; Test sequences that can use RISBG with a zeroed first operand. ; The tests here assume that RISBLG isn't available. ; ; RUN: llc < %s -mtriple=s390x-linux-gnu -mcpu=z10 | FileCheck %s ; Test an extraction of bit 0 from a right-shifted value. define i32 @f1(i32 %foo) { ; CHECK-LABEL: f1: ; CHECK: risbg %r2, %r2, 63, 191, 54 ; CHECK: br %r14 %shr = lshr i32 %foo, 10 %and = and i32 %shr, 1 ret i32 %and } ; ...and again with i64. define i64 @f2(i64 %foo) { ; CHECK-LABEL: f2: ; CHECK: risbg %r2, %r2, 63, 191, 54 ; CHECK: br %r14 %shr = lshr i64 %foo, 10 %and = and i64 %shr, 1 ret i64 %and } ; Test an extraction of other bits from a right-shifted value. define i32 @f3(i32 %foo) { ; CHECK-LABEL: f3: ; CHECK: risbg %r2, %r2, 60, 189, 42 ; CHECK: br %r14 %shr = lshr i32 %foo, 22 %and = and i32 %shr, 12 ret i32 %and } ; ...and again with i64. define i64 @f4(i64 %foo) { ; CHECK-LABEL: f4: ; CHECK: risbg %r2, %r2, 60, 189, 42 ; CHECK: br %r14 %shr = lshr i64 %foo, 22 %and = and i64 %shr, 12 ret i64 %and } ; Test an extraction of most bits from a right-shifted value. ; The range should be reduced to exclude the zeroed high bits. define i32 @f5(i32 %foo) { ; CHECK-LABEL: f5: ; CHECK: risbg %r2, %r2, 34, 188, 62 ; CHECK: br %r14 %shr = lshr i32 %foo, 2 %and = and i32 %shr, -8 ret i32 %and } ; ...and again with i64. define i64 @f6(i64 %foo) { ; CHECK-LABEL: f6: ; CHECK: risbg %r2, %r2, 2, 188, 62 ; CHECK: br %r14 %shr = lshr i64 %foo, 2 %and = and i64 %shr, -8 ret i64 %and } ; Try the next value up (mask ....1111001). This needs a separate shift ; and mask. define i32 @f7(i32 %foo) { ; CHECK-LABEL: f7: ; CHECK: srl %r2, 2 ; CHECK: nill %r2, 65529 ; CHECK: br %r14 %shr = lshr i32 %foo, 2 %and = and i32 %shr, -7 ret i32 %and } ; ...and again with i64. define i64 @f8(i64 %foo) { ; CHECK-LABEL: f8: ; CHECK: srlg %r2, %r2, 2 ; CHECK: nill %r2, 65529 ; CHECK: br %r14 %shr = lshr i64 %foo, 2 %and = and i64 %shr, -7 ret i64 %and } ; Test an extraction of bits from a left-shifted value. The range should ; be reduced to exclude the zeroed low bits. define i32 @f9(i32 %foo) { ; CHECK-LABEL: f9: ; CHECK: risbg %r2, %r2, 56, 189, 2 ; CHECK: br %r14 %shr = shl i32 %foo, 2 %and = and i32 %shr, 255 ret i32 %and } ; ...and again with i64. define i64 @f10(i64 %foo) { ; CHECK-LABEL: f10: ; CHECK: risbg %r2, %r2, 56, 189, 2 ; CHECK: br %r14 %shr = shl i64 %foo, 2 %and = and i64 %shr, 255 ret i64 %and } ; Try a wrap-around mask (mask ....111100001111). This needs a separate shift ; and mask. define i32 @f11(i32 %foo) { ; CHECK-LABEL: f11: ; CHECK: sll %r2, 2 ; CHECK: nill %r2, 65295 ; CHECK: br %r14 %shr = shl i32 %foo, 2 %and = and i32 %shr, -241 ret i32 %and } ; ...and again with i64. define i64 @f12(i64 %foo) { ; CHECK-LABEL: f12: ; CHECK: sllg %r2, %r2, 2 ; CHECK: nill %r2, 65295 ; CHECK: br %r14 %shr = shl i64 %foo, 2 %and = and i64 %shr, -241 ret i64 %and } ; Test an extraction from a rotated value, no mask wraparound. ; This is equivalent to the lshr case, because the bits from the ; shl are not used. define i32 @f13(i32 %foo) { ; CHECK-LABEL: f13: ; CHECK: risbg %r2, %r2, 56, 188, 46 ; CHECK: br %r14 %parta = shl i32 %foo, 14 %partb = lshr i32 %foo, 18 %rotl = or i32 %parta, %partb %and = and i32 %rotl, 248 ret i32 %and } ; ...and again with i64. define i64 @f14(i64 %foo) { ; CHECK-LABEL: f14: ; CHECK: risbg %r2, %r2, 56, 188, 14 ; CHECK: br %r14 %parta = shl i64 %foo, 14 %partb = lshr i64 %foo, 50 %rotl = or i64 %parta, %partb %and = and i64 %rotl, 248 ret i64 %and } ; Try a case in which only the bits from the shl are used. define i32 @f15(i32 %foo) { ; CHECK-LABEL: f15: ; CHECK: risbg %r2, %r2, 47, 177, 14 ; CHECK: br %r14 %parta = shl i32 %foo, 14 %partb = lshr i32 %foo, 18 %rotl = or i32 %parta, %partb %and = and i32 %rotl, 114688 ret i32 %and } ; ...and again with i64. define i64 @f16(i64 %foo) { ; CHECK-LABEL: f16: ; CHECK: risbg %r2, %r2, 47, 177, 14 ; CHECK: br %r14 %parta = shl i64 %foo, 14 %partb = lshr i64 %foo, 50 %rotl = or i64 %parta, %partb %and = and i64 %rotl, 114688 ret i64 %and } ; Test a 32-bit rotate in which both parts of the OR are needed. ; This needs a separate shift and mask. define i32 @f17(i32 %foo) { ; CHECK-LABEL: f17: ; CHECK: rll %r2, %r2, 4 ; CHECK: nilf %r2, 126 ; CHECK: br %r14 %parta = shl i32 %foo, 4 %partb = lshr i32 %foo, 28 %rotl = or i32 %parta, %partb %and = and i32 %rotl, 126 ret i32 %and } ; ...and for i64, where RISBG should do the rotate too. define i64 @f18(i64 %foo) { ; CHECK-LABEL: f18: ; CHECK: risbg %r2, %r2, 57, 190, 4 ; CHECK: br %r14 %parta = shl i64 %foo, 4 %partb = lshr i64 %foo, 60 %rotl = or i64 %parta, %partb %and = and i64 %rotl, 126 ret i64 %and } ; Test an arithmetic shift right in which some of the sign bits are kept. ; This needs a separate shift and mask. define i32 @f19(i32 %foo) { ; CHECK-LABEL: f19: ; CHECK: sra %r2, 28 ; CHECK: nilf %r2, 30 ; CHECK: br %r14 %shr = ashr i32 %foo, 28 %and = and i32 %shr, 30 ret i32 %and } ; ...and again with i64. In this case RISBG is the best way of doing the AND. define i64 @f20(i64 %foo) { ; CHECK-LABEL: f20: ; CHECK: srag [[REG:%r[0-5]]], %r2, 60 ; CHECK: risbg %r2, [[REG]], 59, 190, 0 ; CHECK: br %r14 %shr = ashr i64 %foo, 60 %and = and i64 %shr, 30 ret i64 %and } ; Now try an arithmetic right shift in which the sign bits aren't needed. ; Introduce a second use of %shr so that the ashr doesn't decompose to ; an lshr. ; NOTE: the extra move to %r2 should not be needed (temporary FAIL) define i32 @f21(i32 %foo, i32 *%dest) { ; CHECK-LABEL: f21: ; CHECK: risbg %r0, %r2, 60, 190, 36 ; CHECK: lr %r2, %r0 ; CHECK: br %r14 %shr = ashr i32 %foo, 28 store i32 %shr, i32 *%dest %and = and i32 %shr, 14 ret i32 %and } ; ...and again with i64. define i64 @f22(i64 %foo, i64 *%dest) { ; CHECK-LABEL: f22: ; CHECK: risbg %r2, %r2, 60, 190, 4 ; CHECK: br %r14 %shr = ashr i64 %foo, 60 store i64 %shr, i64 *%dest %and = and i64 %shr, 14 ret i64 %and } ; Check that we use RISBG for shifted values even if the AND is a ; natural zero extension. define i64 @f23(i64 %foo) { ; CHECK-LABEL: f23: ; CHECK: risbg %r2, %r2, 56, 191, 62 ; CHECK: br %r14 %shr = lshr i64 %foo, 2 %and = and i64 %shr, 255 ret i64 %and } ; Test a case where the AND comes before a rotate. This needs a separate ; mask and rotate. define i32 @f24(i32 %foo) { ; CHECK-LABEL: f24: ; CHECK: nilf %r2, 254 ; CHECK: rll %r2, %r2, 29 ; CHECK: br %r14 %and = and i32 %foo, 254 %parta = lshr i32 %and, 3 %partb = shl i32 %and, 29 %rotl = or i32 %parta, %partb ret i32 %rotl } ; ...and again with i64, where a single RISBG is enough. define i64 @f25(i64 %foo) { ; CHECK-LABEL: f25: ; CHECK: risbg %r2, %r2, 57, 187, 3 ; CHECK: br %r14 %and = and i64 %foo, 14 %parta = shl i64 %and, 3 %partb = lshr i64 %and, 61 %rotl = or i64 %parta, %partb ret i64 %rotl } ; Test a wrap-around case in which the AND comes before a rotate. ; This again needs a separate mask and rotate. define i32 @f26(i32 %foo) { ; CHECK-LABEL: f26: ; CHECK: rll %r2, %r2, 5 ; CHECK: br %r14 %and = and i32 %foo, -49 %parta = shl i32 %and, 5 %partb = lshr i32 %and, 27 %rotl = or i32 %parta, %partb ret i32 %rotl } ; ...and again with i64, where a single RISBG is OK. define i64 @f27(i64 %foo) { ; CHECK-LABEL: f27: ; CHECK: risbg %r2, %r2, 55, 180, 5 ; CHECK: br %r14 %and = and i64 %foo, -49 %parta = shl i64 %and, 5 %partb = lshr i64 %and, 59 %rotl = or i64 %parta, %partb ret i64 %rotl } ; Test a case where the AND comes before a shift left. define i32 @f28(i32 %foo) { ; CHECK-LABEL: f28: ; CHECK: risbg %r2, %r2, 32, 173, 17 ; CHECK: br %r14 %and = and i32 %foo, 32766 %shl = shl i32 %and, 17 ret i32 %shl } ; ...and again with i64. define i64 @f29(i64 %foo) { ; CHECK-LABEL: f29: ; CHECK: risbg %r2, %r2, 0, 141, 49 ; CHECK: br %r14 %and = and i64 %foo, 32766 %shl = shl i64 %and, 49 ret i64 %shl } ; Test the next shift up from f28, in which the mask should get shortened. define i32 @f30(i32 %foo) { ; CHECK-LABEL: f30: ; CHECK: risbg %r2, %r2, 32, 172, 18 ; CHECK: br %r14 %and = and i32 %foo, 32766 %shl = shl i32 %and, 18 ret i32 %shl } ; ...and again with i64. define i64 @f31(i64 %foo) { ; CHECK-LABEL: f31: ; CHECK: risbg %r2, %r2, 0, 140, 50 ; CHECK: br %r14 %and = and i64 %foo, 32766 %shl = shl i64 %and, 50 ret i64 %shl } ; Test a wrap-around case in which the shift left comes after the AND. ; We can't use RISBG for the shift in that case. define i32 @f32(i32 %foo) { ; CHECK-LABEL: f32: ; CHECK: sll %r2 ; CHECK: br %r14 %and = and i32 %foo, -7 %shl = shl i32 %and, 10 ret i32 %shl } ; ...and again with i64. define i64 @f33(i64 %foo) { ; CHECK-LABEL: f33: ; CHECK: sllg %r2 ; CHECK: br %r14 %and = and i64 %foo, -7 %shl = shl i64 %and, 10 ret i64 %shl } ; Test a case where the AND comes before a shift right. define i32 @f34(i32 %foo) { ; CHECK-LABEL: f34: ; CHECK: risbg %r2, %r2, 57, 191, 55 ; CHECK: br %r14 %and = and i32 %foo, 65535 %shl = lshr i32 %and, 9 ret i32 %shl } ; ...and again with i64. define i64 @f35(i64 %foo) { ; CHECK-LABEL: f35: ; CHECK: risbg %r2, %r2, 57, 191, 55 ; CHECK: br %r14 %and = and i64 %foo, 65535 %shl = lshr i64 %and, 9 ret i64 %shl } ; Test a wrap-around case where the AND comes before a shift right. ; We can't use RISBG for the shift in that case. define i32 @f36(i32 %foo) { ; CHECK-LABEL: f36: ; CHECK: srl %r2 ; CHECK: br %r14 %and = and i32 %foo, -25 %shl = lshr i32 %and, 1 ret i32 %shl } ; ...and again with i64. define i64 @f37(i64 %foo) { ; CHECK-LABEL: f37: ; CHECK: srlg %r2 ; CHECK: br %r14 %and = and i64 %foo, -25 %shl = lshr i64 %and, 1 ret i64 %shl } ; Test a combination involving a large ASHR and a shift left. We can't ; use RISBG there. define i64 @f38(i64 %foo) { ; CHECK-LABEL: f38: ; CHECK: srag {{%r[0-5]}} ; CHECK: sllg {{%r[0-5]}} ; CHECK: br %r14 %ashr = ashr i64 %foo, 32 %shl = shl i64 %ashr, 5 ret i64 %shl } ; Try a similar thing in which no shifted sign bits are kept. define i64 @f39(i64 %foo, i64 *%dest) { ; CHECK-LABEL: f39: ; CHECK: srag [[REG:%r[01345]]], %r2, 35 ; CHECK: risbg %r2, %r2, 33, 189, 31 ; CHECK: br %r14 %ashr = ashr i64 %foo, 35 store i64 %ashr, i64 *%dest %shl = shl i64 %ashr, 2 %and = and i64 %shl, 2147483647 ret i64 %and } ; ...and again with the next highest shift value, where one sign bit is kept. define i64 @f40(i64 %foo, i64 *%dest) { ; CHECK-LABEL: f40: ; CHECK: srag [[REG:%r[01345]]], %r2, 36 ; CHECK: risbg %r2, [[REG]], 33, 189, 2 ; CHECK: br %r14 %ashr = ashr i64 %foo, 36 store i64 %ashr, i64 *%dest %shl = shl i64 %ashr, 2 %and = and i64 %shl, 2147483647 ret i64 %and } ; Check a case where the result is zero-extended. define i64 @f41(i32 %a) { ; CHECK-LABEL: f41 ; CHECK: risbg %r2, %r2, 36, 191, 62 ; CHECK: br %r14 %shl = shl i32 %a, 2 %shr = lshr i32 %shl, 4 %ext = zext i32 %shr to i64 ret i64 %ext } ; In this case the sign extension is converted to a pair of 32-bit shifts, ; which is then extended to 64 bits. We previously used the wrong bit size ; when testing whether the shifted-in bits of the shift right were significant. define i64 @f42(i1 %x) { ; CHECK-LABEL: f42: ; CHECK: nilf %r2, 1 ; CHECK: lcr %r0, %r2 ; CHECK: llgcr %r2, %r0 ; CHECK: br %r14 %ext = sext i1 %x to i8 %ext2 = zext i8 %ext to i64 ret i64 %ext2 } ; Check that we get the case where a 64-bit shift is used by a 32-bit and. define signext i32 @f43(i64 %x) { ; CHECK-LABEL: f43: ; CHECK: risbg [[REG:%r[0-5]]], %r2, 32, 189, 52 ; CHECK: lgfr %r2, [[REG]] %shr3 = lshr i64 %x, 12 %shr3.tr = trunc i64 %shr3 to i32 %conv = and i32 %shr3.tr, -4 ret i32 %conv } ; Check that we don't get the case where the 32-bit and mask is not contiguous define signext i32 @f44(i64 %x) { ; CHECK-LABEL: f44: ; CHECK: srlg [[REG:%r[0-5]]], %r2, 12 %shr4 = lshr i64 %x, 12 %conv = trunc i64 %shr4 to i32 %and = and i32 %conv, 10 ret i32 %and }