//===- tools/dsymutil/DwarfLinker.cpp - Dwarf debug info linker -----------===// // // The LLVM Linker // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "BinaryHolder.h" #include "DebugMap.h" #include "MachOUtils.h" #include "NonRelocatableStringpool.h" #include "dsymutil.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseMapInfo.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/FoldingSet.h" #include "llvm/ADT/Hashing.h" #include "llvm/ADT/IntervalMap.h" #include "llvm/ADT/None.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/PointerIntPair.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/Triple.h" #include "llvm/ADT/Twine.h" #include "llvm/BinaryFormat/Dwarf.h" #include "llvm/BinaryFormat/MachO.h" #include "llvm/CodeGen/AsmPrinter.h" #include "llvm/CodeGen/DIE.h" #include "llvm/Config/config.h" #include "llvm/DebugInfo/DIContext.h" #include "llvm/DebugInfo/DWARF/DWARFAbbreviationDeclaration.h" #include "llvm/DebugInfo/DWARF/DWARFContext.h" #include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h" #include "llvm/DebugInfo/DWARF/DWARFDebugLine.h" #include "llvm/DebugInfo/DWARF/DWARFDebugRangeList.h" #include "llvm/DebugInfo/DWARF/DWARFDie.h" #include "llvm/DebugInfo/DWARF/DWARFFormValue.h" #include "llvm/DebugInfo/DWARF/DWARFSection.h" #include "llvm/DebugInfo/DWARF/DWARFUnit.h" #include "llvm/MC/MCAsmBackend.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCCodeEmitter.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCDwarf.h" #include "llvm/MC/MCInstrInfo.h" #include "llvm/MC/MCObjectFileInfo.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/MC/MCSection.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/MC/MCTargetOptions.h" #include "llvm/MC/MCTargetOptionsCommandFlags.def" #include "llvm/Object/MachO.h" #include "llvm/Object/ObjectFile.h" #include "llvm/Object/SymbolicFile.h" #include "llvm/Support/Allocator.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/DataExtractor.h" #include "llvm/Support/Error.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/ErrorOr.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/Format.h" #include "llvm/Support/LEB128.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/Path.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Support/ToolOutputFile.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace llvm { namespace dsymutil { namespace { template using HalfOpenIntervalMap = IntervalMap::LeafSize, IntervalMapHalfOpenInfo>; using FunctionIntervals = HalfOpenIntervalMap; // FIXME: Delete this structure. struct PatchLocation { DIE::value_iterator I; PatchLocation() = default; PatchLocation(DIE::value_iterator I) : I(I) {} void set(uint64_t New) const { assert(I); const auto &Old = *I; assert(Old.getType() == DIEValue::isInteger); *I = DIEValue(Old.getAttribute(), Old.getForm(), DIEInteger(New)); } uint64_t get() const { assert(I); return I->getDIEInteger().getValue(); } }; class CompileUnit; struct DeclMapInfo; /// A DeclContext is a named program scope that is used for ODR /// uniquing of types. /// The set of DeclContext for the ODR-subject parts of a Dwarf link /// is expanded (and uniqued) with each new object file processed. We /// need to determine the context of each DIE in an linked object file /// to see if the corresponding type has already been emitted. /// /// The contexts are conceptually organised as a tree (eg. a function /// scope is contained in a namespace scope that contains other /// scopes), but storing/accessing them in an actual tree is too /// inefficient: we need to be able to very quickly query a context /// for a given child context by name. Storing a StringMap in each /// DeclContext would be too space inefficient. /// The solution here is to give each DeclContext a link to its parent /// (this allows to walk up the tree), but to query the existance of a /// specific DeclContext using a separate DenseMap keyed on the hash /// of the fully qualified name of the context. class DeclContext { friend DeclMapInfo; unsigned QualifiedNameHash = 0; uint32_t Line = 0; uint32_t ByteSize = 0; uint16_t Tag = dwarf::DW_TAG_compile_unit; unsigned DefinedInClangModule : 1; StringRef Name; StringRef File; const DeclContext &Parent; DWARFDie LastSeenDIE; uint32_t LastSeenCompileUnitID = 0; uint32_t CanonicalDIEOffset = 0; public: using Map = DenseSet; DeclContext() : DefinedInClangModule(0), Parent(*this) {} DeclContext(unsigned Hash, uint32_t Line, uint32_t ByteSize, uint16_t Tag, StringRef Name, StringRef File, const DeclContext &Parent, DWARFDie LastSeenDIE = DWARFDie(), unsigned CUId = 0) : QualifiedNameHash(Hash), Line(Line), ByteSize(ByteSize), Tag(Tag), DefinedInClangModule(0), Name(Name), File(File), Parent(Parent), LastSeenDIE(LastSeenDIE), LastSeenCompileUnitID(CUId) {} uint32_t getQualifiedNameHash() const { return QualifiedNameHash; } bool setLastSeenDIE(CompileUnit &U, const DWARFDie &Die); uint32_t getCanonicalDIEOffset() const { return CanonicalDIEOffset; } void setCanonicalDIEOffset(uint32_t Offset) { CanonicalDIEOffset = Offset; } bool isDefinedInClangModule() const { return DefinedInClangModule; } void setDefinedInClangModule(bool Val) { DefinedInClangModule = Val; } uint16_t getTag() const { return Tag; } StringRef getName() const { return Name; } }; /// Info type for the DenseMap storing the DeclContext pointers. struct DeclMapInfo : private DenseMapInfo { using DenseMapInfo::getEmptyKey; using DenseMapInfo::getTombstoneKey; static unsigned getHashValue(const DeclContext *Ctxt) { return Ctxt->QualifiedNameHash; } static bool isEqual(const DeclContext *LHS, const DeclContext *RHS) { if (RHS == getEmptyKey() || RHS == getTombstoneKey()) return RHS == LHS; return LHS->QualifiedNameHash == RHS->QualifiedNameHash && LHS->Line == RHS->Line && LHS->ByteSize == RHS->ByteSize && LHS->Name.data() == RHS->Name.data() && LHS->File.data() == RHS->File.data() && LHS->Parent.QualifiedNameHash == RHS->Parent.QualifiedNameHash; } }; /// This class gives a tree-like API to the DenseMap that stores the /// DeclContext objects. It also holds the BumpPtrAllocator where /// these objects will be allocated. class DeclContextTree { BumpPtrAllocator Allocator; DeclContext Root; DeclContext::Map Contexts; public: /// Get the child of \a Context described by \a DIE in \a Unit. The /// required strings will be interned in \a StringPool. /// \returns The child DeclContext along with one bit that is set if /// this context is invalid. /// An invalid context means it shouldn't be considered for uniquing, but its /// not returning null, because some children of that context might be /// uniquing candidates. FIXME: The invalid bit along the return value is to /// emulate some dsymutil-classic functionality. PointerIntPair getChildDeclContext(DeclContext &Context, const DWARFDie &DIE, CompileUnit &Unit, NonRelocatableStringpool &StringPool, bool InClangModule); DeclContext &getRoot() { return Root; } }; /// Stores all information relating to a compile unit, be it in its original /// instance in the object file to its brand new cloned and linked DIE tree. class CompileUnit { public: /// Information gathered about a DIE in the object file. struct DIEInfo { /// Address offset to apply to the described entity. int64_t AddrAdjust; /// ODR Declaration context. DeclContext *Ctxt; /// Cloned version of that DIE. DIE *Clone; /// The index of this DIE's parent. uint32_t ParentIdx; /// Is the DIE part of the linked output? bool Keep : 1; /// Was this DIE's entity found in the map? bool InDebugMap : 1; /// Is this a pure forward declaration we can strip? bool Prune : 1; /// Does DIE transitively refer an incomplete decl? bool Incomplete : 1; }; CompileUnit(DWARFUnit &OrigUnit, unsigned ID, bool CanUseODR, StringRef ClangModuleName) : OrigUnit(OrigUnit), ID(ID), Ranges(RangeAlloc), ClangModuleName(ClangModuleName) { Info.resize(OrigUnit.getNumDIEs()); auto CUDie = OrigUnit.getUnitDIE(false); if (auto Lang = dwarf::toUnsigned(CUDie.find(dwarf::DW_AT_language))) HasODR = CanUseODR && (*Lang == dwarf::DW_LANG_C_plus_plus || *Lang == dwarf::DW_LANG_C_plus_plus_03 || *Lang == dwarf::DW_LANG_C_plus_plus_11 || *Lang == dwarf::DW_LANG_C_plus_plus_14 || *Lang == dwarf::DW_LANG_ObjC_plus_plus); else HasODR = false; } DWARFUnit &getOrigUnit() const { return OrigUnit; } unsigned getUniqueID() const { return ID; } void createOutputDIE() { NewUnit.emplace(OrigUnit.getVersion(), OrigUnit.getAddressByteSize(), OrigUnit.getUnitDIE().getTag()); } DIE *getOutputUnitDIE() const { if (NewUnit) return &const_cast(*NewUnit).getUnitDie(); return nullptr; } bool hasODR() const { return HasODR; } bool isClangModule() const { return !ClangModuleName.empty(); } const std::string &getClangModuleName() const { return ClangModuleName; } DIEInfo &getInfo(unsigned Idx) { return Info[Idx]; } const DIEInfo &getInfo(unsigned Idx) const { return Info[Idx]; } uint64_t getStartOffset() const { return StartOffset; } uint64_t getNextUnitOffset() const { return NextUnitOffset; } void setStartOffset(uint64_t DebugInfoSize) { StartOffset = DebugInfoSize; } uint64_t getLowPc() const { return LowPc; } uint64_t getHighPc() const { return HighPc; } Optional getUnitRangesAttribute() const { return UnitRangeAttribute; } const FunctionIntervals &getFunctionRanges() const { return Ranges; } const std::vector &getRangesAttributes() const { return RangeAttributes; } const std::vector> & getLocationAttributes() const { return LocationAttributes; } void setHasInterestingContent() { HasInterestingContent = true; } bool hasInterestingContent() { return HasInterestingContent; } /// Mark every DIE in this unit as kept. This function also /// marks variables as InDebugMap so that they appear in the /// reconstructed accelerator tables. void markEverythingAsKept(); /// Compute the end offset for this unit. Must be called after the CU's DIEs /// have been cloned. \returns the next unit offset (which is also the /// current debug_info section size). uint64_t computeNextUnitOffset(); /// Keep track of a forward reference to DIE \p Die in \p RefUnit by \p /// Attr. The attribute should be fixed up later to point to the absolute /// offset of \p Die in the debug_info section or to the canonical offset of /// \p Ctxt if it is non-null. void noteForwardReference(DIE *Die, const CompileUnit *RefUnit, DeclContext *Ctxt, PatchLocation Attr); /// Apply all fixups recored by noteForwardReference(). void fixupForwardReferences(); /// Add a function range [\p LowPC, \p HighPC) that is relocatad by applying /// offset \p PCOffset. void addFunctionRange(uint64_t LowPC, uint64_t HighPC, int64_t PCOffset); /// Keep track of a DW_AT_range attribute that we will need to patch up later. void noteRangeAttribute(const DIE &Die, PatchLocation Attr); /// Keep track of a location attribute pointing to a location list in the /// debug_loc section. void noteLocationAttribute(PatchLocation Attr, int64_t PcOffset); /// Add a name accelerator entry for \p Die with \p Name which is stored in /// the string table at \p Offset. void addNameAccelerator(const DIE *Die, const char *Name, uint32_t Offset, bool SkipPubnamesSection = false); /// Add a type accelerator entry for \p Die with \p Name which is stored in /// the string table at \p Offset. void addTypeAccelerator(const DIE *Die, const char *Name, uint32_t Offset); struct AccelInfo { StringRef Name; ///< Name of the entry. const DIE *Die; ///< DIE this entry describes. uint32_t NameOffset; ///< Offset of Name in the string pool. bool SkipPubSection; ///< Emit this entry only in the apple_* sections. AccelInfo(StringRef Name, const DIE *Die, uint32_t NameOffset, bool SkipPubSection = false) : Name(Name), Die(Die), NameOffset(NameOffset), SkipPubSection(SkipPubSection) {} }; const std::vector &getPubnames() const { return Pubnames; } const std::vector &getPubtypes() const { return Pubtypes; } /// Get the full path for file \a FileNum in the line table StringRef getResolvedPath(unsigned FileNum) { if (FileNum >= ResolvedPaths.size()) return StringRef(); return ResolvedPaths[FileNum]; } /// Set the fully resolved path for the line-table's file \a FileNum /// to \a Path. void setResolvedPath(unsigned FileNum, StringRef Path) { if (ResolvedPaths.size() <= FileNum) ResolvedPaths.resize(FileNum + 1); ResolvedPaths[FileNum] = Path; } private: DWARFUnit &OrigUnit; unsigned ID; std::vector Info; ///< DIE info indexed by DIE index. Optional NewUnit; uint64_t StartOffset; uint64_t NextUnitOffset; uint64_t LowPc = std::numeric_limits::max(); uint64_t HighPc = 0; /// A list of attributes to fixup with the absolute offset of /// a DIE in the debug_info section. /// /// The offsets for the attributes in this array couldn't be set while /// cloning because for cross-cu forward refences the target DIE's /// offset isn't known you emit the reference attribute. std::vector> ForwardDIEReferences; FunctionIntervals::Allocator RangeAlloc; /// The ranges in that interval map are the PC ranges for /// functions in this unit, associated with the PC offset to apply /// to the addresses to get the linked address. FunctionIntervals Ranges; /// DW_AT_ranges attributes to patch after we have gathered /// all the unit's function addresses. /// @{ std::vector RangeAttributes; Optional UnitRangeAttribute; /// @} /// Location attributes that need to be transferred from the /// original debug_loc section to the liked one. They are stored /// along with the PC offset that is to be applied to their /// function's address. std::vector> LocationAttributes; /// Accelerator entries for the unit, both for the pub* /// sections and the apple* ones. /// @{ std::vector Pubnames; std::vector Pubtypes; /// @} /// Cached resolved paths from the line table. /// Note, the StringRefs here point in to the intern (uniquing) string pool. /// This means that a StringRef returned here doesn't need to then be uniqued /// for the purposes of getting a unique address for each string. std::vector ResolvedPaths; /// Is this unit subject to the ODR rule? bool HasODR; /// Did a DIE actually contain a valid reloc? bool HasInterestingContent; /// If this is a Clang module, this holds the module's name. std::string ClangModuleName; }; } // end anonymous namespace void CompileUnit::markEverythingAsKept() { for (auto &I : Info) // Mark everything that wasn't explicity marked for pruning. I.Keep = !I.Prune; } uint64_t CompileUnit::computeNextUnitOffset() { NextUnitOffset = StartOffset + 11 /* Header size */; // The root DIE might be null, meaning that the Unit had nothing to // contribute to the linked output. In that case, we will emit the // unit header without any actual DIE. if (NewUnit) NextUnitOffset += NewUnit->getUnitDie().getSize(); return NextUnitOffset; } /// Keep track of a forward cross-cu reference from this unit /// to \p Die that lives in \p RefUnit. void CompileUnit::noteForwardReference(DIE *Die, const CompileUnit *RefUnit, DeclContext *Ctxt, PatchLocation Attr) { ForwardDIEReferences.emplace_back(Die, RefUnit, Ctxt, Attr); } /// Apply all fixups recorded by noteForwardReference(). void CompileUnit::fixupForwardReferences() { for (const auto &Ref : ForwardDIEReferences) { DIE *RefDie; const CompileUnit *RefUnit; PatchLocation Attr; DeclContext *Ctxt; std::tie(RefDie, RefUnit, Ctxt, Attr) = Ref; if (Ctxt && Ctxt->getCanonicalDIEOffset()) Attr.set(Ctxt->getCanonicalDIEOffset()); else Attr.set(RefDie->getOffset() + RefUnit->getStartOffset()); } } void CompileUnit::addFunctionRange(uint64_t FuncLowPc, uint64_t FuncHighPc, int64_t PcOffset) { Ranges.insert(FuncLowPc, FuncHighPc, PcOffset); this->LowPc = std::min(LowPc, FuncLowPc + PcOffset); this->HighPc = std::max(HighPc, FuncHighPc + PcOffset); } void CompileUnit::noteRangeAttribute(const DIE &Die, PatchLocation Attr) { if (Die.getTag() != dwarf::DW_TAG_compile_unit) RangeAttributes.push_back(Attr); else UnitRangeAttribute = Attr; } void CompileUnit::noteLocationAttribute(PatchLocation Attr, int64_t PcOffset) { LocationAttributes.emplace_back(Attr, PcOffset); } /// Add a name accelerator entry for \p Die with \p Name /// which is stored in the string table at \p Offset. void CompileUnit::addNameAccelerator(const DIE *Die, const char *Name, uint32_t Offset, bool SkipPubSection) { Pubnames.emplace_back(Name, Die, Offset, SkipPubSection); } /// Add a type accelerator entry for \p Die with \p Name /// which is stored in the string table at \p Offset. void CompileUnit::addTypeAccelerator(const DIE *Die, const char *Name, uint32_t Offset) { Pubtypes.emplace_back(Name, Die, Offset, false); } namespace { /// The Dwarf streaming logic /// /// All interactions with the MC layer that is used to build the debug /// information binary representation are handled in this class. class DwarfStreamer { /// \defgroup MCObjects MC layer objects constructed by the streamer /// @{ std::unique_ptr MRI; std::unique_ptr MAI; std::unique_ptr MOFI; std::unique_ptr MC; MCAsmBackend *MAB; // Owned by MCStreamer std::unique_ptr MII; std::unique_ptr MSTI; MCCodeEmitter *MCE; // Owned by MCStreamer MCStreamer *MS; // Owned by AsmPrinter std::unique_ptr TM; std::unique_ptr Asm; /// @} /// The file we stream the linked Dwarf to. raw_fd_ostream &OutFile; uint32_t RangesSectionSize; uint32_t LocSectionSize; uint32_t LineSectionSize; uint32_t FrameSectionSize; /// Emit the pubnames or pubtypes section contribution for \p /// Unit into \p Sec. The data is provided in \p Names. void emitPubSectionForUnit(MCSection *Sec, StringRef Name, const CompileUnit &Unit, const std::vector &Names); public: DwarfStreamer(raw_fd_ostream &OutFile) : OutFile(OutFile) {} bool init(Triple TheTriple); /// Dump the file to the disk. bool finish(const DebugMap &); AsmPrinter &getAsmPrinter() const { return *Asm; } /// Set the current output section to debug_info and change /// the MC Dwarf version to \p DwarfVersion. void switchToDebugInfoSection(unsigned DwarfVersion); /// Emit the compilation unit header for \p Unit in the /// debug_info section. /// /// As a side effect, this also switches the current Dwarf version /// of the MC layer to the one of U.getOrigUnit(). void emitCompileUnitHeader(CompileUnit &Unit); /// Recursively emit the DIE tree rooted at \p Die. void emitDIE(DIE &Die); /// Emit the abbreviation table \p Abbrevs to the debug_abbrev section. void emitAbbrevs(const std::vector> &Abbrevs, unsigned DwarfVersion); /// Emit the string table described by \p Pool. void emitStrings(const NonRelocatableStringpool &Pool); /// Emit the swift_ast section stored in \p Buffer. void emitSwiftAST(StringRef Buffer); /// Emit debug_ranges for \p FuncRange by translating the /// original \p Entries. void emitRangesEntries( int64_t UnitPcOffset, uint64_t OrigLowPc, const FunctionIntervals::const_iterator &FuncRange, const std::vector &Entries, unsigned AddressSize); /// Emit debug_aranges entries for \p Unit and if \p DoRangesSection is true, /// also emit the debug_ranges entries for the DW_TAG_compile_unit's /// DW_AT_ranges attribute. void emitUnitRangesEntries(CompileUnit &Unit, bool DoRangesSection); uint32_t getRangesSectionSize() const { return RangesSectionSize; } /// Emit the debug_loc contribution for \p Unit by copying the entries from \p /// Dwarf and offseting them. Update the location attributes to point to the /// new entries. void emitLocationsForUnit(const CompileUnit &Unit, DWARFContext &Dwarf); /// Emit the line table described in \p Rows into the debug_line section. void emitLineTableForUnit(MCDwarfLineTableParams Params, StringRef PrologueBytes, unsigned MinInstLength, std::vector &Rows, unsigned AdddressSize); uint32_t getLineSectionSize() const { return LineSectionSize; } /// Emit the .debug_pubnames contribution for \p Unit. void emitPubNamesForUnit(const CompileUnit &Unit); /// Emit the .debug_pubtypes contribution for \p Unit. void emitPubTypesForUnit(const CompileUnit &Unit); /// Emit a CIE. void emitCIE(StringRef CIEBytes); /// Emit an FDE with data \p Bytes. void emitFDE(uint32_t CIEOffset, uint32_t AddreSize, uint32_t Address, StringRef Bytes); uint32_t getFrameSectionSize() const { return FrameSectionSize; } }; } // end anonymous namespace bool DwarfStreamer::init(Triple TheTriple) { std::string ErrorStr; std::string TripleName; StringRef Context = "dwarf streamer init"; // Get the target. const Target *TheTarget = TargetRegistry::lookupTarget(TripleName, TheTriple, ErrorStr); if (!TheTarget) return error(ErrorStr, Context); TripleName = TheTriple.getTriple(); // Create all the MC Objects. MRI.reset(TheTarget->createMCRegInfo(TripleName)); if (!MRI) return error(Twine("no register info for target ") + TripleName, Context); MAI.reset(TheTarget->createMCAsmInfo(*MRI, TripleName)); if (!MAI) return error("no asm info for target " + TripleName, Context); MOFI.reset(new MCObjectFileInfo); MC.reset(new MCContext(MAI.get(), MRI.get(), MOFI.get())); MOFI->InitMCObjectFileInfo(TheTriple, /*PIC*/ false, *MC); MCTargetOptions Options; MAB = TheTarget->createMCAsmBackend(*MRI, TripleName, "", Options); if (!MAB) return error("no asm backend for target " + TripleName, Context); MII.reset(TheTarget->createMCInstrInfo()); if (!MII) return error("no instr info info for target " + TripleName, Context); MSTI.reset(TheTarget->createMCSubtargetInfo(TripleName, "", "")); if (!MSTI) return error("no subtarget info for target " + TripleName, Context); MCE = TheTarget->createMCCodeEmitter(*MII, *MRI, *MC); if (!MCE) return error("no code emitter for target " + TripleName, Context); MCTargetOptions MCOptions = InitMCTargetOptionsFromFlags(); MS = TheTarget->createMCObjectStreamer( TheTriple, *MC, std::unique_ptr(MAB), OutFile, std::unique_ptr(MCE), *MSTI, MCOptions.MCRelaxAll, MCOptions.MCIncrementalLinkerCompatible, /*DWARFMustBeAtTheEnd*/ false); if (!MS) return error("no object streamer for target " + TripleName, Context); // Finally create the AsmPrinter we'll use to emit the DIEs. TM.reset(TheTarget->createTargetMachine(TripleName, "", "", TargetOptions(), None)); if (!TM) return error("no target machine for target " + TripleName, Context); Asm.reset(TheTarget->createAsmPrinter(*TM, std::unique_ptr(MS))); if (!Asm) return error("no asm printer for target " + TripleName, Context); RangesSectionSize = 0; LocSectionSize = 0; LineSectionSize = 0; FrameSectionSize = 0; return true; } bool DwarfStreamer::finish(const DebugMap &DM) { bool Result = true; if (DM.getTriple().isOSDarwin() && !DM.getBinaryPath().empty()) Result = MachOUtils::generateDsymCompanion(DM, *MS, OutFile); else MS->Finish(); return Result; } /// Set the current output section to debug_info and change /// the MC Dwarf version to \p DwarfVersion. void DwarfStreamer::switchToDebugInfoSection(unsigned DwarfVersion) { MS->SwitchSection(MOFI->getDwarfInfoSection()); MC->setDwarfVersion(DwarfVersion); } /// Emit the compilation unit header for \p Unit in the debug_info section. /// /// A Dwarf scetion header is encoded as: /// uint32_t Unit length (omiting this field) /// uint16_t Version /// uint32_t Abbreviation table offset /// uint8_t Address size /// /// Leading to a total of 11 bytes. void DwarfStreamer::emitCompileUnitHeader(CompileUnit &Unit) { unsigned Version = Unit.getOrigUnit().getVersion(); switchToDebugInfoSection(Version); // Emit size of content not including length itself. The size has // already been computed in CompileUnit::computeOffsets(). Substract // 4 to that size to account for the length field. Asm->EmitInt32(Unit.getNextUnitOffset() - Unit.getStartOffset() - 4); Asm->EmitInt16(Version); // We share one abbreviations table across all units so it's always at the // start of the section. Asm->EmitInt32(0); Asm->EmitInt8(Unit.getOrigUnit().getAddressByteSize()); } /// Emit the \p Abbrevs array as the shared abbreviation table /// for the linked Dwarf file. void DwarfStreamer::emitAbbrevs( const std::vector> &Abbrevs, unsigned DwarfVersion) { MS->SwitchSection(MOFI->getDwarfAbbrevSection()); MC->setDwarfVersion(DwarfVersion); Asm->emitDwarfAbbrevs(Abbrevs); } /// Recursively emit the DIE tree rooted at \p Die. void DwarfStreamer::emitDIE(DIE &Die) { MS->SwitchSection(MOFI->getDwarfInfoSection()); Asm->emitDwarfDIE(Die); } /// Emit the debug_str section stored in \p Pool. void DwarfStreamer::emitStrings(const NonRelocatableStringpool &Pool) { Asm->OutStreamer->SwitchSection(MOFI->getDwarfStrSection()); for (auto *Entry = Pool.getFirstEntry(); Entry; Entry = Pool.getNextEntry(Entry)) Asm->OutStreamer->EmitBytes( StringRef(Entry->getKey().data(), Entry->getKey().size() + 1)); } /// Emit the swift_ast section stored in \p Buffers. void DwarfStreamer::emitSwiftAST(StringRef Buffer) { MCSection *SwiftASTSection = MOFI->getDwarfSwiftASTSection(); SwiftASTSection->setAlignment(1 << 5); MS->SwitchSection(SwiftASTSection); MS->EmitBytes(Buffer); } /// Emit the debug_range section contents for \p FuncRange by /// translating the original \p Entries. The debug_range section /// format is totally trivial, consisting just of pairs of address /// sized addresses describing the ranges. void DwarfStreamer::emitRangesEntries( int64_t UnitPcOffset, uint64_t OrigLowPc, const FunctionIntervals::const_iterator &FuncRange, const std::vector &Entries, unsigned AddressSize) { MS->SwitchSection(MC->getObjectFileInfo()->getDwarfRangesSection()); // Offset each range by the right amount. int64_t PcOffset = Entries.empty() ? 0 : FuncRange.value() + UnitPcOffset; for (const auto &Range : Entries) { if (Range.isBaseAddressSelectionEntry(AddressSize)) { warn("unsupported base address selection operation", "emitting debug_ranges"); break; } // Do not emit empty ranges. if (Range.StartAddress == Range.EndAddress) continue; // All range entries should lie in the function range. if (!(Range.StartAddress + OrigLowPc >= FuncRange.start() && Range.EndAddress + OrigLowPc <= FuncRange.stop())) warn("inconsistent range data.", "emitting debug_ranges"); MS->EmitIntValue(Range.StartAddress + PcOffset, AddressSize); MS->EmitIntValue(Range.EndAddress + PcOffset, AddressSize); RangesSectionSize += 2 * AddressSize; } // Add the terminator entry. MS->EmitIntValue(0, AddressSize); MS->EmitIntValue(0, AddressSize); RangesSectionSize += 2 * AddressSize; } /// Emit the debug_aranges contribution of a unit and /// if \p DoDebugRanges is true the debug_range contents for a /// compile_unit level DW_AT_ranges attribute (Which are basically the /// same thing with a different base address). /// Just aggregate all the ranges gathered inside that unit. void DwarfStreamer::emitUnitRangesEntries(CompileUnit &Unit, bool DoDebugRanges) { unsigned AddressSize = Unit.getOrigUnit().getAddressByteSize(); // Gather the ranges in a vector, so that we can simplify them. The // IntervalMap will have coalesced the non-linked ranges, but here // we want to coalesce the linked addresses. std::vector> Ranges; const auto &FunctionRanges = Unit.getFunctionRanges(); for (auto Range = FunctionRanges.begin(), End = FunctionRanges.end(); Range != End; ++Range) Ranges.push_back(std::make_pair(Range.start() + Range.value(), Range.stop() + Range.value())); // The object addresses where sorted, but again, the linked // addresses might end up in a different order. std::sort(Ranges.begin(), Ranges.end()); if (!Ranges.empty()) { MS->SwitchSection(MC->getObjectFileInfo()->getDwarfARangesSection()); MCSymbol *BeginLabel = Asm->createTempSymbol("Barange"); MCSymbol *EndLabel = Asm->createTempSymbol("Earange"); unsigned HeaderSize = sizeof(int32_t) + // Size of contents (w/o this field sizeof(int16_t) + // DWARF ARange version number sizeof(int32_t) + // Offset of CU in the .debug_info section sizeof(int8_t) + // Pointer Size (in bytes) sizeof(int8_t); // Segment Size (in bytes) unsigned TupleSize = AddressSize * 2; unsigned Padding = OffsetToAlignment(HeaderSize, TupleSize); Asm->EmitLabelDifference(EndLabel, BeginLabel, 4); // Arange length Asm->OutStreamer->EmitLabel(BeginLabel); Asm->EmitInt16(dwarf::DW_ARANGES_VERSION); // Version number Asm->EmitInt32(Unit.getStartOffset()); // Corresponding unit's offset Asm->EmitInt8(AddressSize); // Address size Asm->EmitInt8(0); // Segment size Asm->OutStreamer->emitFill(Padding, 0x0); for (auto Range = Ranges.begin(), End = Ranges.end(); Range != End; ++Range) { uint64_t RangeStart = Range->first; MS->EmitIntValue(RangeStart, AddressSize); while ((Range + 1) != End && Range->second == (Range + 1)->first) ++Range; MS->EmitIntValue(Range->second - RangeStart, AddressSize); } // Emit terminator Asm->OutStreamer->EmitIntValue(0, AddressSize); Asm->OutStreamer->EmitIntValue(0, AddressSize); Asm->OutStreamer->EmitLabel(EndLabel); } if (!DoDebugRanges) return; MS->SwitchSection(MC->getObjectFileInfo()->getDwarfRangesSection()); // Offset each range by the right amount. int64_t PcOffset = -Unit.getLowPc(); // Emit coalesced ranges. for (auto Range = Ranges.begin(), End = Ranges.end(); Range != End; ++Range) { MS->EmitIntValue(Range->first + PcOffset, AddressSize); while (Range + 1 != End && Range->second == (Range + 1)->first) ++Range; MS->EmitIntValue(Range->second + PcOffset, AddressSize); RangesSectionSize += 2 * AddressSize; } // Add the terminator entry. MS->EmitIntValue(0, AddressSize); MS->EmitIntValue(0, AddressSize); RangesSectionSize += 2 * AddressSize; } /// Emit location lists for \p Unit and update attribtues to /// point to the new entries. void DwarfStreamer::emitLocationsForUnit(const CompileUnit &Unit, DWARFContext &Dwarf) { const auto &Attributes = Unit.getLocationAttributes(); if (Attributes.empty()) return; MS->SwitchSection(MC->getObjectFileInfo()->getDwarfLocSection()); unsigned AddressSize = Unit.getOrigUnit().getAddressByteSize(); const DWARFSection &InputSec = Dwarf.getDWARFObj().getLocSection(); DataExtractor Data(InputSec.Data, Dwarf.isLittleEndian(), AddressSize); DWARFUnit &OrigUnit = Unit.getOrigUnit(); auto OrigUnitDie = OrigUnit.getUnitDIE(false); int64_t UnitPcOffset = 0; if (auto OrigLowPc = dwarf::toAddress(OrigUnitDie.find(dwarf::DW_AT_low_pc))) UnitPcOffset = int64_t(*OrigLowPc) - Unit.getLowPc(); for (const auto &Attr : Attributes) { uint32_t Offset = Attr.first.get(); Attr.first.set(LocSectionSize); // This is the quantity to add to the old location address to get // the correct address for the new one. int64_t LocPcOffset = Attr.second + UnitPcOffset; while (Data.isValidOffset(Offset)) { uint64_t Low = Data.getUnsigned(&Offset, AddressSize); uint64_t High = Data.getUnsigned(&Offset, AddressSize); LocSectionSize += 2 * AddressSize; if (Low == 0 && High == 0) { Asm->OutStreamer->EmitIntValue(0, AddressSize); Asm->OutStreamer->EmitIntValue(0, AddressSize); break; } Asm->OutStreamer->EmitIntValue(Low + LocPcOffset, AddressSize); Asm->OutStreamer->EmitIntValue(High + LocPcOffset, AddressSize); uint64_t Length = Data.getU16(&Offset); Asm->OutStreamer->EmitIntValue(Length, 2); // Just copy the bytes over. Asm->OutStreamer->EmitBytes( StringRef(InputSec.Data.substr(Offset, Length))); Offset += Length; LocSectionSize += Length + 2; } } } void DwarfStreamer::emitLineTableForUnit(MCDwarfLineTableParams Params, StringRef PrologueBytes, unsigned MinInstLength, std::vector &Rows, unsigned PointerSize) { // Switch to the section where the table will be emitted into. MS->SwitchSection(MC->getObjectFileInfo()->getDwarfLineSection()); MCSymbol *LineStartSym = MC->createTempSymbol(); MCSymbol *LineEndSym = MC->createTempSymbol(); // The first 4 bytes is the total length of the information for this // compilation unit (not including these 4 bytes for the length). Asm->EmitLabelDifference(LineEndSym, LineStartSym, 4); Asm->OutStreamer->EmitLabel(LineStartSym); // Copy Prologue. MS->EmitBytes(PrologueBytes); LineSectionSize += PrologueBytes.size() + 4; SmallString<128> EncodingBuffer; raw_svector_ostream EncodingOS(EncodingBuffer); if (Rows.empty()) { // We only have the dummy entry, dsymutil emits an entry with a 0 // address in that case. MCDwarfLineAddr::Encode(*MC, Params, std::numeric_limits::max(), 0, EncodingOS); MS->EmitBytes(EncodingOS.str()); LineSectionSize += EncodingBuffer.size(); MS->EmitLabel(LineEndSym); return; } // Line table state machine fields unsigned FileNum = 1; unsigned LastLine = 1; unsigned Column = 0; unsigned IsStatement = 1; unsigned Isa = 0; uint64_t Address = -1ULL; unsigned RowsSinceLastSequence = 0; for (unsigned Idx = 0; Idx < Rows.size(); ++Idx) { auto &Row = Rows[Idx]; int64_t AddressDelta; if (Address == -1ULL) { MS->EmitIntValue(dwarf::DW_LNS_extended_op, 1); MS->EmitULEB128IntValue(PointerSize + 1); MS->EmitIntValue(dwarf::DW_LNE_set_address, 1); MS->EmitIntValue(Row.Address, PointerSize); LineSectionSize += 2 + PointerSize + getULEB128Size(PointerSize + 1); AddressDelta = 0; } else { AddressDelta = (Row.Address - Address) / MinInstLength; } // FIXME: code copied and transfromed from // MCDwarf.cpp::EmitDwarfLineTable. We should find a way to share // this code, but the current compatibility requirement with // classic dsymutil makes it hard. Revisit that once this // requirement is dropped. if (FileNum != Row.File) { FileNum = Row.File; MS->EmitIntValue(dwarf::DW_LNS_set_file, 1); MS->EmitULEB128IntValue(FileNum); LineSectionSize += 1 + getULEB128Size(FileNum); } if (Column != Row.Column) { Column = Row.Column; MS->EmitIntValue(dwarf::DW_LNS_set_column, 1); MS->EmitULEB128IntValue(Column); LineSectionSize += 1 + getULEB128Size(Column); } // FIXME: We should handle the discriminator here, but dsymutil // doesn' consider it, thus ignore it for now. if (Isa != Row.Isa) { Isa = Row.Isa; MS->EmitIntValue(dwarf::DW_LNS_set_isa, 1); MS->EmitULEB128IntValue(Isa); LineSectionSize += 1 + getULEB128Size(Isa); } if (IsStatement != Row.IsStmt) { IsStatement = Row.IsStmt; MS->EmitIntValue(dwarf::DW_LNS_negate_stmt, 1); LineSectionSize += 1; } if (Row.BasicBlock) { MS->EmitIntValue(dwarf::DW_LNS_set_basic_block, 1); LineSectionSize += 1; } if (Row.PrologueEnd) { MS->EmitIntValue(dwarf::DW_LNS_set_prologue_end, 1); LineSectionSize += 1; } if (Row.EpilogueBegin) { MS->EmitIntValue(dwarf::DW_LNS_set_epilogue_begin, 1); LineSectionSize += 1; } int64_t LineDelta = int64_t(Row.Line) - LastLine; if (!Row.EndSequence) { MCDwarfLineAddr::Encode(*MC, Params, LineDelta, AddressDelta, EncodingOS); MS->EmitBytes(EncodingOS.str()); LineSectionSize += EncodingBuffer.size(); EncodingBuffer.resize(0); Address = Row.Address; LastLine = Row.Line; RowsSinceLastSequence++; } else { if (LineDelta) { MS->EmitIntValue(dwarf::DW_LNS_advance_line, 1); MS->EmitSLEB128IntValue(LineDelta); LineSectionSize += 1 + getSLEB128Size(LineDelta); } if (AddressDelta) { MS->EmitIntValue(dwarf::DW_LNS_advance_pc, 1); MS->EmitULEB128IntValue(AddressDelta); LineSectionSize += 1 + getULEB128Size(AddressDelta); } MCDwarfLineAddr::Encode(*MC, Params, std::numeric_limits::max(), 0, EncodingOS); MS->EmitBytes(EncodingOS.str()); LineSectionSize += EncodingBuffer.size(); EncodingBuffer.resize(0); Address = -1ULL; LastLine = FileNum = IsStatement = 1; RowsSinceLastSequence = Column = Isa = 0; } } if (RowsSinceLastSequence) { MCDwarfLineAddr::Encode(*MC, Params, std::numeric_limits::max(), 0, EncodingOS); MS->EmitBytes(EncodingOS.str()); LineSectionSize += EncodingBuffer.size(); EncodingBuffer.resize(0); } MS->EmitLabel(LineEndSym); } /// Emit the pubnames or pubtypes section contribution for \p /// Unit into \p Sec. The data is provided in \p Names. void DwarfStreamer::emitPubSectionForUnit( MCSection *Sec, StringRef SecName, const CompileUnit &Unit, const std::vector &Names) { if (Names.empty()) return; // Start the dwarf pubnames section. Asm->OutStreamer->SwitchSection(Sec); MCSymbol *BeginLabel = Asm->createTempSymbol("pub" + SecName + "_begin"); MCSymbol *EndLabel = Asm->createTempSymbol("pub" + SecName + "_end"); bool HeaderEmitted = false; // Emit the pubnames for this compilation unit. for (const auto &Name : Names) { if (Name.SkipPubSection) continue; if (!HeaderEmitted) { // Emit the header. Asm->EmitLabelDifference(EndLabel, BeginLabel, 4); // Length Asm->OutStreamer->EmitLabel(BeginLabel); Asm->EmitInt16(dwarf::DW_PUBNAMES_VERSION); // Version Asm->EmitInt32(Unit.getStartOffset()); // Unit offset Asm->EmitInt32(Unit.getNextUnitOffset() - Unit.getStartOffset()); // Size HeaderEmitted = true; } Asm->EmitInt32(Name.Die->getOffset()); Asm->OutStreamer->EmitBytes( StringRef(Name.Name.data(), Name.Name.size() + 1)); } if (!HeaderEmitted) return; Asm->EmitInt32(0); // End marker. Asm->OutStreamer->EmitLabel(EndLabel); } /// Emit .debug_pubnames for \p Unit. void DwarfStreamer::emitPubNamesForUnit(const CompileUnit &Unit) { emitPubSectionForUnit(MC->getObjectFileInfo()->getDwarfPubNamesSection(), "names", Unit, Unit.getPubnames()); } /// Emit .debug_pubtypes for \p Unit. void DwarfStreamer::emitPubTypesForUnit(const CompileUnit &Unit) { emitPubSectionForUnit(MC->getObjectFileInfo()->getDwarfPubTypesSection(), "types", Unit, Unit.getPubtypes()); } /// Emit a CIE into the debug_frame section. void DwarfStreamer::emitCIE(StringRef CIEBytes) { MS->SwitchSection(MC->getObjectFileInfo()->getDwarfFrameSection()); MS->EmitBytes(CIEBytes); FrameSectionSize += CIEBytes.size(); } /// Emit a FDE into the debug_frame section. \p FDEBytes /// contains the FDE data without the length, CIE offset and address /// which will be replaced with the parameter values. void DwarfStreamer::emitFDE(uint32_t CIEOffset, uint32_t AddrSize, uint32_t Address, StringRef FDEBytes) { MS->SwitchSection(MC->getObjectFileInfo()->getDwarfFrameSection()); MS->EmitIntValue(FDEBytes.size() + 4 + AddrSize, 4); MS->EmitIntValue(CIEOffset, 4); MS->EmitIntValue(Address, AddrSize); MS->EmitBytes(FDEBytes); FrameSectionSize += FDEBytes.size() + 8 + AddrSize; } namespace { /// The core of the Dwarf linking logic. /// /// The link of the dwarf information from the object files will be /// driven by the selection of 'root DIEs', which are DIEs that /// describe variables or functions that are present in the linked /// binary (and thus have entries in the debug map). All the debug /// information that will be linked (the DIEs, but also the line /// tables, ranges, ...) is derived from that set of root DIEs. /// /// The root DIEs are identified because they contain relocations that /// correspond to a debug map entry at specific places (the low_pc for /// a function, the location for a variable). These relocations are /// called ValidRelocs in the DwarfLinker and are gathered as a very /// first step when we start processing a DebugMapObject. class DwarfLinker { public: DwarfLinker(raw_fd_ostream &OutFile, const LinkOptions &Options) : OutFile(OutFile), Options(Options), BinHolder(Options.Verbose) {} /// Link the contents of the DebugMap. bool link(const DebugMap &); void reportWarning(const Twine &Warning, const DWARFDie *DIE = nullptr) const; private: /// Called at the start of a debug object link. void startDebugObject(DWARFContext &, DebugMapObject &); /// Called at the end of a debug object link. void endDebugObject(); /// Remembers the newest DWARF version we've seen in a unit. void maybeUpdateMaxDwarfVersion(unsigned Version) { if (MaxDwarfVersion < Version) MaxDwarfVersion = Version; } /// Keeps track of relocations. class RelocationManager { struct ValidReloc { uint32_t Offset; uint32_t Size; uint64_t Addend; const DebugMapObject::DebugMapEntry *Mapping; ValidReloc(uint32_t Offset, uint32_t Size, uint64_t Addend, const DebugMapObject::DebugMapEntry *Mapping) : Offset(Offset), Size(Size), Addend(Addend), Mapping(Mapping) {} bool operator<(const ValidReloc &RHS) const { return Offset < RHS.Offset; } }; DwarfLinker &Linker; /// The valid relocations for the current DebugMapObject. /// This vector is sorted by relocation offset. std::vector ValidRelocs; /// Index into ValidRelocs of the next relocation to /// consider. As we walk the DIEs in acsending file offset and as /// ValidRelocs is sorted by file offset, keeping this index /// uptodate is all we have to do to have a cheap lookup during the /// root DIE selection and during DIE cloning. unsigned NextValidReloc = 0; public: RelocationManager(DwarfLinker &Linker) : Linker(Linker) {} bool hasValidRelocs() const { return !ValidRelocs.empty(); } /// Reset the NextValidReloc counter. void resetValidRelocs() { NextValidReloc = 0; } /// \defgroup FindValidRelocations Translate debug map into a list /// of relevant relocations /// /// @{ bool findValidRelocsInDebugInfo(const object::ObjectFile &Obj, const DebugMapObject &DMO); bool findValidRelocs(const object::SectionRef &Section, const object::ObjectFile &Obj, const DebugMapObject &DMO); void findValidRelocsMachO(const object::SectionRef &Section, const object::MachOObjectFile &Obj, const DebugMapObject &DMO); /// @} bool hasValidRelocation(uint32_t StartOffset, uint32_t EndOffset, CompileUnit::DIEInfo &Info); bool applyValidRelocs(MutableArrayRef Data, uint32_t BaseOffset, bool isLittleEndian); }; /// \defgroup FindRootDIEs Find DIEs corresponding to debug map entries. /// /// @{ /// Recursively walk the \p DIE tree and look for DIEs to /// keep. Store that information in \p CU's DIEInfo. /// /// The return value indicates whether the DIE is incomplete. bool lookForDIEsToKeep(RelocationManager &RelocMgr, const DWARFDie &DIE, const DebugMapObject &DMO, CompileUnit &CU, unsigned Flags); /// If this compile unit is really a skeleton CU that points to a /// clang module, register it in ClangModules and return true. /// /// A skeleton CU is a CU without children, a DW_AT_gnu_dwo_name /// pointing to the module, and a DW_AT_gnu_dwo_id with the module /// hash. bool registerModuleReference(const DWARFDie &CUDie, const DWARFUnit &Unit, DebugMap &ModuleMap, unsigned Indent = 0); /// Recursively add the debug info in this clang module .pcm /// file (and all the modules imported by it in a bottom-up fashion) /// to Units. Error loadClangModule(StringRef Filename, StringRef ModulePath, StringRef ModuleName, uint64_t DwoId, DebugMap &ModuleMap, unsigned Indent = 0); /// Flags passed to DwarfLinker::lookForDIEsToKeep enum TravesalFlags { TF_Keep = 1 << 0, ///< Mark the traversed DIEs as kept. TF_InFunctionScope = 1 << 1, ///< Current scope is a fucntion scope. TF_DependencyWalk = 1 << 2, ///< Walking the dependencies of a kept DIE. TF_ParentWalk = 1 << 3, ///< Walking up the parents of a kept DIE. TF_ODR = 1 << 4, ///< Use the ODR whhile keeping dependants. TF_SkipPC = 1 << 5, ///< Skip all location attributes. }; /// Mark the passed DIE as well as all the ones it depends on as kept. void keepDIEAndDependencies(RelocationManager &RelocMgr, const DWARFDie &DIE, CompileUnit::DIEInfo &MyInfo, const DebugMapObject &DMO, CompileUnit &CU, bool UseODR); unsigned shouldKeepDIE(RelocationManager &RelocMgr, const DWARFDie &DIE, CompileUnit &Unit, CompileUnit::DIEInfo &MyInfo, unsigned Flags); unsigned shouldKeepVariableDIE(RelocationManager &RelocMgr, const DWARFDie &DIE, CompileUnit &Unit, CompileUnit::DIEInfo &MyInfo, unsigned Flags); unsigned shouldKeepSubprogramDIE(RelocationManager &RelocMgr, const DWARFDie &DIE, CompileUnit &Unit, CompileUnit::DIEInfo &MyInfo, unsigned Flags); bool hasValidRelocation(uint32_t StartOffset, uint32_t EndOffset, CompileUnit::DIEInfo &Info); /// @} /// \defgroup Linking Methods used to link the debug information /// /// @{ class DIECloner { DwarfLinker &Linker; RelocationManager &RelocMgr; /// Allocator used for all the DIEValue objects. BumpPtrAllocator &DIEAlloc; std::vector> &CompileUnits; LinkOptions Options; public: DIECloner(DwarfLinker &Linker, RelocationManager &RelocMgr, BumpPtrAllocator &DIEAlloc, std::vector> &CompileUnits, LinkOptions &Options) : Linker(Linker), RelocMgr(RelocMgr), DIEAlloc(DIEAlloc), CompileUnits(CompileUnits), Options(Options) {} /// Recursively clone \p InputDIE into an tree of DIE objects /// where useless (as decided by lookForDIEsToKeep()) bits have been /// stripped out and addresses have been rewritten according to the /// debug map. /// /// \param OutOffset is the offset the cloned DIE in the output /// compile unit. /// \param PCOffset (while cloning a function scope) is the offset /// applied to the entry point of the function to get the linked address. /// \param Die the output DIE to use, pass NULL to create one. /// \returns the root of the cloned tree or null if nothing was selected. DIE *cloneDIE(const DWARFDie &InputDIE, CompileUnit &U, int64_t PCOffset, uint32_t OutOffset, unsigned Flags, DIE *Die = nullptr); /// Construct the output DIE tree by cloning the DIEs we /// chose to keep above. If there are no valid relocs, then there's /// nothing to clone/emit. void cloneAllCompileUnits(DWARFContext &DwarfContext); private: using AttributeSpec = DWARFAbbreviationDeclaration::AttributeSpec; /// Information gathered and exchanged between the various /// clone*Attributes helpers about the attributes of a particular DIE. struct AttributesInfo { /// Names. const char *Name = nullptr; const char *MangledName = nullptr; /// Offsets in the string pool. uint32_t NameOffset = 0; uint32_t MangledNameOffset = 0; /// Value of AT_low_pc in the input DIE uint64_t OrigLowPc = std::numeric_limits::max(); /// Value of AT_high_pc in the input DIE uint64_t OrigHighPc = 0; /// Offset to apply to PC addresses inside a function. int64_t PCOffset = 0; /// Does the DIE have a low_pc attribute? bool HasLowPc = false; /// Is this DIE only a declaration? bool IsDeclaration = false; AttributesInfo() = default; }; /// Helper for cloneDIE. unsigned cloneAttribute(DIE &Die, const DWARFDie &InputDIE, CompileUnit &U, const DWARFFormValue &Val, const AttributeSpec AttrSpec, unsigned AttrSize, AttributesInfo &AttrInfo); /// Clone a string attribute described by \p AttrSpec and add /// it to \p Die. /// \returns the size of the new attribute. unsigned cloneStringAttribute(DIE &Die, AttributeSpec AttrSpec, const DWARFFormValue &Val, const DWARFUnit &U); /// Clone an attribute referencing another DIE and add /// it to \p Die. /// \returns the size of the new attribute. unsigned cloneDieReferenceAttribute(DIE &Die, const DWARFDie &InputDIE, AttributeSpec AttrSpec, unsigned AttrSize, const DWARFFormValue &Val, CompileUnit &Unit); /// Clone an attribute referencing another DIE and add /// it to \p Die. /// \returns the size of the new attribute. unsigned cloneBlockAttribute(DIE &Die, AttributeSpec AttrSpec, const DWARFFormValue &Val, unsigned AttrSize); /// Clone an attribute referencing another DIE and add /// it to \p Die. /// \returns the size of the new attribute. unsigned cloneAddressAttribute(DIE &Die, AttributeSpec AttrSpec, const DWARFFormValue &Val, const CompileUnit &Unit, AttributesInfo &Info); /// Clone a scalar attribute and add it to \p Die. /// \returns the size of the new attribute. unsigned cloneScalarAttribute(DIE &Die, const DWARFDie &InputDIE, CompileUnit &U, AttributeSpec AttrSpec, const DWARFFormValue &Val, unsigned AttrSize, AttributesInfo &Info); /// Get the potential name and mangled name for the entity /// described by \p Die and store them in \Info if they are not /// already there. /// \returns is a name was found. bool getDIENames(const DWARFDie &Die, AttributesInfo &Info); /// Create a copy of abbreviation Abbrev. void copyAbbrev(const DWARFAbbreviationDeclaration &Abbrev, bool hasODR); }; /// Assign an abbreviation number to \p Abbrev void AssignAbbrev(DIEAbbrev &Abbrev); /// Compute and emit debug_ranges section for \p Unit, and /// patch the attributes referencing it. void patchRangesForUnit(const CompileUnit &Unit, DWARFContext &Dwarf) const; /// Generate and emit the DW_AT_ranges attribute for a /// compile_unit if it had one. void generateUnitRanges(CompileUnit &Unit) const; /// Extract the line tables fromt he original dwarf, extract /// the relevant parts according to the linked function ranges and /// emit the result in the debug_line section. void patchLineTableForUnit(CompileUnit &Unit, DWARFContext &OrigDwarf); /// Emit the accelerator entries for \p Unit. void emitAcceleratorEntriesForUnit(CompileUnit &Unit); /// Patch the frame info for an object file and emit it. void patchFrameInfoForObject(const DebugMapObject &, DWARFContext &, unsigned AddressSize); /// FoldingSet that uniques the abbreviations. FoldingSet AbbreviationsSet; /// Storage for the unique Abbreviations. /// This is passed to AsmPrinter::emitDwarfAbbrevs(), thus it cannot /// be changed to a vecot of unique_ptrs. std::vector> Abbreviations; /// DIELoc objects that need to be destructed (but not freed!). std::vector DIELocs; /// DIEBlock objects that need to be destructed (but not freed!). std::vector DIEBlocks; /// Allocator used for all the DIEValue objects. BumpPtrAllocator DIEAlloc; /// @} /// ODR Contexts for that link. DeclContextTree ODRContexts; /// \defgroup Helpers Various helper methods. /// /// @{ bool createStreamer(const Triple &TheTriple, raw_fd_ostream &OutFile); /// Attempt to load a debug object from disk. ErrorOr loadObject(BinaryHolder &BinaryHolder, DebugMapObject &Obj, const DebugMap &Map); /// @} raw_fd_ostream &OutFile; LinkOptions Options; BinaryHolder BinHolder; std::unique_ptr Streamer; uint64_t OutputDebugInfoSize; /// A unique ID that identifies each compile unit. unsigned UnitID; unsigned MaxDwarfVersion = 0; /// The units of the current debug map object. std::vector> Units; /// The debug map object currently under consideration. DebugMapObject *CurrentDebugObject; /// The Dwarf string pool. NonRelocatableStringpool StringPool; /// This map is keyed by the entry PC of functions in that /// debug object and the associated value is a pair storing the /// corresponding end PC and the offset to apply to get the linked /// address. /// /// See startDebugObject() for a more complete description of its use. std::map> Ranges; /// The CIEs that have been emitted in the output /// section. The actual CIE data serves a the key to this StringMap, /// this takes care of comparing the semantics of CIEs defined in /// different object files. StringMap EmittedCIEs; /// Offset of the last CIE that has been emitted in the output /// debug_frame section. uint32_t LastCIEOffset = 0; /// Mapping the PCM filename to the DwoId. StringMap ClangModules; bool ModuleCacheHintDisplayed = false; bool ArchiveHintDisplayed = false; }; } // end anonymous namespace /// Similar to DWARFUnitSection::getUnitForOffset(), but returning our /// CompileUnit object instead. static CompileUnit *getUnitForOffset( std::vector> &Units, unsigned Offset) { auto CU = std::upper_bound(Units.begin(), Units.end(), Offset, [](uint32_t LHS, const std::unique_ptr &RHS) { return LHS < RHS->getOrigUnit().getNextUnitOffset(); }); return CU != Units.end() ? CU->get() : nullptr; } /// Resolve the DIE attribute reference that has been /// extracted in \p RefValue. The resulting DIE migh be in another /// CompileUnit which is stored into \p ReferencedCU. /// \returns null if resolving fails for any reason. static DWARFDie resolveDIEReference( const DwarfLinker &Linker, std::vector> &Units, const DWARFFormValue &RefValue, const DWARFUnit &Unit, const DWARFDie &DIE, CompileUnit *&RefCU) { assert(RefValue.isFormClass(DWARFFormValue::FC_Reference)); uint64_t RefOffset = *RefValue.getAsReference(); if ((RefCU = getUnitForOffset(Units, RefOffset))) if (const auto RefDie = RefCU->getOrigUnit().getDIEForOffset(RefOffset)) { // In a file with broken references, an attribute might point to a NULL // DIE. if(!RefDie.isNULL()) return RefDie; } Linker.reportWarning("could not find referenced DIE", &DIE); return DWARFDie(); } /// \returns whether the passed \a Attr type might contain a DIE /// reference suitable for ODR uniquing. static bool isODRAttribute(uint16_t Attr) { switch (Attr) { default: return false; case dwarf::DW_AT_type: case dwarf::DW_AT_containing_type: case dwarf::DW_AT_specification: case dwarf::DW_AT_abstract_origin: case dwarf::DW_AT_import: return true; } llvm_unreachable("Improper attribute."); } /// Set the last DIE/CU a context was seen in and, possibly invalidate /// the context if it is ambiguous. /// /// In the current implementation, we don't handle overloaded /// functions well, because the argument types are not taken into /// account when computing the DeclContext tree. /// /// Some of this is mitigated byt using mangled names that do contain /// the arguments types, but sometimes (eg. with function templates) /// we don't have that. In that case, just do not unique anything that /// refers to the contexts we are not able to distinguish. /// /// If a context that is not a namespace appears twice in the same CU, /// we know it is ambiguous. Make it invalid. bool DeclContext::setLastSeenDIE(CompileUnit &U, const DWARFDie &Die) { if (LastSeenCompileUnitID == U.getUniqueID()) { DWARFUnit &OrigUnit = U.getOrigUnit(); uint32_t FirstIdx = OrigUnit.getDIEIndex(LastSeenDIE); U.getInfo(FirstIdx).Ctxt = nullptr; return false; } LastSeenCompileUnitID = U.getUniqueID(); LastSeenDIE = Die; return true; } PointerIntPair DeclContextTree::getChildDeclContext( DeclContext &Context, const DWARFDie &DIE, CompileUnit &U, NonRelocatableStringpool &StringPool, bool InClangModule) { unsigned Tag = DIE.getTag(); // FIXME: dsymutil-classic compat: We should bail out here if we // have a specification or an abstract_origin. We will get the // parent context wrong here. switch (Tag) { default: // By default stop gathering child contexts. return PointerIntPair(nullptr); case dwarf::DW_TAG_module: break; case dwarf::DW_TAG_compile_unit: return PointerIntPair(&Context); case dwarf::DW_TAG_subprogram: // Do not unique anything inside CU local functions. if ((Context.getTag() == dwarf::DW_TAG_namespace || Context.getTag() == dwarf::DW_TAG_compile_unit) && !dwarf::toUnsigned(DIE.find(dwarf::DW_AT_external), 0)) return PointerIntPair(nullptr); LLVM_FALLTHROUGH; case dwarf::DW_TAG_member: case dwarf::DW_TAG_namespace: case dwarf::DW_TAG_structure_type: case dwarf::DW_TAG_class_type: case dwarf::DW_TAG_union_type: case dwarf::DW_TAG_enumeration_type: case dwarf::DW_TAG_typedef: // Artificial things might be ambiguous, because they might be // created on demand. For example implicitely defined constructors // are ambiguous because of the way we identify contexts, and they // won't be generated everytime everywhere. if (dwarf::toUnsigned(DIE.find(dwarf::DW_AT_artificial), 0)) return PointerIntPair(nullptr); break; } const char *Name = DIE.getName(DINameKind::LinkageName); const char *ShortName = DIE.getName(DINameKind::ShortName); StringRef NameRef; StringRef ShortNameRef; StringRef FileRef; if (Name) NameRef = StringPool.internString(Name); else if (Tag == dwarf::DW_TAG_namespace) // FIXME: For dsymutil-classic compatibility. I think uniquing // within anonymous namespaces is wrong. There is no ODR guarantee // there. NameRef = StringPool.internString("(anonymous namespace)"); if (ShortName && ShortName != Name) ShortNameRef = StringPool.internString(ShortName); else ShortNameRef = NameRef; if (Tag != dwarf::DW_TAG_class_type && Tag != dwarf::DW_TAG_structure_type && Tag != dwarf::DW_TAG_union_type && Tag != dwarf::DW_TAG_enumeration_type && NameRef.empty()) return PointerIntPair(nullptr); unsigned Line = 0; unsigned ByteSize = std::numeric_limits::max(); if (!InClangModule) { // Gather some discriminating data about the DeclContext we will be // creating: File, line number and byte size. This shouldn't be // necessary, because the ODR is just about names, but given that we // do some approximations with overloaded functions and anonymous // namespaces, use these additional data points to make the process // safer. This is disabled for clang modules, because forward // declarations of module-defined types do not have a file and line. ByteSize = dwarf::toUnsigned(DIE.find(dwarf::DW_AT_byte_size), std::numeric_limits::max()); if (Tag != dwarf::DW_TAG_namespace || !Name) { if (unsigned FileNum = dwarf::toUnsigned(DIE.find(dwarf::DW_AT_decl_file), 0)) { if (const auto *LT = U.getOrigUnit().getContext().getLineTableForUnit( &U.getOrigUnit())) { // FIXME: dsymutil-classic compatibility. I'd rather not // unique anything in anonymous namespaces, but if we do, then // verify that the file and line correspond. if (!Name && Tag == dwarf::DW_TAG_namespace) FileNum = 1; // FIXME: Passing U.getOrigUnit().getCompilationDir() // instead of "" would allow more uniquing, but for now, do // it this way to match dsymutil-classic. if (LT->hasFileAtIndex(FileNum)) { Line = dwarf::toUnsigned(DIE.find(dwarf::DW_AT_decl_line), 0); // Cache the resolved paths, because calling realpath is expansive. StringRef ResolvedPath = U.getResolvedPath(FileNum); if (!ResolvedPath.empty()) { FileRef = ResolvedPath; } else { std::string File; bool gotFileName = LT->getFileNameByIndex(FileNum, "", DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, File); (void)gotFileName; assert(gotFileName && "Must get file name from line table"); #ifdef HAVE_REALPATH char RealPath[PATH_MAX + 1]; RealPath[PATH_MAX] = 0; if (::realpath(File.c_str(), RealPath)) File = RealPath; #endif FileRef = StringPool.internString(File); U.setResolvedPath(FileNum, FileRef); } } } } } } if (!Line && NameRef.empty()) return PointerIntPair(nullptr); // We hash NameRef, which is the mangled name, in order to get most // overloaded functions resolve correctly. // // Strictly speaking, hashing the Tag is only necessary for a // DW_TAG_module, to prevent uniquing of a module and a namespace // with the same name. // // FIXME: dsymutil-classic won't unique the same type presented // once as a struct and once as a class. Using the Tag in the fully // qualified name hash to get the same effect. unsigned Hash = hash_combine(Context.getQualifiedNameHash(), Tag, NameRef); // FIXME: dsymutil-classic compatibility: when we don't have a name, // use the filename. if (Tag == dwarf::DW_TAG_namespace && NameRef == "(anonymous namespace)") Hash = hash_combine(Hash, FileRef); // Now look if this context already exists. DeclContext Key(Hash, Line, ByteSize, Tag, NameRef, FileRef, Context); auto ContextIter = Contexts.find(&Key); if (ContextIter == Contexts.end()) { // The context wasn't found. bool Inserted; DeclContext *NewContext = new (Allocator) DeclContext(Hash, Line, ByteSize, Tag, NameRef, FileRef, Context, DIE, U.getUniqueID()); std::tie(ContextIter, Inserted) = Contexts.insert(NewContext); assert(Inserted && "Failed to insert DeclContext"); (void)Inserted; } else if (Tag != dwarf::DW_TAG_namespace && !(*ContextIter)->setLastSeenDIE(U, DIE)) { // The context was found, but it is ambiguous with another context // in the same file. Mark it invalid. return PointerIntPair(*ContextIter, /* Invalid= */ 1); } assert(ContextIter != Contexts.end()); // FIXME: dsymutil-classic compatibility. Union types aren't // uniques, but their children might be. if ((Tag == dwarf::DW_TAG_subprogram && Context.getTag() != dwarf::DW_TAG_structure_type && Context.getTag() != dwarf::DW_TAG_class_type) || (Tag == dwarf::DW_TAG_union_type)) return PointerIntPair(*ContextIter, /* Invalid= */ 1); return PointerIntPair(*ContextIter); } bool DwarfLinker::DIECloner::getDIENames(const DWARFDie &Die, AttributesInfo &Info) { // FIXME: a bit wasteful as the first getName might return the // short name. if (!Info.MangledName && (Info.MangledName = Die.getName(DINameKind::LinkageName))) Info.MangledNameOffset = Linker.StringPool.getStringOffset(Info.MangledName); if (!Info.Name && (Info.Name = Die.getName(DINameKind::ShortName))) Info.NameOffset = Linker.StringPool.getStringOffset(Info.Name); return Info.Name || Info.MangledName; } /// Report a warning to the user, optionaly including /// information about a specific \p DIE related to the warning. void DwarfLinker::reportWarning(const Twine &Warning, const DWARFDie *DIE) const { StringRef Context = ""; if (CurrentDebugObject) Context = CurrentDebugObject->getObjectFilename(); warn(Warning, Context); if (!Options.Verbose || !DIE) return; DIDumpOptions DumpOpts; DumpOpts.RecurseDepth = 0; DumpOpts.Verbose = Options.Verbose; errs() << " in DIE:\n"; DIE->dump(errs(), 6 /* Indent */, DumpOpts); } bool DwarfLinker::createStreamer(const Triple &TheTriple, raw_fd_ostream &OutFile) { if (Options.NoOutput) return true; Streamer = llvm::make_unique(OutFile); return Streamer->init(TheTriple); } /// Recursive helper to build the global DeclContext information and /// gather the child->parent relationships in the original compile unit. /// /// \return true when this DIE and all of its children are only /// forward declarations to types defined in external clang modules /// (i.e., forward declarations that are children of a DW_TAG_module). static bool analyzeContextInfo(const DWARFDie &DIE, unsigned ParentIdx, CompileUnit &CU, DeclContext *CurrentDeclContext, NonRelocatableStringpool &StringPool, DeclContextTree &Contexts, bool InImportedModule = false) { unsigned MyIdx = CU.getOrigUnit().getDIEIndex(DIE); CompileUnit::DIEInfo &Info = CU.getInfo(MyIdx); // Clang imposes an ODR on modules(!) regardless of the language: // "The module-id should consist of only a single identifier, // which provides the name of the module being defined. Each // module shall have a single definition." // // This does not extend to the types inside the modules: // "[I]n C, this implies that if two structs are defined in // different submodules with the same name, those two types are // distinct types (but may be compatible types if their // definitions match)." // // We treat non-C++ modules like namespaces for this reason. if (DIE.getTag() == dwarf::DW_TAG_module && ParentIdx == 0 && dwarf::toString(DIE.find(dwarf::DW_AT_name), "") != CU.getClangModuleName()) { InImportedModule = true; } Info.ParentIdx = ParentIdx; bool InClangModule = CU.isClangModule() || InImportedModule; if (CU.hasODR() || InClangModule) { if (CurrentDeclContext) { auto PtrInvalidPair = Contexts.getChildDeclContext( *CurrentDeclContext, DIE, CU, StringPool, InClangModule); CurrentDeclContext = PtrInvalidPair.getPointer(); Info.Ctxt = PtrInvalidPair.getInt() ? nullptr : PtrInvalidPair.getPointer(); if (Info.Ctxt) Info.Ctxt->setDefinedInClangModule(InClangModule); } else Info.Ctxt = CurrentDeclContext = nullptr; } Info.Prune = InImportedModule; if (DIE.hasChildren()) for (auto Child: DIE.children()) Info.Prune &= analyzeContextInfo(Child, MyIdx, CU, CurrentDeclContext, StringPool, Contexts, InImportedModule); // Prune this DIE if it is either a forward declaration inside a // DW_TAG_module or a DW_TAG_module that contains nothing but // forward declarations. Info.Prune &= (DIE.getTag() == dwarf::DW_TAG_module) || dwarf::toUnsigned(DIE.find(dwarf::DW_AT_declaration), 0); // Don't prune it if there is no definition for the DIE. Info.Prune &= Info.Ctxt && Info.Ctxt->getCanonicalDIEOffset(); return Info.Prune; } static bool dieNeedsChildrenToBeMeaningful(uint32_t Tag) { switch (Tag) { default: return false; case dwarf::DW_TAG_subprogram: case dwarf::DW_TAG_lexical_block: case dwarf::DW_TAG_subroutine_type: case dwarf::DW_TAG_structure_type: case dwarf::DW_TAG_class_type: case dwarf::DW_TAG_union_type: return true; } llvm_unreachable("Invalid Tag"); } void DwarfLinker::startDebugObject(DWARFContext &Dwarf, DebugMapObject &Obj) { // Iterate over the debug map entries and put all the ones that are // functions (because they have a size) into the Ranges map. This // map is very similar to the FunctionRanges that are stored in each // unit, with 2 notable differences: // - obviously this one is global, while the other ones are per-unit. // - this one contains not only the functions described in the DIE // tree, but also the ones that are only in the debug map. // The latter information is required to reproduce dsymutil's logic // while linking line tables. The cases where this information // matters look like bugs that need to be investigated, but for now // we need to reproduce dsymutil's behavior. // FIXME: Once we understood exactly if that information is needed, // maybe totally remove this (or try to use it to do a real // -gline-tables-only on Darwin. for (const auto &Entry : Obj.symbols()) { const auto &Mapping = Entry.getValue(); if (Mapping.Size && Mapping.ObjectAddress) Ranges[*Mapping.ObjectAddress] = std::make_pair( *Mapping.ObjectAddress + Mapping.Size, int64_t(Mapping.BinaryAddress) - *Mapping.ObjectAddress); } } void DwarfLinker::endDebugObject() { Units.clear(); Ranges.clear(); for (auto I = DIEBlocks.begin(), E = DIEBlocks.end(); I != E; ++I) (*I)->~DIEBlock(); for (auto I = DIELocs.begin(), E = DIELocs.end(); I != E; ++I) (*I)->~DIELoc(); DIEBlocks.clear(); DIELocs.clear(); DIEAlloc.Reset(); } static bool isMachOPairedReloc(uint64_t RelocType, uint64_t Arch) { switch (Arch) { case Triple::x86: return RelocType == MachO::GENERIC_RELOC_SECTDIFF || RelocType == MachO::GENERIC_RELOC_LOCAL_SECTDIFF; case Triple::x86_64: return RelocType == MachO::X86_64_RELOC_SUBTRACTOR; case Triple::arm: case Triple::thumb: return RelocType == MachO::ARM_RELOC_SECTDIFF || RelocType == MachO::ARM_RELOC_LOCAL_SECTDIFF || RelocType == MachO::ARM_RELOC_HALF || RelocType == MachO::ARM_RELOC_HALF_SECTDIFF; case Triple::aarch64: return RelocType == MachO::ARM64_RELOC_SUBTRACTOR; default: return false; } } /// Iterate over the relocations of the given \p Section and /// store the ones that correspond to debug map entries into the /// ValidRelocs array. void DwarfLinker::RelocationManager:: findValidRelocsMachO(const object::SectionRef &Section, const object::MachOObjectFile &Obj, const DebugMapObject &DMO) { StringRef Contents; Section.getContents(Contents); DataExtractor Data(Contents, Obj.isLittleEndian(), 0); bool SkipNext = false; for (const object::RelocationRef &Reloc : Section.relocations()) { if (SkipNext) { SkipNext = false; continue; } object::DataRefImpl RelocDataRef = Reloc.getRawDataRefImpl(); MachO::any_relocation_info MachOReloc = Obj.getRelocation(RelocDataRef); if (isMachOPairedReloc(Obj.getAnyRelocationType(MachOReloc), Obj.getArch())) { SkipNext = true; Linker.reportWarning(" unsupported relocation in debug_info section."); continue; } unsigned RelocSize = 1 << Obj.getAnyRelocationLength(MachOReloc); uint64_t Offset64 = Reloc.getOffset(); if ((RelocSize != 4 && RelocSize != 8)) { Linker.reportWarning(" unsupported relocation in debug_info section."); continue; } uint32_t Offset = Offset64; // Mach-o uses REL relocations, the addend is at the relocation offset. uint64_t Addend = Data.getUnsigned(&Offset, RelocSize); uint64_t SymAddress; int64_t SymOffset; if (Obj.isRelocationScattered(MachOReloc)) { // The address of the base symbol for scattered relocations is // stored in the reloc itself. The actual addend will store the // base address plus the offset. SymAddress = Obj.getScatteredRelocationValue(MachOReloc); SymOffset = int64_t(Addend) - SymAddress; } else { SymAddress = Addend; SymOffset = 0; } auto Sym = Reloc.getSymbol(); if (Sym != Obj.symbol_end()) { Expected SymbolName = Sym->getName(); if (!SymbolName) { consumeError(SymbolName.takeError()); Linker.reportWarning("error getting relocation symbol name."); continue; } if (const auto *Mapping = DMO.lookupSymbol(*SymbolName)) ValidRelocs.emplace_back(Offset64, RelocSize, Addend, Mapping); } else if (const auto *Mapping = DMO.lookupObjectAddress(SymAddress)) { // Do not store the addend. The addend was the address of the // symbol in the object file, the address in the binary that is // stored in the debug map doesn't need to be offseted. ValidRelocs.emplace_back(Offset64, RelocSize, SymOffset, Mapping); } } } /// Dispatch the valid relocation finding logic to the /// appropriate handler depending on the object file format. bool DwarfLinker::RelocationManager::findValidRelocs( const object::SectionRef &Section, const object::ObjectFile &Obj, const DebugMapObject &DMO) { // Dispatch to the right handler depending on the file type. if (auto *MachOObj = dyn_cast(&Obj)) findValidRelocsMachO(Section, *MachOObj, DMO); else Linker.reportWarning(Twine("unsupported object file type: ") + Obj.getFileName()); if (ValidRelocs.empty()) return false; // Sort the relocations by offset. We will walk the DIEs linearly in // the file, this allows us to just keep an index in the relocation // array that we advance during our walk, rather than resorting to // some associative container. See DwarfLinker::NextValidReloc. std::sort(ValidRelocs.begin(), ValidRelocs.end()); return true; } /// Look for relocations in the debug_info section that match /// entries in the debug map. These relocations will drive the Dwarf /// link by indicating which DIEs refer to symbols present in the /// linked binary. /// \returns wether there are any valid relocations in the debug info. bool DwarfLinker::RelocationManager:: findValidRelocsInDebugInfo(const object::ObjectFile &Obj, const DebugMapObject &DMO) { // Find the debug_info section. for (const object::SectionRef &Section : Obj.sections()) { StringRef SectionName; Section.getName(SectionName); SectionName = SectionName.substr(SectionName.find_first_not_of("._")); if (SectionName != "debug_info") continue; return findValidRelocs(Section, Obj, DMO); } return false; } /// Checks that there is a relocation against an actual debug /// map entry between \p StartOffset and \p NextOffset. /// /// This function must be called with offsets in strictly ascending /// order because it never looks back at relocations it already 'went past'. /// \returns true and sets Info.InDebugMap if it is the case. bool DwarfLinker::RelocationManager:: hasValidRelocation(uint32_t StartOffset, uint32_t EndOffset, CompileUnit::DIEInfo &Info) { assert(NextValidReloc == 0 || StartOffset > ValidRelocs[NextValidReloc - 1].Offset); if (NextValidReloc >= ValidRelocs.size()) return false; uint64_t RelocOffset = ValidRelocs[NextValidReloc].Offset; // We might need to skip some relocs that we didn't consider. For // example the high_pc of a discarded DIE might contain a reloc that // is in the list because it actually corresponds to the start of a // function that is in the debug map. while (RelocOffset < StartOffset && NextValidReloc < ValidRelocs.size() - 1) RelocOffset = ValidRelocs[++NextValidReloc].Offset; if (RelocOffset < StartOffset || RelocOffset >= EndOffset) return false; const auto &ValidReloc = ValidRelocs[NextValidReloc++]; const auto &Mapping = ValidReloc.Mapping->getValue(); uint64_t ObjectAddress = Mapping.ObjectAddress ? uint64_t(*Mapping.ObjectAddress) : std::numeric_limits::max(); if (Linker.Options.Verbose) outs() << "Found valid debug map entry: " << ValidReloc.Mapping->getKey() << " " << format("\t%016" PRIx64 " => %016" PRIx64, ObjectAddress, uint64_t(Mapping.BinaryAddress)); Info.AddrAdjust = int64_t(Mapping.BinaryAddress) + ValidReloc.Addend; if (Mapping.ObjectAddress) Info.AddrAdjust -= ObjectAddress; Info.InDebugMap = true; return true; } /// Get the starting and ending (exclusive) offset for the /// attribute with index \p Idx descibed by \p Abbrev. \p Offset is /// supposed to point to the position of the first attribute described /// by \p Abbrev. /// \return [StartOffset, EndOffset) as a pair. static std::pair getAttributeOffsets(const DWARFAbbreviationDeclaration *Abbrev, unsigned Idx, unsigned Offset, const DWARFUnit &Unit) { DataExtractor Data = Unit.getDebugInfoExtractor(); for (unsigned i = 0; i < Idx; ++i) DWARFFormValue::skipValue(Abbrev->getFormByIndex(i), Data, &Offset, Unit.getFormParams()); uint32_t End = Offset; DWARFFormValue::skipValue(Abbrev->getFormByIndex(Idx), Data, &End, Unit.getFormParams()); return std::make_pair(Offset, End); } /// Check if a variable describing DIE should be kept. /// \returns updated TraversalFlags. unsigned DwarfLinker::shouldKeepVariableDIE(RelocationManager &RelocMgr, const DWARFDie &DIE, CompileUnit &Unit, CompileUnit::DIEInfo &MyInfo, unsigned Flags) { const auto *Abbrev = DIE.getAbbreviationDeclarationPtr(); // Global variables with constant value can always be kept. if (!(Flags & TF_InFunctionScope) && Abbrev->findAttributeIndex(dwarf::DW_AT_const_value)) { MyInfo.InDebugMap = true; return Flags | TF_Keep; } Optional LocationIdx = Abbrev->findAttributeIndex(dwarf::DW_AT_location); if (!LocationIdx) return Flags; uint32_t Offset = DIE.getOffset() + getULEB128Size(Abbrev->getCode()); const DWARFUnit &OrigUnit = Unit.getOrigUnit(); uint32_t LocationOffset, LocationEndOffset; std::tie(LocationOffset, LocationEndOffset) = getAttributeOffsets(Abbrev, *LocationIdx, Offset, OrigUnit); // See if there is a relocation to a valid debug map entry inside // this variable's location. The order is important here. We want to // always check in the variable has a valid relocation, so that the // DIEInfo is filled. However, we don't want a static variable in a // function to force us to keep the enclosing function. if (!RelocMgr.hasValidRelocation(LocationOffset, LocationEndOffset, MyInfo) || (Flags & TF_InFunctionScope)) return Flags; if (Options.Verbose) { DIDumpOptions DumpOpts; DumpOpts.RecurseDepth = 0; DumpOpts.Verbose = Options.Verbose; DIE.dump(outs(), 8 /* Indent */, DumpOpts); } return Flags | TF_Keep; } /// Check if a function describing DIE should be kept. /// \returns updated TraversalFlags. unsigned DwarfLinker::shouldKeepSubprogramDIE( RelocationManager &RelocMgr, const DWARFDie &DIE, CompileUnit &Unit, CompileUnit::DIEInfo &MyInfo, unsigned Flags) { const auto *Abbrev = DIE.getAbbreviationDeclarationPtr(); Flags |= TF_InFunctionScope; Optional LowPcIdx = Abbrev->findAttributeIndex(dwarf::DW_AT_low_pc); if (!LowPcIdx) return Flags; uint32_t Offset = DIE.getOffset() + getULEB128Size(Abbrev->getCode()); const DWARFUnit &OrigUnit = Unit.getOrigUnit(); uint32_t LowPcOffset, LowPcEndOffset; std::tie(LowPcOffset, LowPcEndOffset) = getAttributeOffsets(Abbrev, *LowPcIdx, Offset, OrigUnit); auto LowPc = dwarf::toAddress(DIE.find(dwarf::DW_AT_low_pc)); assert(LowPc.hasValue() && "low_pc attribute is not an address."); if (!LowPc || !RelocMgr.hasValidRelocation(LowPcOffset, LowPcEndOffset, MyInfo)) return Flags; if (Options.Verbose) { DIDumpOptions DumpOpts; DumpOpts.RecurseDepth = 0; DumpOpts.Verbose = Options.Verbose; DIE.dump(outs(), 8 /* Indent */, DumpOpts); } Flags |= TF_Keep; Optional HighPc = DIE.getHighPC(*LowPc); if (!HighPc) { reportWarning("Function without high_pc. Range will be discarded.\n", &DIE); return Flags; } // Replace the debug map range with a more accurate one. Ranges[*LowPc] = std::make_pair(*HighPc, MyInfo.AddrAdjust); Unit.addFunctionRange(*LowPc, *HighPc, MyInfo.AddrAdjust); return Flags; } /// Check if a DIE should be kept. /// \returns updated TraversalFlags. unsigned DwarfLinker::shouldKeepDIE(RelocationManager &RelocMgr, const DWARFDie &DIE, CompileUnit &Unit, CompileUnit::DIEInfo &MyInfo, unsigned Flags) { switch (DIE.getTag()) { case dwarf::DW_TAG_constant: case dwarf::DW_TAG_variable: return shouldKeepVariableDIE(RelocMgr, DIE, Unit, MyInfo, Flags); case dwarf::DW_TAG_subprogram: return shouldKeepSubprogramDIE(RelocMgr, DIE, Unit, MyInfo, Flags); case dwarf::DW_TAG_imported_module: case dwarf::DW_TAG_imported_declaration: case dwarf::DW_TAG_imported_unit: // We always want to keep these. return Flags | TF_Keep; default: break; } return Flags; } /// Mark the passed DIE as well as all the ones it depends on /// as kept. /// /// This function is called by lookForDIEsToKeep on DIEs that are /// newly discovered to be needed in the link. It recursively calls /// back to lookForDIEsToKeep while adding TF_DependencyWalk to the /// TraversalFlags to inform it that it's not doing the primary DIE /// tree walk. void DwarfLinker::keepDIEAndDependencies(RelocationManager &RelocMgr, const DWARFDie &Die, CompileUnit::DIEInfo &MyInfo, const DebugMapObject &DMO, CompileUnit &CU, bool UseODR) { DWARFUnit &Unit = CU.getOrigUnit(); MyInfo.Keep = true; // We're looking for incomplete types. MyInfo.Incomplete = Die.getTag() != dwarf::DW_TAG_subprogram && Die.getTag() != dwarf::DW_TAG_member && dwarf::toUnsigned(Die.find(dwarf::DW_AT_declaration), 0); // First mark all the parent chain as kept. unsigned AncestorIdx = MyInfo.ParentIdx; while (!CU.getInfo(AncestorIdx).Keep) { unsigned ODRFlag = UseODR ? TF_ODR : 0; lookForDIEsToKeep(RelocMgr, Unit.getDIEAtIndex(AncestorIdx), DMO, CU, TF_ParentWalk | TF_Keep | TF_DependencyWalk | ODRFlag); AncestorIdx = CU.getInfo(AncestorIdx).ParentIdx; } // Then we need to mark all the DIEs referenced by this DIE's // attributes as kept. DWARFDataExtractor Data = Unit.getDebugInfoExtractor(); const auto *Abbrev = Die.getAbbreviationDeclarationPtr(); uint32_t Offset = Die.getOffset() + getULEB128Size(Abbrev->getCode()); // Mark all DIEs referenced through attributes as kept. for (const auto &AttrSpec : Abbrev->attributes()) { DWARFFormValue Val(AttrSpec.Form); if (!Val.isFormClass(DWARFFormValue::FC_Reference)) { DWARFFormValue::skipValue(AttrSpec.Form, Data, &Offset, Unit.getFormParams()); continue; } Val.extractValue(Data, &Offset, Unit.getFormParams(), &Unit); CompileUnit *ReferencedCU; if (auto RefDie = resolveDIEReference(*this, Units, Val, Unit, Die, ReferencedCU)) { uint32_t RefIdx = ReferencedCU->getOrigUnit().getDIEIndex(RefDie); CompileUnit::DIEInfo &Info = ReferencedCU->getInfo(RefIdx); bool IsModuleRef = Info.Ctxt && Info.Ctxt->getCanonicalDIEOffset() && Info.Ctxt->isDefinedInClangModule(); // If the referenced DIE has a DeclContext that has already been // emitted, then do not keep the one in this CU. We'll link to // the canonical DIE in cloneDieReferenceAttribute. // FIXME: compatibility with dsymutil-classic. UseODR shouldn't // be necessary and could be advantageously replaced by // ReferencedCU->hasODR() && CU.hasODR(). // FIXME: compatibility with dsymutil-classic. There is no // reason not to unique ref_addr references. if (AttrSpec.Form != dwarf::DW_FORM_ref_addr && (UseODR || IsModuleRef) && Info.Ctxt && Info.Ctxt != ReferencedCU->getInfo(Info.ParentIdx).Ctxt && Info.Ctxt->getCanonicalDIEOffset() && isODRAttribute(AttrSpec.Attr)) continue; // Keep a module forward declaration if there is no definition. if (!(isODRAttribute(AttrSpec.Attr) && Info.Ctxt && Info.Ctxt->getCanonicalDIEOffset())) Info.Prune = false; unsigned ODRFlag = UseODR ? TF_ODR : 0; lookForDIEsToKeep(RelocMgr, RefDie, DMO, *ReferencedCU, TF_Keep | TF_DependencyWalk | ODRFlag); // The incomplete property is propagated if the current DIE is complete // but references an incomplete DIE. if (Info.Incomplete && !MyInfo.Incomplete && (Die.getTag() == dwarf::DW_TAG_typedef || Die.getTag() == dwarf::DW_TAG_member || Die.getTag() == dwarf::DW_TAG_reference_type || Die.getTag() == dwarf::DW_TAG_ptr_to_member_type || Die.getTag() == dwarf::DW_TAG_pointer_type)) MyInfo.Incomplete = true; } } } /// Recursively walk the \p DIE tree and look for DIEs to /// keep. Store that information in \p CU's DIEInfo. /// /// This function is the entry point of the DIE selection /// algorithm. It is expected to walk the DIE tree in file order and /// (though the mediation of its helper) call hasValidRelocation() on /// each DIE that might be a 'root DIE' (See DwarfLinker class /// comment). /// While walking the dependencies of root DIEs, this function is /// also called, but during these dependency walks the file order is /// not respected. The TF_DependencyWalk flag tells us which kind of /// traversal we are currently doing. /// /// The return value indicates whether the DIE is incomplete. bool DwarfLinker::lookForDIEsToKeep(RelocationManager &RelocMgr, const DWARFDie &Die, const DebugMapObject &DMO, CompileUnit &CU, unsigned Flags) { unsigned Idx = CU.getOrigUnit().getDIEIndex(Die); CompileUnit::DIEInfo &MyInfo = CU.getInfo(Idx); bool AlreadyKept = MyInfo.Keep; if (MyInfo.Prune) return true; // If the Keep flag is set, we are marking a required DIE's // dependencies. If our target is already marked as kept, we're all // set. if ((Flags & TF_DependencyWalk) && AlreadyKept) return MyInfo.Incomplete; // We must not call shouldKeepDIE while called from keepDIEAndDependencies, // because it would screw up the relocation finding logic. if (!(Flags & TF_DependencyWalk)) Flags = shouldKeepDIE(RelocMgr, Die, CU, MyInfo, Flags); // If it is a newly kept DIE mark it as well as all its dependencies as kept. if (!AlreadyKept && (Flags & TF_Keep)) { bool UseOdr = (Flags & TF_DependencyWalk) ? (Flags & TF_ODR) : CU.hasODR(); keepDIEAndDependencies(RelocMgr, Die, MyInfo, DMO, CU, UseOdr); } // The TF_ParentWalk flag tells us that we are currently walking up // the parent chain of a required DIE, and we don't want to mark all // the children of the parents as kept (consider for example a // DW_TAG_namespace node in the parent chain). There are however a // set of DIE types for which we want to ignore that directive and still // walk their children. if (dieNeedsChildrenToBeMeaningful(Die.getTag())) Flags &= ~TF_ParentWalk; if (!Die.hasChildren() || (Flags & TF_ParentWalk)) return MyInfo.Incomplete; bool Incomplete = false; for (auto Child : Die.children()) { Incomplete |= lookForDIEsToKeep(RelocMgr, Child, DMO, CU, Flags); // If any of the members are incomplete we propagate the incompleteness. if (!MyInfo.Incomplete && Incomplete && (Die.getTag() == dwarf::DW_TAG_structure_type || Die.getTag() == dwarf::DW_TAG_class_type)) MyInfo.Incomplete = true; } return MyInfo.Incomplete; } /// Assign an abbreviation numer to \p Abbrev. /// /// Our DIEs get freed after every DebugMapObject has been processed, /// thus the FoldingSet we use to unique DIEAbbrevs cannot refer to /// the instances hold by the DIEs. When we encounter an abbreviation /// that we don't know, we create a permanent copy of it. void DwarfLinker::AssignAbbrev(DIEAbbrev &Abbrev) { // Check the set for priors. FoldingSetNodeID ID; Abbrev.Profile(ID); void *InsertToken; DIEAbbrev *InSet = AbbreviationsSet.FindNodeOrInsertPos(ID, InsertToken); // If it's newly added. if (InSet) { // Assign existing abbreviation number. Abbrev.setNumber(InSet->getNumber()); } else { // Add to abbreviation list. Abbreviations.push_back( llvm::make_unique(Abbrev.getTag(), Abbrev.hasChildren())); for (const auto &Attr : Abbrev.getData()) Abbreviations.back()->AddAttribute(Attr.getAttribute(), Attr.getForm()); AbbreviationsSet.InsertNode(Abbreviations.back().get(), InsertToken); // Assign the unique abbreviation number. Abbrev.setNumber(Abbreviations.size()); Abbreviations.back()->setNumber(Abbreviations.size()); } } unsigned DwarfLinker::DIECloner::cloneStringAttribute(DIE &Die, AttributeSpec AttrSpec, const DWARFFormValue &Val, const DWARFUnit &U) { // Switch everything to out of line strings. const char *String = *Val.getAsCString(); unsigned Offset = Linker.StringPool.getStringOffset(String); Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr), dwarf::DW_FORM_strp, DIEInteger(Offset)); return 4; } unsigned DwarfLinker::DIECloner::cloneDieReferenceAttribute( DIE &Die, const DWARFDie &InputDIE, AttributeSpec AttrSpec, unsigned AttrSize, const DWARFFormValue &Val, CompileUnit &Unit) { const DWARFUnit &U = Unit.getOrigUnit(); uint32_t Ref = *Val.getAsReference(); DIE *NewRefDie = nullptr; CompileUnit *RefUnit = nullptr; DeclContext *Ctxt = nullptr; DWARFDie RefDie = resolveDIEReference(Linker, CompileUnits, Val, U, InputDIE, RefUnit); // If the referenced DIE is not found, drop the attribute. if (!RefDie) return 0; unsigned Idx = RefUnit->getOrigUnit().getDIEIndex(RefDie); CompileUnit::DIEInfo &RefInfo = RefUnit->getInfo(Idx); // If we already have emitted an equivalent DeclContext, just point // at it. if (isODRAttribute(AttrSpec.Attr)) { Ctxt = RefInfo.Ctxt; if (Ctxt && Ctxt->getCanonicalDIEOffset()) { DIEInteger Attr(Ctxt->getCanonicalDIEOffset()); Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr), dwarf::DW_FORM_ref_addr, Attr); return U.getRefAddrByteSize(); } } if (!RefInfo.Clone) { assert(Ref > InputDIE.getOffset()); // We haven't cloned this DIE yet. Just create an empty one and // store it. It'll get really cloned when we process it. RefInfo.Clone = DIE::get(DIEAlloc, dwarf::Tag(RefDie.getTag())); } NewRefDie = RefInfo.Clone; if (AttrSpec.Form == dwarf::DW_FORM_ref_addr || (Unit.hasODR() && isODRAttribute(AttrSpec.Attr))) { // We cannot currently rely on a DIEEntry to emit ref_addr // references, because the implementation calls back to DwarfDebug // to find the unit offset. (We don't have a DwarfDebug) // FIXME: we should be able to design DIEEntry reliance on // DwarfDebug away. uint64_t Attr; if (Ref < InputDIE.getOffset()) { // We must have already cloned that DIE. uint32_t NewRefOffset = RefUnit->getStartOffset() + NewRefDie->getOffset(); Attr = NewRefOffset; Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr), dwarf::DW_FORM_ref_addr, DIEInteger(Attr)); } else { // A forward reference. Note and fixup later. Attr = 0xBADDEF; Unit.noteForwardReference( NewRefDie, RefUnit, Ctxt, Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr), dwarf::DW_FORM_ref_addr, DIEInteger(Attr))); } return U.getRefAddrByteSize(); } Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr), dwarf::Form(AttrSpec.Form), DIEEntry(*NewRefDie)); return AttrSize; } unsigned DwarfLinker::DIECloner::cloneBlockAttribute(DIE &Die, AttributeSpec AttrSpec, const DWARFFormValue &Val, unsigned AttrSize) { DIEValueList *Attr; DIEValue Value; DIELoc *Loc = nullptr; DIEBlock *Block = nullptr; // Just copy the block data over. if (AttrSpec.Form == dwarf::DW_FORM_exprloc) { Loc = new (DIEAlloc) DIELoc; Linker.DIELocs.push_back(Loc); } else { Block = new (DIEAlloc) DIEBlock; Linker.DIEBlocks.push_back(Block); } Attr = Loc ? static_cast(Loc) : static_cast(Block); if (Loc) Value = DIEValue(dwarf::Attribute(AttrSpec.Attr), dwarf::Form(AttrSpec.Form), Loc); else Value = DIEValue(dwarf::Attribute(AttrSpec.Attr), dwarf::Form(AttrSpec.Form), Block); ArrayRef Bytes = *Val.getAsBlock(); for (auto Byte : Bytes) Attr->addValue(DIEAlloc, static_cast(0), dwarf::DW_FORM_data1, DIEInteger(Byte)); // FIXME: If DIEBlock and DIELoc just reuses the Size field of // the DIE class, this if could be replaced by // Attr->setSize(Bytes.size()). if (Linker.Streamer) { auto *AsmPrinter = &Linker.Streamer->getAsmPrinter(); if (Loc) Loc->ComputeSize(AsmPrinter); else Block->ComputeSize(AsmPrinter); } Die.addValue(DIEAlloc, Value); return AttrSize; } unsigned DwarfLinker::DIECloner::cloneAddressAttribute( DIE &Die, AttributeSpec AttrSpec, const DWARFFormValue &Val, const CompileUnit &Unit, AttributesInfo &Info) { uint64_t Addr = *Val.getAsAddress(); if (AttrSpec.Attr == dwarf::DW_AT_low_pc) { if (Die.getTag() == dwarf::DW_TAG_inlined_subroutine || Die.getTag() == dwarf::DW_TAG_lexical_block) // The low_pc of a block or inline subroutine might get // relocated because it happens to match the low_pc of the // enclosing subprogram. To prevent issues with that, always use // the low_pc from the input DIE if relocations have been applied. Addr = (Info.OrigLowPc != std::numeric_limits::max() ? Info.OrigLowPc : Addr) + Info.PCOffset; else if (Die.getTag() == dwarf::DW_TAG_compile_unit) { Addr = Unit.getLowPc(); if (Addr == std::numeric_limits::max()) return 0; } Info.HasLowPc = true; } else if (AttrSpec.Attr == dwarf::DW_AT_high_pc) { if (Die.getTag() == dwarf::DW_TAG_compile_unit) { if (uint64_t HighPc = Unit.getHighPc()) Addr = HighPc; else return 0; } else // If we have a high_pc recorded for the input DIE, use // it. Otherwise (when no relocations where applied) just use the // one we just decoded. Addr = (Info.OrigHighPc ? Info.OrigHighPc : Addr) + Info.PCOffset; } Die.addValue(DIEAlloc, static_cast(AttrSpec.Attr), static_cast(AttrSpec.Form), DIEInteger(Addr)); return Unit.getOrigUnit().getAddressByteSize(); } unsigned DwarfLinker::DIECloner::cloneScalarAttribute( DIE &Die, const DWARFDie &InputDIE, CompileUnit &Unit, AttributeSpec AttrSpec, const DWARFFormValue &Val, unsigned AttrSize, AttributesInfo &Info) { uint64_t Value; if (AttrSpec.Attr == dwarf::DW_AT_high_pc && Die.getTag() == dwarf::DW_TAG_compile_unit) { if (Unit.getLowPc() == -1ULL) return 0; // Dwarf >= 4 high_pc is an size, not an address. Value = Unit.getHighPc() - Unit.getLowPc(); } else if (AttrSpec.Form == dwarf::DW_FORM_sec_offset) Value = *Val.getAsSectionOffset(); else if (AttrSpec.Form == dwarf::DW_FORM_sdata) Value = *Val.getAsSignedConstant(); else if (auto OptionalValue = Val.getAsUnsignedConstant()) Value = *OptionalValue; else { Linker.reportWarning( "Unsupported scalar attribute form. Dropping attribute.", &InputDIE); return 0; } PatchLocation Patch = Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr), dwarf::Form(AttrSpec.Form), DIEInteger(Value)); if (AttrSpec.Attr == dwarf::DW_AT_ranges) Unit.noteRangeAttribute(Die, Patch); // A more generic way to check for location attributes would be // nice, but it's very unlikely that any other attribute needs a // location list. else if (AttrSpec.Attr == dwarf::DW_AT_location || AttrSpec.Attr == dwarf::DW_AT_frame_base) Unit.noteLocationAttribute(Patch, Info.PCOffset); else if (AttrSpec.Attr == dwarf::DW_AT_declaration && Value) Info.IsDeclaration = true; return AttrSize; } /// Clone \p InputDIE's attribute described by \p AttrSpec with /// value \p Val, and add it to \p Die. /// \returns the size of the cloned attribute. unsigned DwarfLinker::DIECloner::cloneAttribute( DIE &Die, const DWARFDie &InputDIE, CompileUnit &Unit, const DWARFFormValue &Val, const AttributeSpec AttrSpec, unsigned AttrSize, AttributesInfo &Info) { const DWARFUnit &U = Unit.getOrigUnit(); switch (AttrSpec.Form) { case dwarf::DW_FORM_strp: case dwarf::DW_FORM_string: return cloneStringAttribute(Die, AttrSpec, Val, U); case dwarf::DW_FORM_ref_addr: case dwarf::DW_FORM_ref1: case dwarf::DW_FORM_ref2: case dwarf::DW_FORM_ref4: case dwarf::DW_FORM_ref8: return cloneDieReferenceAttribute(Die, InputDIE, AttrSpec, AttrSize, Val, Unit); case dwarf::DW_FORM_block: case dwarf::DW_FORM_block1: case dwarf::DW_FORM_block2: case dwarf::DW_FORM_block4: case dwarf::DW_FORM_exprloc: return cloneBlockAttribute(Die, AttrSpec, Val, AttrSize); case dwarf::DW_FORM_addr: return cloneAddressAttribute(Die, AttrSpec, Val, Unit, Info); case dwarf::DW_FORM_data1: case dwarf::DW_FORM_data2: case dwarf::DW_FORM_data4: case dwarf::DW_FORM_data8: case dwarf::DW_FORM_udata: case dwarf::DW_FORM_sdata: case dwarf::DW_FORM_sec_offset: case dwarf::DW_FORM_flag: case dwarf::DW_FORM_flag_present: return cloneScalarAttribute(Die, InputDIE, Unit, AttrSpec, Val, AttrSize, Info); default: Linker.reportWarning( "Unsupported attribute form in cloneAttribute. Dropping.", &InputDIE); } return 0; } /// Apply the valid relocations found by findValidRelocs() to /// the buffer \p Data, taking into account that Data is at \p BaseOffset /// in the debug_info section. /// /// Like for findValidRelocs(), this function must be called with /// monotonic \p BaseOffset values. /// /// \returns wether any reloc has been applied. bool DwarfLinker::RelocationManager:: applyValidRelocs(MutableArrayRef Data, uint32_t BaseOffset, bool isLittleEndian) { assert((NextValidReloc == 0 || BaseOffset > ValidRelocs[NextValidReloc - 1].Offset) && "BaseOffset should only be increasing."); if (NextValidReloc >= ValidRelocs.size()) return false; // Skip relocs that haven't been applied. while (NextValidReloc < ValidRelocs.size() && ValidRelocs[NextValidReloc].Offset < BaseOffset) ++NextValidReloc; bool Applied = false; uint64_t EndOffset = BaseOffset + Data.size(); while (NextValidReloc < ValidRelocs.size() && ValidRelocs[NextValidReloc].Offset >= BaseOffset && ValidRelocs[NextValidReloc].Offset < EndOffset) { const auto &ValidReloc = ValidRelocs[NextValidReloc++]; assert(ValidReloc.Offset - BaseOffset < Data.size()); assert(ValidReloc.Offset - BaseOffset + ValidReloc.Size <= Data.size()); char Buf[8]; uint64_t Value = ValidReloc.Mapping->getValue().BinaryAddress; Value += ValidReloc.Addend; for (unsigned i = 0; i != ValidReloc.Size; ++i) { unsigned Index = isLittleEndian ? i : (ValidReloc.Size - i - 1); Buf[i] = uint8_t(Value >> (Index * 8)); } assert(ValidReloc.Size <= sizeof(Buf)); memcpy(&Data[ValidReloc.Offset - BaseOffset], Buf, ValidReloc.Size); Applied = true; } return Applied; } static bool isTypeTag(uint16_t Tag) { switch (Tag) { case dwarf::DW_TAG_array_type: case dwarf::DW_TAG_class_type: case dwarf::DW_TAG_enumeration_type: case dwarf::DW_TAG_pointer_type: case dwarf::DW_TAG_reference_type: case dwarf::DW_TAG_string_type: case dwarf::DW_TAG_structure_type: case dwarf::DW_TAG_subroutine_type: case dwarf::DW_TAG_typedef: case dwarf::DW_TAG_union_type: case dwarf::DW_TAG_ptr_to_member_type: case dwarf::DW_TAG_set_type: case dwarf::DW_TAG_subrange_type: case dwarf::DW_TAG_base_type: case dwarf::DW_TAG_const_type: case dwarf::DW_TAG_constant: case dwarf::DW_TAG_file_type: case dwarf::DW_TAG_namelist: case dwarf::DW_TAG_packed_type: case dwarf::DW_TAG_volatile_type: case dwarf::DW_TAG_restrict_type: case dwarf::DW_TAG_atomic_type: case dwarf::DW_TAG_interface_type: case dwarf::DW_TAG_unspecified_type: case dwarf::DW_TAG_shared_type: return true; default: break; } return false; } static bool shouldSkipAttribute(DWARFAbbreviationDeclaration::AttributeSpec AttrSpec, uint16_t Tag, bool InDebugMap, bool SkipPC, bool InFunctionScope) { switch (AttrSpec.Attr) { default: return false; case dwarf::DW_AT_low_pc: case dwarf::DW_AT_high_pc: case dwarf::DW_AT_ranges: return SkipPC; case dwarf::DW_AT_location: case dwarf::DW_AT_frame_base: // FIXME: for some reason dsymutil-classic keeps the location // attributes when they are of block type (ie. not location // lists). This is totally wrong for globals where we will keep a // wrong address. It is mostly harmless for locals, but there is // no point in keeping these anyway when the function wasn't linked. return (SkipPC || (!InFunctionScope && Tag == dwarf::DW_TAG_variable && !InDebugMap)) && !DWARFFormValue(AttrSpec.Form).isFormClass(DWARFFormValue::FC_Block); } } DIE *DwarfLinker::DIECloner::cloneDIE( const DWARFDie &InputDIE, CompileUnit &Unit, int64_t PCOffset, uint32_t OutOffset, unsigned Flags, DIE *Die) { DWARFUnit &U = Unit.getOrigUnit(); unsigned Idx = U.getDIEIndex(InputDIE); CompileUnit::DIEInfo &Info = Unit.getInfo(Idx); // Should the DIE appear in the output? if (!Unit.getInfo(Idx).Keep) return nullptr; uint32_t Offset = InputDIE.getOffset(); assert(!(Die && Info.Clone) && "Can't supply a DIE and a cloned DIE"); if (!Die) { // The DIE might have been already created by a forward reference // (see cloneDieReferenceAttribute()). if (!Info.Clone) Info.Clone = DIE::get(DIEAlloc, dwarf::Tag(InputDIE.getTag())); Die = Info.Clone; } assert(Die->getTag() == InputDIE.getTag()); Die->setOffset(OutOffset); if ((Unit.hasODR() || Unit.isClangModule()) && !Info.Incomplete && Die->getTag() != dwarf::DW_TAG_namespace && Info.Ctxt && Info.Ctxt != Unit.getInfo(Info.ParentIdx).Ctxt && !Info.Ctxt->getCanonicalDIEOffset()) { // We are about to emit a DIE that is the root of its own valid // DeclContext tree. Make the current offset the canonical offset // for this context. Info.Ctxt->setCanonicalDIEOffset(OutOffset + Unit.getStartOffset()); } // Extract and clone every attribute. DWARFDataExtractor Data = U.getDebugInfoExtractor(); // Point to the next DIE (generally there is always at least a NULL // entry after the current one). If this is a lone // DW_TAG_compile_unit without any children, point to the next unit. uint32_t NextOffset = (Idx + 1 < U.getNumDIEs()) ? U.getDIEAtIndex(Idx + 1).getOffset() : U.getNextUnitOffset(); AttributesInfo AttrInfo; // We could copy the data only if we need to aply a relocation to // it. After testing, it seems there is no performance downside to // doing the copy unconditionally, and it makes the code simpler. SmallString<40> DIECopy(Data.getData().substr(Offset, NextOffset - Offset)); Data = DWARFDataExtractor(DIECopy, Data.isLittleEndian(), Data.getAddressSize()); // Modify the copy with relocated addresses. if (RelocMgr.applyValidRelocs(DIECopy, Offset, Data.isLittleEndian())) { // If we applied relocations, we store the value of high_pc that was // potentially stored in the input DIE. If high_pc is an address // (Dwarf version == 2), then it might have been relocated to a // totally unrelated value (because the end address in the object // file might be start address of another function which got moved // independantly by the linker). The computation of the actual // high_pc value is done in cloneAddressAttribute(). AttrInfo.OrigHighPc = dwarf::toAddress(InputDIE.find(dwarf::DW_AT_high_pc), 0); // Also store the low_pc. It might get relocated in an // inline_subprogram that happens at the beginning of its // inlining function. AttrInfo.OrigLowPc = dwarf::toAddress(InputDIE.find(dwarf::DW_AT_low_pc), std::numeric_limits::max()); } // Reset the Offset to 0 as we will be working on the local copy of // the data. Offset = 0; const auto *Abbrev = InputDIE.getAbbreviationDeclarationPtr(); Offset += getULEB128Size(Abbrev->getCode()); // We are entering a subprogram. Get and propagate the PCOffset. if (Die->getTag() == dwarf::DW_TAG_subprogram) PCOffset = Info.AddrAdjust; AttrInfo.PCOffset = PCOffset; if (Abbrev->getTag() == dwarf::DW_TAG_subprogram) { Flags |= TF_InFunctionScope; if (!Info.InDebugMap) Flags |= TF_SkipPC; } bool Copied = false; for (const auto &AttrSpec : Abbrev->attributes()) { if (shouldSkipAttribute(AttrSpec, Die->getTag(), Info.InDebugMap, Flags & TF_SkipPC, Flags & TF_InFunctionScope)) { DWARFFormValue::skipValue(AttrSpec.Form, Data, &Offset, U.getFormParams()); // FIXME: dsymutil-classic keeps the old abbreviation around // even if it's not used. We can remove this (and the copyAbbrev // helper) as soon as bit-for-bit compatibility is not a goal anymore. if (!Copied) { copyAbbrev(*InputDIE.getAbbreviationDeclarationPtr(), Unit.hasODR()); Copied = true; } continue; } DWARFFormValue Val(AttrSpec.Form); uint32_t AttrSize = Offset; Val.extractValue(Data, &Offset, U.getFormParams(), &U); AttrSize = Offset - AttrSize; OutOffset += cloneAttribute(*Die, InputDIE, Unit, Val, AttrSpec, AttrSize, AttrInfo); } // Look for accelerator entries. uint16_t Tag = InputDIE.getTag(); // FIXME: This is slightly wrong. An inline_subroutine without a // low_pc, but with AT_ranges might be interesting to get into the // accelerator tables too. For now stick with dsymutil's behavior. if ((Info.InDebugMap || AttrInfo.HasLowPc) && Tag != dwarf::DW_TAG_compile_unit && getDIENames(InputDIE, AttrInfo)) { if (AttrInfo.MangledName && AttrInfo.MangledName != AttrInfo.Name) Unit.addNameAccelerator(Die, AttrInfo.MangledName, AttrInfo.MangledNameOffset, Tag == dwarf::DW_TAG_inlined_subroutine); if (AttrInfo.Name) Unit.addNameAccelerator(Die, AttrInfo.Name, AttrInfo.NameOffset, Tag == dwarf::DW_TAG_inlined_subroutine); } else if (isTypeTag(Tag) && !AttrInfo.IsDeclaration && getDIENames(InputDIE, AttrInfo)) { if (AttrInfo.Name) Unit.addTypeAccelerator(Die, AttrInfo.Name, AttrInfo.NameOffset); } // Determine whether there are any children that we want to keep. bool HasChildren = false; for (auto Child: InputDIE.children()) { unsigned Idx = U.getDIEIndex(Child); if (Unit.getInfo(Idx).Keep) { HasChildren = true; break; } } DIEAbbrev NewAbbrev = Die->generateAbbrev(); if (HasChildren) NewAbbrev.setChildrenFlag(dwarf::DW_CHILDREN_yes); // Assign a permanent abbrev number Linker.AssignAbbrev(NewAbbrev); Die->setAbbrevNumber(NewAbbrev.getNumber()); // Add the size of the abbreviation number to the output offset. OutOffset += getULEB128Size(Die->getAbbrevNumber()); if (!HasChildren) { // Update our size. Die->setSize(OutOffset - Die->getOffset()); return Die; } // Recursively clone children. for (auto Child: InputDIE.children()) { if (DIE *Clone = cloneDIE(Child, Unit, PCOffset, OutOffset, Flags)) { Die->addChild(Clone); OutOffset = Clone->getOffset() + Clone->getSize(); } } // Account for the end of children marker. OutOffset += sizeof(int8_t); // Update our size. Die->setSize(OutOffset - Die->getOffset()); return Die; } /// Patch the input object file relevant debug_ranges entries /// and emit them in the output file. Update the relevant attributes /// to point at the new entries. void DwarfLinker::patchRangesForUnit(const CompileUnit &Unit, DWARFContext &OrigDwarf) const { DWARFDebugRangeList RangeList; const auto &FunctionRanges = Unit.getFunctionRanges(); unsigned AddressSize = Unit.getOrigUnit().getAddressByteSize(); DWARFDataExtractor RangeExtractor(OrigDwarf.getDWARFObj(), OrigDwarf.getDWARFObj().getRangeSection(), OrigDwarf.isLittleEndian(), AddressSize); auto InvalidRange = FunctionRanges.end(), CurrRange = InvalidRange; DWARFUnit &OrigUnit = Unit.getOrigUnit(); auto OrigUnitDie = OrigUnit.getUnitDIE(false); uint64_t OrigLowPc = dwarf::toAddress(OrigUnitDie.find(dwarf::DW_AT_low_pc), -1ULL); // Ranges addresses are based on the unit's low_pc. Compute the // offset we need to apply to adapt to the new unit's low_pc. int64_t UnitPcOffset = 0; if (OrigLowPc != -1ULL) UnitPcOffset = int64_t(OrigLowPc) - Unit.getLowPc(); for (const auto &RangeAttribute : Unit.getRangesAttributes()) { uint32_t Offset = RangeAttribute.get(); RangeAttribute.set(Streamer->getRangesSectionSize()); RangeList.extract(RangeExtractor, &Offset); const auto &Entries = RangeList.getEntries(); if (!Entries.empty()) { const DWARFDebugRangeList::RangeListEntry &First = Entries.front(); if (CurrRange == InvalidRange || First.StartAddress + OrigLowPc < CurrRange.start() || First.StartAddress + OrigLowPc >= CurrRange.stop()) { CurrRange = FunctionRanges.find(First.StartAddress + OrigLowPc); if (CurrRange == InvalidRange || CurrRange.start() > First.StartAddress + OrigLowPc) { reportWarning("no mapping for range."); continue; } } } Streamer->emitRangesEntries(UnitPcOffset, OrigLowPc, CurrRange, Entries, AddressSize); } } /// Generate the debug_aranges entries for \p Unit and if the /// unit has a DW_AT_ranges attribute, also emit the debug_ranges /// contribution for this attribute. /// FIXME: this could actually be done right in patchRangesForUnit, /// but for the sake of initial bit-for-bit compatibility with legacy /// dsymutil, we have to do it in a delayed pass. void DwarfLinker::generateUnitRanges(CompileUnit &Unit) const { auto Attr = Unit.getUnitRangesAttribute(); if (Attr) Attr->set(Streamer->getRangesSectionSize()); Streamer->emitUnitRangesEntries(Unit, static_cast(Attr)); } /// Insert the new line info sequence \p Seq into the current /// set of already linked line info \p Rows. static void insertLineSequence(std::vector &Seq, std::vector &Rows) { if (Seq.empty()) return; if (!Rows.empty() && Rows.back().Address < Seq.front().Address) { Rows.insert(Rows.end(), Seq.begin(), Seq.end()); Seq.clear(); return; } auto InsertPoint = std::lower_bound( Rows.begin(), Rows.end(), Seq.front(), [](const DWARFDebugLine::Row &LHS, const DWARFDebugLine::Row &RHS) { return LHS.Address < RHS.Address; }); // FIXME: this only removes the unneeded end_sequence if the // sequences have been inserted in order. using a global sort like // described in patchLineTableForUnit() and delaying the end_sequene // elimination to emitLineTableForUnit() we can get rid of all of them. if (InsertPoint != Rows.end() && InsertPoint->Address == Seq.front().Address && InsertPoint->EndSequence) { *InsertPoint = Seq.front(); Rows.insert(InsertPoint + 1, Seq.begin() + 1, Seq.end()); } else { Rows.insert(InsertPoint, Seq.begin(), Seq.end()); } Seq.clear(); } static void patchStmtList(DIE &Die, DIEInteger Offset) { for (auto &V : Die.values()) if (V.getAttribute() == dwarf::DW_AT_stmt_list) { V = DIEValue(V.getAttribute(), V.getForm(), Offset); return; } llvm_unreachable("Didn't find DW_AT_stmt_list in cloned DIE!"); } /// Extract the line table for \p Unit from \p OrigDwarf, and /// recreate a relocated version of these for the address ranges that /// are present in the binary. void DwarfLinker::patchLineTableForUnit(CompileUnit &Unit, DWARFContext &OrigDwarf) { DWARFDie CUDie = Unit.getOrigUnit().getUnitDIE(); auto StmtList = dwarf::toSectionOffset(CUDie.find(dwarf::DW_AT_stmt_list)); if (!StmtList) return; // Update the cloned DW_AT_stmt_list with the correct debug_line offset. if (auto *OutputDIE = Unit.getOutputUnitDIE()) patchStmtList(*OutputDIE, DIEInteger(Streamer->getLineSectionSize())); // Parse the original line info for the unit. DWARFDebugLine::LineTable LineTable; uint32_t StmtOffset = *StmtList; DWARFDataExtractor LineExtractor( OrigDwarf.getDWARFObj(), OrigDwarf.getDWARFObj().getLineSection(), OrigDwarf.isLittleEndian(), Unit.getOrigUnit().getAddressByteSize()); LineTable.parse(LineExtractor, &StmtOffset, &Unit.getOrigUnit()); // This vector is the output line table. std::vector NewRows; NewRows.reserve(LineTable.Rows.size()); // Current sequence of rows being extracted, before being inserted // in NewRows. std::vector Seq; const auto &FunctionRanges = Unit.getFunctionRanges(); auto InvalidRange = FunctionRanges.end(), CurrRange = InvalidRange; // FIXME: This logic is meant to generate exactly the same output as // Darwin's classic dsynutil. There is a nicer way to implement this // by simply putting all the relocated line info in NewRows and simply // sorting NewRows before passing it to emitLineTableForUnit. This // should be correct as sequences for a function should stay // together in the sorted output. There are a few corner cases that // look suspicious though, and that required to implement the logic // this way. Revisit that once initial validation is finished. // Iterate over the object file line info and extract the sequences // that correspond to linked functions. for (auto &Row : LineTable.Rows) { // Check wether we stepped out of the range. The range is // half-open, but consider accept the end address of the range if // it is marked as end_sequence in the input (because in that // case, the relocation offset is accurate and that entry won't // serve as the start of another function). if (CurrRange == InvalidRange || Row.Address < CurrRange.start() || Row.Address > CurrRange.stop() || (Row.Address == CurrRange.stop() && !Row.EndSequence)) { // We just stepped out of a known range. Insert a end_sequence // corresponding to the end of the range. uint64_t StopAddress = CurrRange != InvalidRange ? CurrRange.stop() + CurrRange.value() : -1ULL; CurrRange = FunctionRanges.find(Row.Address); bool CurrRangeValid = CurrRange != InvalidRange && CurrRange.start() <= Row.Address; if (!CurrRangeValid) { CurrRange = InvalidRange; if (StopAddress != -1ULL) { // Try harder by looking in the DebugMapObject function // ranges map. There are corner cases where this finds a // valid entry. It's unclear if this is right or wrong, but // for now do as dsymutil. // FIXME: Understand exactly what cases this addresses and // potentially remove it along with the Ranges map. auto Range = Ranges.lower_bound(Row.Address); if (Range != Ranges.begin() && Range != Ranges.end()) --Range; if (Range != Ranges.end() && Range->first <= Row.Address && Range->second.first >= Row.Address) { StopAddress = Row.Address + Range->second.second; } } } if (StopAddress != -1ULL && !Seq.empty()) { // Insert end sequence row with the computed end address, but // the same line as the previous one. auto NextLine = Seq.back(); NextLine.Address = StopAddress; NextLine.EndSequence = 1; NextLine.PrologueEnd = 0; NextLine.BasicBlock = 0; NextLine.EpilogueBegin = 0; Seq.push_back(NextLine); insertLineSequence(Seq, NewRows); } if (!CurrRangeValid) continue; } // Ignore empty sequences. if (Row.EndSequence && Seq.empty()) continue; // Relocate row address and add it to the current sequence. Row.Address += CurrRange.value(); Seq.emplace_back(Row); if (Row.EndSequence) insertLineSequence(Seq, NewRows); } // Finished extracting, now emit the line tables. // FIXME: LLVM hardcodes its prologue values. We just copy the // prologue over and that works because we act as both producer and // consumer. It would be nicer to have a real configurable line // table emitter. if (LineTable.Prologue.getVersion() < 2 || LineTable.Prologue.getVersion() > 5 || LineTable.Prologue.DefaultIsStmt != DWARF2_LINE_DEFAULT_IS_STMT || LineTable.Prologue.OpcodeBase > 13) reportWarning("line table parameters mismatch. Cannot emit."); else { uint32_t PrologueEnd = *StmtList + 10 + LineTable.Prologue.PrologueLength; // DWARFv5 has an extra 2 bytes of information before the header_length // field. if (LineTable.Prologue.getVersion() == 5) PrologueEnd += 2; StringRef LineData = OrigDwarf.getDWARFObj().getLineSection().Data; MCDwarfLineTableParams Params; Params.DWARF2LineOpcodeBase = LineTable.Prologue.OpcodeBase; Params.DWARF2LineBase = LineTable.Prologue.LineBase; Params.DWARF2LineRange = LineTable.Prologue.LineRange; Streamer->emitLineTableForUnit(Params, LineData.slice(*StmtList + 4, PrologueEnd), LineTable.Prologue.MinInstLength, NewRows, Unit.getOrigUnit().getAddressByteSize()); } } void DwarfLinker::emitAcceleratorEntriesForUnit(CompileUnit &Unit) { Streamer->emitPubNamesForUnit(Unit); Streamer->emitPubTypesForUnit(Unit); } /// Read the frame info stored in the object, and emit the /// patched frame descriptions for the linked binary. /// /// This is actually pretty easy as the data of the CIEs and FDEs can /// be considered as black boxes and moved as is. The only thing to do /// is to patch the addresses in the headers. void DwarfLinker::patchFrameInfoForObject(const DebugMapObject &DMO, DWARFContext &OrigDwarf, unsigned AddrSize) { StringRef FrameData = OrigDwarf.getDWARFObj().getDebugFrameSection(); if (FrameData.empty()) return; DataExtractor Data(FrameData, OrigDwarf.isLittleEndian(), 0); uint32_t InputOffset = 0; // Store the data of the CIEs defined in this object, keyed by their // offsets. DenseMap LocalCIES; while (Data.isValidOffset(InputOffset)) { uint32_t EntryOffset = InputOffset; uint32_t InitialLength = Data.getU32(&InputOffset); if (InitialLength == 0xFFFFFFFF) return reportWarning("Dwarf64 bits no supported"); uint32_t CIEId = Data.getU32(&InputOffset); if (CIEId == 0xFFFFFFFF) { // This is a CIE, store it. StringRef CIEData = FrameData.substr(EntryOffset, InitialLength + 4); LocalCIES[EntryOffset] = CIEData; // The -4 is to account for the CIEId we just read. InputOffset += InitialLength - 4; continue; } uint32_t Loc = Data.getUnsigned(&InputOffset, AddrSize); // Some compilers seem to emit frame info that doesn't start at // the function entry point, thus we can't just lookup the address // in the debug map. Use the linker's range map to see if the FDE // describes something that we can relocate. auto Range = Ranges.upper_bound(Loc); if (Range != Ranges.begin()) --Range; if (Range == Ranges.end() || Range->first > Loc || Range->second.first <= Loc) { // The +4 is to account for the size of the InitialLength field itself. InputOffset = EntryOffset + InitialLength + 4; continue; } // This is an FDE, and we have a mapping. // Have we already emitted a corresponding CIE? StringRef CIEData = LocalCIES[CIEId]; if (CIEData.empty()) return reportWarning("Inconsistent debug_frame content. Dropping."); // Look if we already emitted a CIE that corresponds to the // referenced one (the CIE data is the key of that lookup). auto IteratorInserted = EmittedCIEs.insert( std::make_pair(CIEData, Streamer->getFrameSectionSize())); // If there is no CIE yet for this ID, emit it. if (IteratorInserted.second || // FIXME: dsymutil-classic only caches the last used CIE for // reuse. Mimic that behavior for now. Just removing that // second half of the condition and the LastCIEOffset variable // makes the code DTRT. LastCIEOffset != IteratorInserted.first->getValue()) { LastCIEOffset = Streamer->getFrameSectionSize(); IteratorInserted.first->getValue() = LastCIEOffset; Streamer->emitCIE(CIEData); } // Emit the FDE with updated address and CIE pointer. // (4 + AddrSize) is the size of the CIEId + initial_location // fields that will get reconstructed by emitFDE(). unsigned FDERemainingBytes = InitialLength - (4 + AddrSize); Streamer->emitFDE(IteratorInserted.first->getValue(), AddrSize, Loc + Range->second.second, FrameData.substr(InputOffset, FDERemainingBytes)); InputOffset += FDERemainingBytes; } } void DwarfLinker::DIECloner::copyAbbrev( const DWARFAbbreviationDeclaration &Abbrev, bool hasODR) { DIEAbbrev Copy(dwarf::Tag(Abbrev.getTag()), dwarf::Form(Abbrev.hasChildren())); for (const auto &Attr : Abbrev.attributes()) { uint16_t Form = Attr.Form; if (hasODR && isODRAttribute(Attr.Attr)) Form = dwarf::DW_FORM_ref_addr; Copy.AddAttribute(dwarf::Attribute(Attr.Attr), dwarf::Form(Form)); } Linker.AssignAbbrev(Copy); } static uint64_t getDwoId(const DWARFDie &CUDie, const DWARFUnit &Unit) { auto DwoId = dwarf::toUnsigned(CUDie.find({dwarf::DW_AT_dwo_id, dwarf::DW_AT_GNU_dwo_id})); if (DwoId) return *DwoId; return 0; } bool DwarfLinker::registerModuleReference( const DWARFDie &CUDie, const DWARFUnit &Unit, DebugMap &ModuleMap, unsigned Indent) { std::string PCMfile = dwarf::toString(CUDie.find({dwarf::DW_AT_dwo_name, dwarf::DW_AT_GNU_dwo_name}), ""); if (PCMfile.empty()) return false; // Clang module DWARF skeleton CUs abuse this for the path to the module. std::string PCMpath = dwarf::toString(CUDie.find(dwarf::DW_AT_comp_dir), ""); uint64_t DwoId = getDwoId(CUDie, Unit); std::string Name = dwarf::toString(CUDie.find(dwarf::DW_AT_name), ""); if (Name.empty()) { reportWarning("Anonymous module skeleton CU for " + PCMfile); return true; } if (Options.Verbose) { outs().indent(Indent); outs() << "Found clang module reference " << PCMfile; } auto Cached = ClangModules.find(PCMfile); if (Cached != ClangModules.end()) { // FIXME: Until PR27449 (https://llvm.org/bugs/show_bug.cgi?id=27449) is // fixed in clang, only warn about DWO_id mismatches in verbose mode. // ASTFileSignatures will change randomly when a module is rebuilt. if (Options.Verbose && (Cached->second != DwoId)) reportWarning(Twine("hash mismatch: this object file was built against a " "different version of the module ") + PCMfile); if (Options.Verbose) outs() << " [cached].\n"; return true; } if (Options.Verbose) outs() << " ...\n"; // Cyclic dependencies are disallowed by Clang, but we still // shouldn't run into an infinite loop, so mark it as processed now. ClangModules.insert({PCMfile, DwoId}); if (Error E = loadClangModule(PCMfile, PCMpath, Name, DwoId, ModuleMap, Indent + 2)) { consumeError(std::move(E)); return false; } return true; } ErrorOr DwarfLinker::loadObject(BinaryHolder &BinaryHolder, DebugMapObject &Obj, const DebugMap &Map) { auto ErrOrObjs = BinaryHolder.GetObjectFiles(Obj.getObjectFilename(), Obj.getTimestamp()); if (std::error_code EC = ErrOrObjs.getError()) { reportWarning(Twine(Obj.getObjectFilename()) + ": " + EC.message()); return EC; } auto ErrOrObj = BinaryHolder.Get(Map.getTriple()); if (std::error_code EC = ErrOrObj.getError()) reportWarning(Twine(Obj.getObjectFilename()) + ": " + EC.message()); return ErrOrObj; } Error DwarfLinker::loadClangModule(StringRef Filename, StringRef ModulePath, StringRef ModuleName, uint64_t DwoId, DebugMap &ModuleMap, unsigned Indent) { SmallString<80> Path(Options.PrependPath); if (sys::path::is_relative(Filename)) sys::path::append(Path, ModulePath, Filename); else sys::path::append(Path, Filename); BinaryHolder ObjHolder(Options.Verbose); auto &Obj = ModuleMap.addDebugMapObject( Path, sys::TimePoint(), MachO::N_OSO); auto ErrOrObj = loadObject(ObjHolder, Obj, ModuleMap); if (!ErrOrObj) { // Try and emit more helpful warnings by applying some heuristics. StringRef ObjFile = CurrentDebugObject->getObjectFilename(); bool isClangModule = sys::path::extension(Filename).equals(".pcm"); bool isArchive = ObjFile.endswith(")"); if (isClangModule) { StringRef ModuleCacheDir = sys::path::parent_path(Path); if (sys::fs::exists(ModuleCacheDir)) { // If the module's parent directory exists, we assume that the module // cache has expired and was pruned by clang. A more adventurous // dsymutil would invoke clang to rebuild the module now. if (!ModuleCacheHintDisplayed) { errs() << "note: The clang module cache may have expired since this " "object file was built. Rebuilding the object file will " "rebuild the module cache.\n"; ModuleCacheHintDisplayed = true; } } else if (isArchive) { // If the module cache directory doesn't exist at all and the object // file is inside a static library, we assume that the static library // was built on a different machine. We don't want to discourage module // debugging for convenience libraries within a project though. if (!ArchiveHintDisplayed) { errs() << "note: Linking a static library that was built with " "-gmodules, but the module cache was not found. " "Redistributable static libraries should never be built " "with module debugging enabled. The debug experience will " "be degraded due to incomplete debug information.\n"; ArchiveHintDisplayed = true; } } } return Error::success(); } std::unique_ptr Unit; // Setup access to the debug info. auto DwarfContext = DWARFContext::create(*ErrOrObj); RelocationManager RelocMgr(*this); for (const auto &CU : DwarfContext->compile_units()) { maybeUpdateMaxDwarfVersion(CU->getVersion()); // Recursively get all modules imported by this one. auto CUDie = CU->getUnitDIE(false); if (!registerModuleReference(CUDie, *CU, ModuleMap, Indent)) { if (Unit) { std::string Err = (Filename + ": Clang modules are expected to have exactly 1 compile unit.\n") .str(); errs() << Err; return make_error(Err, inconvertibleErrorCode()); } // FIXME: Until PR27449 (https://llvm.org/bugs/show_bug.cgi?id=27449) is // fixed in clang, only warn about DWO_id mismatches in verbose mode. // ASTFileSignatures will change randomly when a module is rebuilt. uint64_t PCMDwoId = getDwoId(CUDie, *CU); if (PCMDwoId != DwoId) { if (Options.Verbose) reportWarning( Twine("hash mismatch: this object file was built against a " "different version of the module ") + Filename); // Update the cache entry with the DwoId of the module loaded from disk. ClangModules[Filename] = PCMDwoId; } // Add this module. Unit = llvm::make_unique(*CU, UnitID++, !Options.NoODR, ModuleName); Unit->setHasInterestingContent(); analyzeContextInfo(CUDie, 0, *Unit, &ODRContexts.getRoot(), StringPool, ODRContexts); // Keep everything. Unit->markEverythingAsKept(); } } if (!Unit->getOrigUnit().getUnitDIE().hasChildren()) return Error::success(); if (Options.Verbose) { outs().indent(Indent); outs() << "cloning .debug_info from " << Filename << "\n"; } std::vector> CompileUnits; CompileUnits.push_back(std::move(Unit)); DIECloner(*this, RelocMgr, DIEAlloc, CompileUnits, Options) .cloneAllCompileUnits(*DwarfContext); return Error::success(); } void DwarfLinker::DIECloner::cloneAllCompileUnits(DWARFContext &DwarfContext) { if (!Linker.Streamer) return; for (auto &CurrentUnit : CompileUnits) { auto InputDIE = CurrentUnit->getOrigUnit().getUnitDIE(); CurrentUnit->setStartOffset(Linker.OutputDebugInfoSize); if (CurrentUnit->getInfo(0).Keep) { // Clone the InputDIE into your Unit DIE in our compile unit since it // already has a DIE inside of it. CurrentUnit->createOutputDIE(); cloneDIE(InputDIE, *CurrentUnit, 0 /* PC offset */, 11 /* Unit Header size */, 0, CurrentUnit->getOutputUnitDIE()); } Linker.OutputDebugInfoSize = CurrentUnit->computeNextUnitOffset(); if (Linker.Options.NoOutput) continue; // FIXME: for compatibility with the classic dsymutil, we emit // an empty line table for the unit, even if the unit doesn't // actually exist in the DIE tree. Linker.patchLineTableForUnit(*CurrentUnit, DwarfContext); Linker.patchRangesForUnit(*CurrentUnit, DwarfContext); Linker.Streamer->emitLocationsForUnit(*CurrentUnit, DwarfContext); Linker.emitAcceleratorEntriesForUnit(*CurrentUnit); } if (Linker.Options.NoOutput) return; // Emit all the compile unit's debug information. for (auto &CurrentUnit : CompileUnits) { Linker.generateUnitRanges(*CurrentUnit); CurrentUnit->fixupForwardReferences(); Linker.Streamer->emitCompileUnitHeader(*CurrentUnit); if (!CurrentUnit->getOutputUnitDIE()) continue; Linker.Streamer->emitDIE(*CurrentUnit->getOutputUnitDIE()); } } bool DwarfLinker::link(const DebugMap &Map) { if (!createStreamer(Map.getTriple(), OutFile)) return false; // Size of the DIEs (and headers) generated for the linked output. OutputDebugInfoSize = 0; // A unique ID that identifies each compile unit. UnitID = 0; DebugMap ModuleMap(Map.getTriple(), Map.getBinaryPath()); for (const auto &Obj : Map.objects()) { CurrentDebugObject = Obj.get(); if (Options.Verbose) outs() << "DEBUG MAP OBJECT: " << Obj->getObjectFilename() << "\n"; // N_AST objects (swiftmodule files) should get dumped directly into the // appropriate DWARF section. if (Obj->getType() == MachO::N_AST) { StringRef File = Obj->getObjectFilename(); auto ErrorOrMem = MemoryBuffer::getFile(File); if (!ErrorOrMem) { errs() << "Warning: Could not open " << File << "\n"; continue; } sys::fs::file_status Stat; if (auto errc = sys::fs::status(File, Stat)) { errs() << "Warning: " << errc.message() << "\n"; continue; } if (!Options.NoTimestamp && Stat.getLastModificationTime() != sys::TimePoint<>(Obj->getTimestamp())) { errs() << "Warning: Timestamp mismatch for " << File << ": " << Stat.getLastModificationTime() << " and " << sys::TimePoint<>(Obj->getTimestamp()) << "\n"; continue; } // Copy the module into the .swift_ast section. if (!Options.NoOutput) Streamer->emitSwiftAST((*ErrorOrMem)->getBuffer()); continue; } auto ErrOrObj = loadObject(BinHolder, *Obj, Map); if (!ErrOrObj) continue; // Look for relocations that correspond to debug map entries. RelocationManager RelocMgr(*this); if (!RelocMgr.findValidRelocsInDebugInfo(*ErrOrObj, *Obj)) { if (Options.Verbose) outs() << "No valid relocations found. Skipping.\n"; continue; } // Setup access to the debug info. auto DwarfContext = DWARFContext::create(*ErrOrObj); startDebugObject(*DwarfContext, *Obj); // In a first phase, just read in the debug info and load all clang modules. for (const auto &CU : DwarfContext->compile_units()) { auto CUDie = CU->getUnitDIE(false); if (Options.Verbose) { outs() << "Input compilation unit:"; DIDumpOptions DumpOpts; DumpOpts.RecurseDepth = 0; DumpOpts.Verbose = Options.Verbose; CUDie.dump(outs(), 0, DumpOpts); } if (!registerModuleReference(CUDie, *CU, ModuleMap)) { Units.push_back(llvm::make_unique(*CU, UnitID++, !Options.NoODR, "")); maybeUpdateMaxDwarfVersion(CU->getVersion()); } } // Now build the DIE parent links that we will use during the next phase. for (auto &CurrentUnit : Units) analyzeContextInfo(CurrentUnit->getOrigUnit().getUnitDIE(), 0, *CurrentUnit, &ODRContexts.getRoot(), StringPool, ODRContexts); // Then mark all the DIEs that need to be present in the linked // output and collect some information about them. Note that this // loop can not be merged with the previous one becaue cross-cu // references require the ParentIdx to be setup for every CU in // the object file before calling this. for (auto &CurrentUnit : Units) lookForDIEsToKeep(RelocMgr, CurrentUnit->getOrigUnit().getUnitDIE(), *Obj, *CurrentUnit, 0); // The calls to applyValidRelocs inside cloneDIE will walk the // reloc array again (in the same way findValidRelocsInDebugInfo() // did). We need to reset the NextValidReloc index to the beginning. RelocMgr.resetValidRelocs(); if (RelocMgr.hasValidRelocs()) DIECloner(*this, RelocMgr, DIEAlloc, Units, Options) .cloneAllCompileUnits(*DwarfContext); if (!Options.NoOutput && !Units.empty()) patchFrameInfoForObject(*Obj, *DwarfContext, Units[0]->getOrigUnit().getAddressByteSize()); // Clean-up before starting working on the next object. endDebugObject(); } // Emit everything that's global. if (!Options.NoOutput) { Streamer->emitAbbrevs(Abbreviations, MaxDwarfVersion); Streamer->emitStrings(StringPool); } return Options.NoOutput ? true : Streamer->finish(Map); } /// Get the offset of string \p S in the string table. This /// can insert a new element or return the offset of a preexisitng /// one. uint32_t NonRelocatableStringpool::getStringOffset(StringRef S) { if (S.empty() && !Strings.empty()) return 0; std::pair Entry(0, nullptr); MapTy::iterator It; bool Inserted; // A non-empty string can't be at offset 0, so if we have an entry // with a 0 offset, it must be a previously interned string. std::tie(It, Inserted) = Strings.insert(std::make_pair(S, Entry)); if (Inserted || It->getValue().first == 0) { // Set offset and chain at the end of the entries list. It->getValue().first = CurrentEndOffset; CurrentEndOffset += S.size() + 1; // +1 for the '\0'. Last->getValue().second = &*It; Last = &*It; } return It->getValue().first; } /// Put \p S into the StringMap so that it gets permanent /// storage, but do not actually link it in the chain of elements /// that go into the output section. A latter call to /// getStringOffset() with the same string will chain it though. StringRef NonRelocatableStringpool::internString(StringRef S) { std::pair Entry(0, nullptr); auto InsertResult = Strings.insert(std::make_pair(S, Entry)); return InsertResult.first->getKey(); } void warn(const Twine &Warning, const Twine &Context) { errs() << Twine("while processing ") + Context + ":\n"; errs() << Twine("warning: ") + Warning + "\n"; } bool error(const Twine &Error, const Twine &Context) { errs() << Twine("while processing ") + Context + ":\n"; errs() << Twine("error: ") + Error + "\n"; return false; } bool linkDwarf(raw_fd_ostream &OutFile, const DebugMap &DM, const LinkOptions &Options) { DwarfLinker Linker(OutFile, Options); return Linker.link(DM); } } // end namespace dsymutil } // end namespace llvm