; NOTE: Assertions have been autogenerated by utils/update_test_checks.py ; RUN: opt -S -instcombine < %s | FileCheck %s ; If we have a umax feeding an unsigned or equality icmp that shares an ; operand with the umax, the compare should always be folded. ; Test all 4 foldable predicates (eq,ne,ugt,ule) * 4 commutation ; possibilities for each predicate. Note that folds to true/false ; (predicate = uge/ult) or folds to an existing instruction should be ; handled by InstSimplify. ; umax(X, Y) == X --> X >= Y define i1 @eq_umax1(i32 %x, i32 %y) { ; CHECK-LABEL: @eq_umax1( ; CHECK-NEXT: [[CMP2:%.*]] = icmp uge i32 %x, %y ; CHECK-NEXT: ret i1 [[CMP2]] ; %cmp1 = icmp ugt i32 %x, %y %sel = select i1 %cmp1, i32 %x, i32 %y %cmp2 = icmp eq i32 %sel, %x ret i1 %cmp2 } ; Commute max operands. define i1 @eq_umax2(i32 %x, i32 %y) { ; CHECK-LABEL: @eq_umax2( ; CHECK-NEXT: [[CMP2:%.*]] = icmp uge i32 %x, %y ; CHECK-NEXT: ret i1 [[CMP2]] ; %cmp1 = icmp ugt i32 %y, %x %sel = select i1 %cmp1, i32 %y, i32 %x %cmp2 = icmp eq i32 %sel, %x ret i1 %cmp2 } ; Disguise the icmp predicate by commuting the max op to the RHS. define i1 @eq_umax3(i32 %a, i32 %y) { ; CHECK-LABEL: @eq_umax3( ; CHECK-NEXT: [[X:%.*]] = add i32 %a, 3 ; CHECK-NEXT: [[CMP2:%.*]] = icmp uge i32 [[X]], %y ; CHECK-NEXT: ret i1 [[CMP2]] ; %x = add i32 %a, 3 ; thwart complexity-based canonicalization %cmp1 = icmp ugt i32 %x, %y %sel = select i1 %cmp1, i32 %x, i32 %y %cmp2 = icmp eq i32 %x, %sel ret i1 %cmp2 } ; Commute max operands. define i1 @eq_umax4(i32 %a, i32 %y) { ; CHECK-LABEL: @eq_umax4( ; CHECK-NEXT: [[X:%.*]] = add i32 %a, 3 ; CHECK-NEXT: [[CMP2:%.*]] = icmp uge i32 [[X]], %y ; CHECK-NEXT: ret i1 [[CMP2]] ; %x = add i32 %a, 3 ; thwart complexity-based canonicalization %cmp1 = icmp ugt i32 %y, %x %sel = select i1 %cmp1, i32 %y, i32 %x %cmp2 = icmp eq i32 %x, %sel ret i1 %cmp2 } ; umax(X, Y) <= X --> X >= Y define i1 @ule_umax1(i32 %x, i32 %y) { ; CHECK-LABEL: @ule_umax1( ; CHECK-NEXT: [[CMP2:%.*]] = icmp uge i32 %x, %y ; CHECK-NEXT: ret i1 [[CMP2]] ; %cmp1 = icmp ugt i32 %x, %y %sel = select i1 %cmp1, i32 %x, i32 %y %cmp2 = icmp ule i32 %sel, %x ret i1 %cmp2 } ; Commute max operands. define i1 @ule_umax2(i32 %x, i32 %y) { ; CHECK-LABEL: @ule_umax2( ; CHECK-NEXT: [[CMP2:%.*]] = icmp uge i32 %x, %y ; CHECK-NEXT: ret i1 [[CMP2]] ; %cmp1 = icmp ugt i32 %y, %x %sel = select i1 %cmp1, i32 %y, i32 %x %cmp2 = icmp ule i32 %sel, %x ret i1 %cmp2 } ; Disguise the icmp predicate by commuting the max op to the RHS. define i1 @ule_umax3(i32 %a, i32 %y) { ; CHECK-LABEL: @ule_umax3( ; CHECK-NEXT: [[X:%.*]] = add i32 %a, 3 ; CHECK-NEXT: [[CMP2:%.*]] = icmp uge i32 [[X]], %y ; CHECK-NEXT: ret i1 [[CMP2]] ; %x = add i32 %a, 3 ; thwart complexity-based canonicalization %cmp1 = icmp ugt i32 %x, %y %sel = select i1 %cmp1, i32 %x, i32 %y %cmp2 = icmp uge i32 %x, %sel ret i1 %cmp2 } ; Commute max operands. define i1 @ule_umax4(i32 %a, i32 %y) { ; CHECK-LABEL: @ule_umax4( ; CHECK-NEXT: [[X:%.*]] = add i32 %a, 3 ; CHECK-NEXT: [[CMP2:%.*]] = icmp uge i32 [[X]], %y ; CHECK-NEXT: ret i1 [[CMP2]] ; %x = add i32 %a, 3 ; thwart complexity-based canonicalization %cmp1 = icmp ugt i32 %y, %x %sel = select i1 %cmp1, i32 %y, i32 %x %cmp2 = icmp uge i32 %x, %sel ret i1 %cmp2 } ; umax(X, Y) != X --> X < Y define i1 @ne_umax1(i32 %x, i32 %y) { ; CHECK-LABEL: @ne_umax1( ; CHECK-NEXT: [[CMP2:%.*]] = icmp ult i32 %x, %y ; CHECK-NEXT: ret i1 [[CMP2]] ; %cmp1 = icmp ugt i32 %x, %y %sel = select i1 %cmp1, i32 %x, i32 %y %cmp2 = icmp ne i32 %sel, %x ret i1 %cmp2 } ; Commute max operands. define i1 @ne_umax2(i32 %x, i32 %y) { ; CHECK-LABEL: @ne_umax2( ; CHECK-NEXT: [[CMP1:%.*]] = icmp ugt i32 %y, %x ; CHECK-NEXT: ret i1 [[CMP1]] ; %cmp1 = icmp ugt i32 %y, %x %sel = select i1 %cmp1, i32 %y, i32 %x %cmp2 = icmp ne i32 %sel, %x ret i1 %cmp2 } ; Disguise the icmp predicate by commuting the max op to the RHS. define i1 @ne_umax3(i32 %a, i32 %y) { ; CHECK-LABEL: @ne_umax3( ; CHECK-NEXT: [[X:%.*]] = add i32 %a, 3 ; CHECK-NEXT: [[CMP2:%.*]] = icmp ult i32 [[X]], %y ; CHECK-NEXT: ret i1 [[CMP2]] ; %x = add i32 %a, 3 ; thwart complexity-based canonicalization %cmp1 = icmp ugt i32 %x, %y %sel = select i1 %cmp1, i32 %x, i32 %y %cmp2 = icmp ne i32 %x, %sel ret i1 %cmp2 } ; Commute max operands. define i1 @ne_umax4(i32 %a, i32 %y) { ; CHECK-LABEL: @ne_umax4( ; CHECK-NEXT: [[X:%.*]] = add i32 %a, 3 ; CHECK-NEXT: [[CMP1:%.*]] = icmp ult i32 [[X]], %y ; CHECK-NEXT: ret i1 [[CMP1]] ; %x = add i32 %a, 3 ; thwart complexity-based canonicalization %cmp1 = icmp ugt i32 %y, %x %sel = select i1 %cmp1, i32 %y, i32 %x %cmp2 = icmp ne i32 %x, %sel ret i1 %cmp2 } ; umax(X, Y) > X --> X < Y define i1 @ugt_umax1(i32 %x, i32 %y) { ; CHECK-LABEL: @ugt_umax1( ; CHECK-NEXT: [[CMP2:%.*]] = icmp ult i32 %x, %y ; CHECK-NEXT: ret i1 [[CMP2]] ; %cmp1 = icmp ugt i32 %x, %y %sel = select i1 %cmp1, i32 %x, i32 %y %cmp2 = icmp ugt i32 %sel, %x ret i1 %cmp2 } ; Commute max operands. define i1 @ugt_umax2(i32 %x, i32 %y) { ; CHECK-LABEL: @ugt_umax2( ; CHECK-NEXT: [[CMP1:%.*]] = icmp ugt i32 %y, %x ; CHECK-NEXT: ret i1 [[CMP1]] ; %cmp1 = icmp ugt i32 %y, %x %sel = select i1 %cmp1, i32 %y, i32 %x %cmp2 = icmp ugt i32 %sel, %x ret i1 %cmp2 } ; Disguise the icmp predicate by commuting the max op to the RHS. define i1 @ugt_umax3(i32 %a, i32 %y) { ; CHECK-LABEL: @ugt_umax3( ; CHECK-NEXT: [[X:%.*]] = add i32 %a, 3 ; CHECK-NEXT: [[CMP2:%.*]] = icmp ult i32 [[X]], %y ; CHECK-NEXT: ret i1 [[CMP2]] ; %x = add i32 %a, 3 ; thwart complexity-based canonicalization %cmp1 = icmp ugt i32 %x, %y %sel = select i1 %cmp1, i32 %x, i32 %y %cmp2 = icmp ult i32 %x, %sel ret i1 %cmp2 } ; Commute max operands. define i1 @ugt_umax4(i32 %a, i32 %y) { ; CHECK-LABEL: @ugt_umax4( ; CHECK-NEXT: [[X:%.*]] = add i32 %a, 3 ; CHECK-NEXT: [[CMP1:%.*]] = icmp ult i32 [[X]], %y ; CHECK-NEXT: ret i1 [[CMP1]] ; %x = add i32 %a, 3 ; thwart complexity-based canonicalization %cmp1 = icmp ugt i32 %y, %x %sel = select i1 %cmp1, i32 %y, i32 %x %cmp2 = icmp ult i32 %x, %sel ret i1 %cmp2 }