrError) report_error(ArchiveName, o->getFileName(), AddressOrError.takeError(), ArchitectureName); uint64_t Address = *AddressOrError; if ((Address < StartAddress) || (Address > StopAddress)) continue; Expected TypeOrError = Symbol.getType(); if (!TypeOrError) report_error(ArchiveName, o->getFileName(), TypeOrError.takeError(), ArchitectureName); SymbolRef::Type Type = *TypeOrError; uint32_t Flags = Symbol.getFlags(); Expected SectionOrErr = Symbol.getSection(); if (!SectionOrErr) report_error(ArchiveName, o->getFileName(), SectionOrErr.takeError(), ArchitectureName); section_iterator Section = *SectionOrErr; StringRef Name; if (Type == SymbolRef::ST_Debug && Section != o->section_end()) { Section->getName(Name); } else { Expected NameOrErr = Symbol.getName(); if (!NameOrErr) report_error(ArchiveName, o->getFileName(), NameOrErr.takeError(), ArchitectureName); Name = *NameOrErr; } bool Global = Flags & SymbolRef::SF_Global; bool Weak = Flags & SymbolRef::SF_Weak; bool Absolute = Flags & SymbolRef::SF_Absolute; bool Common = Flags & SymbolRef::SF_Common; bool Hidden = Flags & SymbolRef::SF_Hidden; char GlobLoc = ' '; if (Type != SymbolRef::ST_Unknown) GlobLoc = Global ? 'g' : 'l'; char Debug = (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File) ? 'd' : ' '; char FileFunc = ' '; if (Type == SymbolRef::ST_File) FileFunc = 'f'; else if (Type == SymbolRef::ST_Function) FileFunc = 'F'; const char *Fmt = o->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64; outs() << format(Fmt, Address) << " " << GlobLoc // Local -> 'l', Global -> 'g', Neither -> ' ' << (Weak ? 'w' : ' ') // Weak? << ' ' // Constructor. Not supported yet. << ' ' // Warning. Not supported yet. << ' ' // Indirect reference to another symbol. << Debug // Debugging (d) or dynamic (D) symbol. << FileFunc // Name of function (F), file (f) or object (O). << ' '; if (Absolute) { outs() << "*ABS*"; } else if (Common) { outs() << "*COM*"; } else if (Section == o->section_end()) { outs() << "*UND*"; } else { if (const MachOObjectFile *MachO = dyn_cast(o)) { DataRefImpl DR = Section->getRawDataRefImpl(); StringRef SegmentName = MachO->getSectionFinalSegmentName(DR); outs() << SegmentName << ","; } StringRef SectionName; error(Section->getName(SectionName)); outs() << SectionName; } outs() << '\t'; if (Common || isa(o)) { uint64_t Val = Common ? Symbol.getAlignment() : ELFSymbolRef(Symbol).getSize(); outs() << format("\t %08" PRIx64 " ", Val); } if (Hidden) { outs() << ".hidden "; } outs() << Name << '\n'; } } static void PrintUnwindInfo(const ObjectFile *o) { outs() << "Unwind info:\n\n"; if (const COFFObjectFile *coff = dyn_cast(o)) { printCOFFUnwindInfo(coff); } else if (const MachOObjectFile *MachO = dyn_cast(o)) printMachOUnwindInfo(MachO); else { // TODO: Extract DWARF dump tool to objdump. errs() << "This operation is only currently supported " "for COFF and MachO object files.\n"; return; } } void llvm::printExportsTrie(const ObjectFile *o) { outs() << "Exports trie:\n"; if (const MachOObjectFile *MachO = dyn_cast(o)) printMachOExportsTrie(MachO); else { errs() << "This operation is only currently supported " "for Mach-O executable files.\n"; return; } } void llvm::printRebaseTable(ObjectFile *o) { outs() << "Rebase table:\n"; if (MachOObjectFile *MachO = dyn_cast(o)) printMachORebaseTable(MachO); else { errs() << "This operation is only currently supported " "for Mach-O executable files.\n"; return; } } void llvm::printBindTable(ObjectFile *o) { outs() << "Bind table:\n"; if (MachOObjectFile *MachO = dyn_cast(o)) printMachOBindTable(MachO); else { errs() << "This operation is only currently supported " "for Mach-O executable files.\n"; return; } } void llvm::printLazyBindTable(ObjectFile *o) { outs() << "Lazy bind table:\n"; if (MachOObjectFile *MachO = dyn_cast(o)) printMachOLazyBindTable(MachO); else { errs() << "This operation is only currently supported " "for Mach-O executable files.\n"; return; } } void llvm::printWeakBindTable(ObjectFile *o) { outs() << "Weak bind table:\n"; if (MachOObjectFile *MachO = dyn_cast(o)) printMachOWeakBindTable(MachO); else { errs() << "This operation is only currently supported " "for Mach-O executable files.\n"; return; } } /// Dump the raw contents of the __clangast section so the output can be piped /// into llvm-bcanalyzer. void llvm::printRawClangAST(const ObjectFile *Obj) { if (outs().is_displayed()) { errs() << "The -raw-clang-ast option will dump the raw binary contents of " "the clang ast section.\n" "Please redirect the output to a file or another program such as " "llvm-bcanalyzer.\n"; return; } StringRef ClangASTSectionName("__clangast"); if (isa(Obj)) { ClangASTSectionName = "clangast"; } Optional ClangASTSection; for (auto Sec : ToolSectionFilter(*Obj)) { StringRef Name; Sec.getName(Name); if (Name == ClangASTSectionName) { ClangASTSection = Sec; break; } } if (!ClangASTSection) return; StringRef ClangASTContents; error(ClangASTSection.getValue().getContents(ClangASTContents)); outs().write(ClangASTContents.data(), ClangASTContents.size()); } static void printFaultMaps(const ObjectFile *Obj) { const char *FaultMapSectionName = nullptr; if (isa(Obj)) { FaultMapSectionName = ".llvm_faultmaps"; } else if (isa(Obj)) { FaultMapSectionName = "__llvm_faultmaps"; } else { errs() << "This operation is only currently supported " "for ELF and Mach-O executable files.\n"; return; } Optional FaultMapSection; for (auto Sec : ToolSectionFilter(*Obj)) { StringRef Name; Sec.getName(Name); if (Name == FaultMapSectionName) { FaultMapSection = Sec; break; } } outs() << "FaultMap table:\n"; if (!FaultMapSection.hasValue()) { outs() << "\n"; return; } StringRef FaultMapContents; error(FaultMapSection.getValue().getContents(FaultMapContents)); FaultMapParser FMP(FaultMapContents.bytes_begin(), FaultMapContents.bytes_end()); outs() << FMP; } static void printPrivateFileHeaders(const ObjectFile *o, bool onlyFirst) { if (o->isELF()) return printELFFileHeader(o); if (o->isCOFF()) return printCOFFFileHeader(o); if (o->isWasm()) return printWasmFileHeader(o); if (o->isMachO()) { printMachOFileHeader(o); if (!onlyFirst) printMachOLoadCommands(o); return; } report_error(o->getFileName(), "Invalid/Unsupported object file format"); } static void DumpObject(ObjectFile *o, const Archive *a = nullptr) { StringRef ArchiveName = a != nullptr ? a->getFileName() : ""; // Avoid other output when using a raw option. if (!RawClangAST) { outs() << '\n'; if (a) outs() << a->getFileName() << "(" << o->getFileName() << ")"; else outs() << o->getFileName(); outs() << ":\tfile format " << o->getFileFormatName() << "\n\n"; } if (Disassemble) DisassembleObject(o, Relocations); if (Relocations && !Disassemble) PrintRelocations(o); if (SectionHeaders) PrintSectionHeaders(o); if (SectionContents) PrintSectionContents(o); if (SymbolTable) PrintSymbolTable(o, ArchiveName); if (UnwindInfo) PrintUnwindInfo(o); if (PrivateHeaders || FirstPrivateHeader) printPrivateFileHeaders(o, FirstPrivateHeader); if (ExportsTrie) printExportsTrie(o); if (Rebase) printRebaseTable(o); if (Bind) printBindTable(o); if (LazyBind) printLazyBindTable(o); if (WeakBind) printWeakBindTable(o); if (RawClangAST) printRawClangAST(o); if (PrintFaultMaps) printFaultMaps(o); if (DwarfDumpType != DIDT_Null) { std::unique_ptr DICtx = DWARFContext::create(*o); // Dump the complete DWARF structure. DIDumpOptions DumpOpts; DumpOpts.DumpType = DwarfDumpType; DICtx->dump(outs(), DumpOpts); } } static void DumpObject(const COFFImportFile *I, const Archive *A) { StringRef ArchiveName = A ? A->getFileName() : ""; // Avoid other output when using a raw option. if (!RawClangAST) outs() << '\n' << ArchiveName << "(" << I->getFileName() << ")" << ":\tfile format COFF-import-file" << "\n\n"; if (SymbolTable) printCOFFSymbolTable(I); } /// @brief Dump each object file in \a a; static void DumpArchive(const Archive *a) { Error Err = Error::success(); for (auto &C : a->children(Err)) { Expected> ChildOrErr = C.getAsBinary(); if (!ChildOrErr) { if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError())) report_error(a->getFileName(), C, std::move(E)); continue; } if (ObjectFile *o = dyn_cast(&*ChildOrErr.get())) DumpObject(o, a); else if (COFFImportFile *I = dyn_cast(&*ChildOrErr.get())) DumpObject(I, a); else report_error(a->getFileName(), object_error::invalid_file_type); } if (Err) report_error(a->getFileName(), std::move(Err)); } /// @brief Open file and figure out how to dump it. static void DumpInput(StringRef file) { // If we are using the Mach-O specific object file parser, then let it parse // the file and process the command line options. So the -arch flags can // be used to select specific slices, etc. if (MachOOpt) { ParseInputMachO(file); return; } // Attempt to open the binary. Expected> BinaryOrErr = createBinary(file); if (!BinaryOrErr) report_error(file, BinaryOrErr.takeError()); Binary &Binary = *BinaryOrErr.get().getBinary(); if (Archive *a = dyn_cast(&Binary)) DumpArchive(a); else if (ObjectFile *o = dyn_cast(&Binary)) DumpObject(o); else report_error(file, object_error::invalid_file_type); } int main(int argc, char **argv) { // Print a stack trace if we signal out. sys::PrintStackTraceOnErrorSignal(argv[0]); PrettyStackTraceProgram X(argc, argv); llvm_shutdown_obj Y; // Call llvm_shutdown() on exit. // Initialize targets and assembly printers/parsers. llvm::InitializeAllTargetInfos(); llvm::InitializeAllTargetMCs(); llvm::InitializeAllDisassemblers(); // Register the target printer for --version. cl::AddExtraVersionPrinter(TargetRegistry::printRegisteredTargetsForVersion); cl::ParseCommandLineOptions(argc, argv, "llvm object file dumper\n"); TripleName = Triple::normalize(TripleName); ToolName = argv[0]; // Defaults to a.out if no filenames specified. if (InputFilenames.size() == 0) InputFilenames.push_back("a.out"); if (DisassembleAll || PrintSource || PrintLines) Disassemble = true; if (!Disassemble && !Relocations && !SectionHeaders && !SectionContents && !SymbolTable && !UnwindInfo && !PrivateHeaders && !FirstPrivateHeader && !ExportsTrie && !Rebase && !Bind && !LazyBind && !WeakBind && !RawClangAST && !(UniversalHeaders && MachOOpt) && !(ArchiveHeaders && MachOOpt) && !(IndirectSymbols && MachOOpt) && !(DataInCode && MachOOpt) && !(LinkOptHints && MachOOpt) && !(InfoPlist && MachOOpt) && !(DylibsUsed && MachOOpt) && !(DylibId && MachOOpt) && !(ObjcMetaData && MachOOpt) && !(FilterSections.size() != 0 && MachOOpt) && !PrintFaultMaps && DwarfDumpType == DIDT_Null) { cl::PrintHelpMessage(); return 2; } llvm::for_each(InputFilenames, DumpInput); return EXIT_SUCCESS; }