; RUN: llc -mtriple=aarch64-none-linux-gnu < %s | FileCheck %s ; First, a simple example from Clang. The registers could plausibly be ; different, but probably won't be. %struct.foo = type { i8, [2 x i8], i8 } define [1 x i64] @from_clang([1 x i64] %f.coerce, i32 %n) nounwind readnone { ; CHECK-LABEL: from_clang: ; CHECK: bfi {{w[0-9]+}}, {{w[0-9]+}}, #3, #4 entry: %f.coerce.fca.0.extract = extractvalue [1 x i64] %f.coerce, 0 %tmp.sroa.0.0.extract.trunc = trunc i64 %f.coerce.fca.0.extract to i32 %bf.value = shl i32 %n, 3 %0 = and i32 %bf.value, 120 %f.sroa.0.0.insert.ext.masked = and i32 %tmp.sroa.0.0.extract.trunc, 135 %1 = or i32 %f.sroa.0.0.insert.ext.masked, %0 %f.sroa.0.0.extract.trunc = zext i32 %1 to i64 %tmp1.sroa.1.1.insert.insert = and i64 %f.coerce.fca.0.extract, 4294967040 %tmp1.sroa.0.0.insert.insert = or i64 %f.sroa.0.0.extract.trunc, %tmp1.sroa.1.1.insert.insert %.fca.0.insert = insertvalue [1 x i64] undef, i64 %tmp1.sroa.0.0.insert.insert, 0 ret [1 x i64] %.fca.0.insert } define void @test_whole32(i32* %existing, i32* %new) { ; CHECK-LABEL: test_whole32: ; CHECK: bfi {{w[0-9]+}}, {{w[0-9]+}}, #26, #5 %oldval = load volatile i32, i32* %existing %oldval_keep = and i32 %oldval, 2214592511 ; =0x83ffffff %newval = load volatile i32, i32* %new %newval_shifted = shl i32 %newval, 26 %newval_masked = and i32 %newval_shifted, 2080374784 ; = 0x7c000000 %combined = or i32 %oldval_keep, %newval_masked store volatile i32 %combined, i32* %existing ret void } define void @test_whole64(i64* %existing, i64* %new) { ; CHECK-LABEL: test_whole64: ; CHECK: bfi {{x[0-9]+}}, {{x[0-9]+}}, #26, #14 ; CHECK-NOT: and ; CHECK: ret %oldval = load volatile i64, i64* %existing %oldval_keep = and i64 %oldval, 18446742974265032703 ; = 0xffffff0003ffffffL %newval = load volatile i64, i64* %new %newval_shifted = shl i64 %newval, 26 %newval_masked = and i64 %newval_shifted, 1099444518912 ; = 0xfffc000000 %combined = or i64 %oldval_keep, %newval_masked store volatile i64 %combined, i64* %existing ret void } define void @test_whole32_from64(i64* %existing, i64* %new) { ; CHECK-LABEL: test_whole32_from64: ; CHECK: bfxil {{x[0-9]+}}, {{x[0-9]+}}, #0, #16 ; CHECK: ret %oldval = load volatile i64, i64* %existing %oldval_keep = and i64 %oldval, 4294901760 ; = 0xffff0000 %newval = load volatile i64, i64* %new %newval_masked = and i64 %newval, 65535 ; = 0xffff %combined = or i64 %oldval_keep, %newval_masked store volatile i64 %combined, i64* %existing ret void } define void @test_32bit_masked(i32 *%existing, i32 *%new) { ; CHECK-LABEL: test_32bit_masked: ; CHECK: and ; CHECK: bfi [[INSERT:w[0-9]+]], {{w[0-9]+}}, #3, #4 %oldval = load volatile i32, i32* %existing %oldval_keep = and i32 %oldval, 135 ; = 0x87 %newval = load volatile i32, i32* %new %newval_shifted = shl i32 %newval, 3 %newval_masked = and i32 %newval_shifted, 120 ; = 0x78 %combined = or i32 %oldval_keep, %newval_masked store volatile i32 %combined, i32* %existing ret void } define void @test_64bit_masked(i64 *%existing, i64 *%new) { ; CHECK-LABEL: test_64bit_masked: ; CHECK: and ; CHECK: bfi [[INSERT:x[0-9]+]], {{x[0-9]+}}, #40, #8 %oldval = load volatile i64, i64* %existing %oldval_keep = and i64 %oldval, 1095216660480 ; = 0xff_0000_0000 %newval = load volatile i64, i64* %new %newval_shifted = shl i64 %newval, 40 %newval_masked = and i64 %newval_shifted, 280375465082880 ; = 0xff00_0000_0000 %combined = or i64 %newval_masked, %oldval_keep store volatile i64 %combined, i64* %existing ret void } ; Mask is too complicated for literal ANDwwi, make sure other avenues are tried. define void @test_32bit_complexmask(i32 *%existing, i32 *%new) { ; CHECK-LABEL: test_32bit_complexmask: ; CHECK: and ; CHECK: bfi {{w[0-9]+}}, {{w[0-9]+}}, #3, #4 %oldval = load volatile i32, i32* %existing %oldval_keep = and i32 %oldval, 647 ; = 0x287 %newval = load volatile i32, i32* %new %newval_shifted = shl i32 %newval, 3 %newval_masked = and i32 %newval_shifted, 120 ; = 0x278 %combined = or i32 %oldval_keep, %newval_masked store volatile i32 %combined, i32* %existing ret void } ; Neither mask is is a contiguous set of 1s. BFI can't be used define void @test_32bit_badmask(i32 *%existing, i32 *%new) { ; CHECK-LABEL: test_32bit_badmask: ; CHECK-NOT: bfi ; CHECK-NOT: bfm ; CHECK: ret %oldval = load volatile i32, i32* %existing %oldval_keep = and i32 %oldval, 135 ; = 0x87 %newval = load volatile i32, i32* %new %newval_shifted = shl i32 %newval, 3 %newval_masked = and i32 %newval_shifted, 632 ; = 0x278 %combined = or i32 %oldval_keep, %newval_masked store volatile i32 %combined, i32* %existing ret void } ; Ditto define void @test_64bit_badmask(i64 *%existing, i64 *%new) { ; CHECK-LABEL: test_64bit_badmask: ; CHECK-NOT: bfi ; CHECK-NOT: bfm ; CHECK: ret %oldval = load volatile i64, i64* %existing %oldval_keep = and i64 %oldval, 135 ; = 0x87 %newval = load volatile i64, i64* %new %newval_shifted = shl i64 %newval, 3 %newval_masked = and i64 %newval_shifted, 664 ; = 0x278 %combined = or i64 %oldval_keep, %newval_masked store volatile i64 %combined, i64* %existing ret void } ; Bitfield insert where there's a left-over shr needed at the beginning ; (e.g. result of str.bf1 = str.bf2) define void @test_32bit_with_shr(i32* %existing, i32* %new) { ; CHECK-LABEL: test_32bit_with_shr: %oldval = load volatile i32, i32* %existing %oldval_keep = and i32 %oldval, 2214592511 ; =0x83ffffff %newval = load i32, i32* %new %newval_shifted = shl i32 %newval, 12 %newval_masked = and i32 %newval_shifted, 2080374784 ; = 0x7c000000 %combined = or i32 %oldval_keep, %newval_masked store volatile i32 %combined, i32* %existing ; CHECK: lsr [[BIT:w[0-9]+]], {{w[0-9]+}}, #14 ; CHECK: bfi {{w[0-9]+}}, [[BIT]], #26, #5 ret void } ; Bitfield insert where the second or operand is a better match to be folded into the BFM define void @test_32bit_opnd1_better(i32* %existing, i32* %new) { ; CHECK-LABEL: test_32bit_opnd1_better: %oldval = load volatile i32, i32* %existing %oldval_keep = and i32 %oldval, 65535 ; 0x0000ffff %newval = load i32, i32* %new %newval_shifted = shl i32 %newval, 16 %newval_masked = and i32 %newval_shifted, 16711680 ; 0x00ff0000 %combined = or i32 %oldval_keep, %newval_masked store volatile i32 %combined, i32* %existing ; CHECK: and [[BIT:w[0-9]+]], {{w[0-9]+}}, #0xffff ; CHECK: bfi [[BIT]], {{w[0-9]+}}, #16, #8 ret void } ; Tests when all the bits from one operand are not useful define i32 @test_nouseful_bits(i8 %a, i32 %b) { ; CHECK-LABEL: test_nouseful_bits: ; CHECK: bfi ; CHECK: bfi ; CHECK: bfi ; CHECK-NOT: bfi ; CHECK-NOT: or ; CHECK: lsl %conv = zext i8 %a to i32 ; 0 0 0 A %shl = shl i32 %b, 8 ; B2 B1 B0 0 %or = or i32 %conv, %shl ; B2 B1 B0 A %shl.1 = shl i32 %or, 8 ; B1 B0 A 0 %or.1 = or i32 %conv, %shl.1 ; B1 B0 A A %shl.2 = shl i32 %or.1, 8 ; B0 A A 0 %or.2 = or i32 %conv, %shl.2 ; B0 A A A %shl.3 = shl i32 %or.2, 8 ; A A A 0 %or.3 = or i32 %conv, %shl.3 ; A A A A %shl.4 = shl i32 %or.3, 8 ; A A A 0 ret i32 %shl.4 } define void @test_nouseful_strb(i32* %ptr32, i8* %ptr8, i32 %x) { entry: ; CHECK-LABEL: @test_nouseful_strb ; CHECK: ldr [[REG1:w[0-9]+]], ; CHECK-NOT: and {{w[0-9]+}}, {{w[0-9]+}}, #0xf8 ; CHECK-NEXT: bfxil [[REG1]], w2, #16, #3 ; CHECK-NEXT: strb [[REG1]], ; CHECK-NEXT: ret %0 = load i32, i32* %ptr32, align 8 %and = and i32 %0, -8 %shr = lshr i32 %x, 16 %and1 = and i32 %shr, 7 %or = or i32 %and, %and1 %trunc = trunc i32 %or to i8 store i8 %trunc, i8* %ptr8 ret void } define void @test_nouseful_strh(i32* %ptr32, i16* %ptr16, i32 %x) { entry: ; CHECK-LABEL: @test_nouseful_strh ; CHECK: ldr [[REG1:w[0-9]+]], ; CHECK-NOT: and {{w[0-9]+}}, {{w[0-9]+}}, #0xfff0 ; CHECK-NEXT: bfxil [[REG1]], w2, #16, #4 ; CHECK-NEXT: strh [[REG1]], ; CHECK-NEXT: ret %0 = load i32, i32* %ptr32, align 8 %and = and i32 %0, -16 %shr = lshr i32 %x, 16 %and1 = and i32 %shr, 15 %or = or i32 %and, %and1 %trunc = trunc i32 %or to i16 store i16 %trunc, i16* %ptr16 ret void } define void @test_nouseful_sturb(i32* %ptr32, i8* %ptr8, i32 %x) { entry: ; CHECK-LABEL: @test_nouseful_sturb ; CHECK: ldr [[REG1:w[0-9]+]], ; CHECK-NOT: and {{w[0-9]+}}, {{w[0-9]+}}, #0xf8 ; CHECK-NEXT: bfxil [[REG1]], w2, #16, #3 ; CHECK-NEXT: sturb [[REG1]], ; CHECK-NEXT: ret %0 = load i32, i32* %ptr32, align 8 %and = and i32 %0, -8 %shr = lshr i32 %x, 16 %and1 = and i32 %shr, 7 %or = or i32 %and, %and1 %trunc = trunc i32 %or to i8 %gep = getelementptr i8, i8* %ptr8, i64 -1 store i8 %trunc, i8* %gep ret void } define void @test_nouseful_sturh(i32* %ptr32, i16* %ptr16, i32 %x) { entry: ; CHECK-LABEL: @test_nouseful_sturh ; CHECK: ldr [[REG1:w[0-9]+]], ; CHECK-NOT: and {{w[0-9]+}}, {{w[0-9]+}}, #0xfff0 ; CHECK-NEXT: bfxil [[REG1]], w2, #16, #4 ; CHECK-NEXT: sturh [[REG1]], ; CHECK-NEXT: ret %0 = load i32, i32* %ptr32, align 8 %and = and i32 %0, -16 %shr = lshr i32 %x, 16 %and1 = and i32 %shr, 15 %or = or i32 %and, %and1 %trunc = trunc i32 %or to i16 %gep = getelementptr i16, i16* %ptr16, i64 -1 store i16 %trunc, i16* %gep ret void } ; The next set of tests generate a BFXIL from 'or (and X, Mask0Imm), ; (and Y, Mask1Imm)' iff Mask0Imm and ~Mask1Imm are equivalent and one of the ; MaskImms is a shifted mask (e.g., 0x000ffff0). ; CHECK-LABEL: @test_or_and_and1 ; CHECK: lsr w8, w1, #4 ; CHECK: bfi w0, w8, #4, #12 define i32 @test_or_and_and1(i32 %a, i32 %b) { entry: %and = and i32 %a, -65521 ; 0xffff000f %and1 = and i32 %b, 65520 ; 0x0000fff0 %or = or i32 %and1, %and ret i32 %or } ; CHECK-LABEL: @test_or_and_and2 ; CHECK: lsr w8, w0, #4 ; CHECK: bfi w1, w8, #4, #12 define i32 @test_or_and_and2(i32 %a, i32 %b) { entry: %and = and i32 %a, 65520 ; 0x0000fff0 %and1 = and i32 %b, -65521 ; 0xffff000f %or = or i32 %and1, %and ret i32 %or } ; CHECK-LABEL: @test_or_and_and3 ; CHECK: lsr x8, x1, #16 ; CHECK: bfi x0, x8, #16, #32 define i64 @test_or_and_and3(i64 %a, i64 %b) { entry: %and = and i64 %a, -281474976645121 ; 0xffff00000000ffff %and1 = and i64 %b, 281474976645120 ; 0x0000ffffffff0000 %or = or i64 %and1, %and ret i64 %or } ; Don't convert 'and' with multiple uses. ; CHECK-LABEL: @test_or_and_and4 ; CHECK: and w8, w0, #0xffff000f ; CHECK: and w9, w1, #0xfff0 ; CHECK: orr w0, w9, w8 ; CHECK: str w8, [x2 define i32 @test_or_and_and4(i32 %a, i32 %b, i32* %ptr) { entry: %and = and i32 %a, -65521 store i32 %and, i32* %ptr, align 4 %and2 = and i32 %b, 65520 %or = or i32 %and2, %and ret i32 %or } ; Don't convert 'and' with multiple uses. ; CHECK-LABEL: @test_or_and_and5 ; CHECK: and w8, w1, #0xfff0 ; CHECK: and w9, w0, #0xffff000f ; CHECK: orr w0, w8, w9 ; CHECK: str w8, [x2] define i32 @test_or_and_and5(i32 %a, i32 %b, i32* %ptr) { entry: %and = and i32 %b, 65520 store i32 %and, i32* %ptr, align 4 %and1 = and i32 %a, -65521 %or = or i32 %and, %and1 ret i32 %or } ; CHECK-LABEL: @test1 ; CHECK: mov [[REG:w[0-9]+]], #5 ; CHECK: bfxil w0, [[REG]], #0, #4 define i32 @test1(i32 %a) { %1 = and i32 %a, -16 ; 0xfffffff0 %2 = or i32 %1, 5 ; 0x00000005 ret i32 %2 } ; CHECK-LABEL: @test2 ; CHECK: mov [[REG:w[0-9]+]], #10 ; CHECK: bfi w0, [[REG]], #22, #4 define i32 @test2(i32 %a) { %1 = and i32 %a, -62914561 ; 0xfc3fffff %2 = or i32 %1, 41943040 ; 0x06400000 ret i32 %2 } ; CHECK-LABEL: @test3 ; CHECK: mov [[REG:x[0-9]+]], #5 ; CHECK: bfxil x0, [[REG]], #0, #3 define i64 @test3(i64 %a) { %1 = and i64 %a, -8 ; 0xfffffffffffffff8 %2 = or i64 %1, 5 ; 0x0000000000000005 ret i64 %2 } ; CHECK-LABEL: @test4 ; CHECK: mov [[REG:x[0-9]+]], #9 ; CHECK: bfi x0, [[REG]], #1, #7 define i64 @test4(i64 %a) { %1 = and i64 %a, -255 ; 0xffffffffffffff01 %2 = or i64 %1, 18 ; 0x0000000000000012 ret i64 %2 } ; Don't generate BFI/BFXIL if the immediate can be encoded in the ORR. ; CHECK-LABEL: @test5 ; CHECK: and [[REG:w[0-9]+]], w0, #0xfffffff0 ; CHECK: orr w0, [[REG]], #0x6 define i32 @test5(i32 %a) { %1 = and i32 %a, 4294967280 ; 0xfffffff0 %2 = or i32 %1, 6 ; 0x00000006 ret i32 %2 } ; BFXIL will use the same constant as the ORR, so we don't care how the constant ; is materialized (it's an equal cost either way). ; CHECK-LABEL: @test6 ; CHECK: mov [[REG:w[0-9]+]], #23250 ; CHECK: movk [[REG]], #11, lsl #16 ; CHECK: bfxil w0, [[REG]], #0, #20 define i32 @test6(i32 %a) { %1 = and i32 %a, 4293918720 ; 0xfff00000 %2 = or i32 %1, 744146 ; 0x000b5ad2 ret i32 %2 } ; BFIs that require the same number of instruction to materialize the constant ; as the original ORR are okay. ; CHECK-LABEL: @test7 ; CHECK: mov [[REG:w[0-9]+]], #44393 ; CHECK: movk [[REG]], #5, lsl #16 ; CHECK: bfi w0, [[REG]], #1, #19 define i32 @test7(i32 %a) { %1 = and i32 %a, 4293918721 ; 0xfff00001 %2 = or i32 %1, 744146 ; 0x000b5ad2 ret i32 %2 } ; BFIs that require more instructions to materialize the constant as compared ; to the original ORR are not okay. In this case we would be replacing the ; 'and' with a 'movk', which would decrease ILP while using the same number of ; instructions. ; CHECK-LABEL: @test8 ; CHECK: mov [[REG2:x[0-9]+]], #2035482624 ; CHECK: and [[REG1:x[0-9]+]], x0, #0xff000000000000ff ; CHECK: movk [[REG2]], #36694, lsl #32 ; CHECK: orr x0, [[REG1]], [[REG2]] define i64 @test8(i64 %a) { %1 = and i64 %a, -72057594037927681 ; 0xff000000000000ff %2 = or i64 %1, 157601565442048 ; 0x00008f5679530000 ret i64 %2 } ; This test exposed an issue with an overly aggressive assert. The bit of code ; that is expected to catch this case is unable to deal with the trunc, which ; results in a failing check due to a mismatch between the BFI opcode and ; the expected value type of the OR. ; CHECK-LABEL: @test9 ; CHECK: lsr x0, x0, #12 ; CHECK: lsr [[REG:w[0-9]+]], w1, #23 ; CHECK: bfi w0, [[REG]], #23, #9 define i32 @test9(i64 %b, i32 %e) { %c = lshr i64 %b, 12 %d = trunc i64 %c to i32 %f = and i32 %d, 8388607 %g = and i32 %e, -8388608 %h = or i32 %g, %f ret i32 %h }