; RUN: opt -analyze -scalar-evolution < %s | FileCheck %s define void @f0(i1 %c) { ; CHECK-LABEL: Classifying expressions for: @f0 entry: %start = select i1 %c, i32 127, i32 0 %step = select i1 %c, i32 -1, i32 1 br label %loop loop: %loop.iv = phi i32 [ 0, %entry ], [ %loop.iv.inc, %loop ] %iv = phi i32 [ %start, %entry ], [ %iv.next, %loop ] ; CHECK: %iv = phi i32 [ %start, %entry ], [ %iv.next, %loop ] ; CHECK-NEXT: --> {%start,+,%step}<%loop> U: [0,128) S: [0,128) %iv.next = add i32 %iv, %step %loop.iv.inc = add i32 %loop.iv, 1 %be.cond = icmp ne i32 %loop.iv.inc, 128 br i1 %be.cond, label %loop, label %leave leave: ret void } define void @f1(i1 %c) { ; CHECK-LABEL: Classifying expressions for: @f1 entry: %start = select i1 %c, i32 120, i32 0 %step = select i1 %c, i32 -8, i32 8 br label %loop loop: %loop.iv = phi i32 [ 0, %entry ], [ %loop.iv.inc, %loop ] %iv = phi i32 [ %start, %entry ], [ %iv.next, %loop ] ; CHECK: %iv.1 = add i32 %iv, 1 ; CHECK-NEXT: --> {(1 + %start),+,%step}<%loop> U: [1,122) S: [1,122) ; CHECK: %iv.2 = add i32 %iv, 2 ; CHECK-NEXT: --> {(2 + %start),+,%step}<%loop> U: [2,123) S: [2,123) ; CHECK: %iv.3 = add i32 %iv, 3 ; CHECK-NEXT: --> {(3 + %start),+,%step}<%loop> U: [3,124) S: [3,124) ; CHECK: %iv.4 = add i32 %iv, 4 ; CHECK-NEXT: --> {(4 + %start),+,%step}<%loop> U: [4,125) S: [4,125) ; CHECK: %iv.5 = add i32 %iv, 5 ; CHECK-NEXT: --> {(5 + %start),+,%step}<%loop> U: [5,126) S: [5,126) ; CHECK: %iv.6 = add i32 %iv, 6 ; CHECK-NEXT: --> {(6 + %start),+,%step}<%loop> U: [6,127) S: [6,127) ; CHECK: %iv.7 = add i32 %iv, 7 ; CHECK-NEXT: --> {(7 + %start),+,%step}<%loop> U: [7,128) S: [7,128) %iv.1 = add i32 %iv, 1 %iv.2 = add i32 %iv, 2 %iv.3 = add i32 %iv, 3 %iv.4 = add i32 %iv, 4 %iv.5 = add i32 %iv, 5 %iv.6 = add i32 %iv, 6 %iv.7 = add i32 %iv, 7 ; CHECK: %iv.m1 = sub i32 %iv, 1 ; CHECK-NEXT: --> {(-1 + %start),+,%step}<%loop> U: [-1,120) S: [-1,120) ; CHECK: %iv.m2 = sub i32 %iv, 2 ; CHECK-NEXT: --> {(-2 + %start),+,%step}<%loop> U: [-2,119) S: [-2,119) ; CHECK: %iv.m3 = sub i32 %iv, 3 ; CHECK-NEXT: --> {(-3 + %start),+,%step}<%loop> U: [-3,118) S: [-3,118) ; CHECK: %iv.m4 = sub i32 %iv, 4 ; CHECK-NEXT: --> {(-4 + %start),+,%step}<%loop> U: [-4,117) S: [-4,117) ; CHECK: %iv.m5 = sub i32 %iv, 5 ; CHECK-NEXT: --> {(-5 + %start),+,%step}<%loop> U: [-5,116) S: [-5,116) ; CHECK: %iv.m6 = sub i32 %iv, 6 ; CHECK-NEXT: --> {(-6 + %start),+,%step}<%loop> U: [-6,115) S: [-6,115) ; CHECK: %iv.m7 = sub i32 %iv, 7 ; CHECK-NEXT: --> {(-7 + %start),+,%step}<%loop> U: [-7,114) S: [-7,114) %iv.m1 = sub i32 %iv, 1 %iv.m2 = sub i32 %iv, 2 %iv.m3 = sub i32 %iv, 3 %iv.m4 = sub i32 %iv, 4 %iv.m5 = sub i32 %iv, 5 %iv.m6 = sub i32 %iv, 6 %iv.m7 = sub i32 %iv, 7 %iv.next = add i32 %iv, %step %loop.iv.inc = add i32 %loop.iv, 1 %be.cond = icmp sgt i32 %loop.iv, 14 br i1 %be.cond, label %leave, label %loop leave: ret void } define void @f2(i1 %c) { ; CHECK-LABEL: Classifying expressions for: @f2 entry: %start = select i1 %c, i32 127, i32 0 %step = select i1 %c, i32 -1, i32 1 br label %loop loop: %loop.iv = phi i32 [ 0, %entry ], [ %loop.iv.inc, %loop ] %iv = phi i32 [ %start, %entry ], [ %iv.next, %loop ] %iv.sext = sext i32 %iv to i64 %iv.next = add i32 %iv, %step ; CHECK: %iv.sext = sext i32 %iv to i64 ; CHECK-NEXT: --> {(sext i32 %start to i64),+,(sext i32 %step to i64)}<%loop> U: [0,128) S: [0,128) %loop.iv.inc = add i32 %loop.iv, 1 %be.cond = icmp ne i32 %loop.iv.inc, 128 br i1 %be.cond, label %loop, label %leave leave: ret void } define void @f3(i1 %c) { ; CHECK-LABEL: Classifying expressions for: @f3 entry: ; NB! the i16 type (as opposed to i32), the choice of the constant 509 ; and the trip count are all related and not arbitrary. We want an ; add recurrence that will look like it can unsign-overflow *unless* ; SCEV is able to see the correlation between the two selects feeding ; into the initial value and the step increment. %start = select i1 %c, i16 1000, i16 0 %step = select i1 %c, i16 1, i16 509 br label %loop loop: %loop.iv = phi i16 [ 0, %entry ], [ %loop.iv.inc, %loop ] %iv = phi i16 [ %start, %entry ], [ %iv.next, %loop ] %iv.zext = zext i16 %iv to i64 ; CHECK: %iv.zext = zext i16 %iv to i64 ; CHECK-NEXT: --> {(zext i16 %start to i64),+,(zext i16 %step to i64)}<%loop> U: [0,64644) S: [0,64644) %iv.next = add i16 %iv, %step %loop.iv.inc = add i16 %loop.iv, 1 %be.cond = icmp ne i16 %loop.iv.inc, 128 br i1 %be.cond, label %loop, label %leave leave: ret void } define void @f4(i1 %c) { ; CHECK-LABEL: Classifying expressions for: @f4 ; @f4() demonstrates a case where SCEV is not able to compute a ; precise range for %iv.trunc, though it should be able to, in theory. ; This is because SCEV looks into affine add recurrences only when the ; backedge taken count of the loop has the same bitwidth as the ; induction variable. entry: %start = select i1 %c, i32 127, i32 0 %step = select i1 %c, i32 -1, i32 1 br label %loop loop: %loop.iv = phi i32 [ 0, %entry ], [ %loop.iv.inc, %loop ] %iv = phi i32 [ %start, %entry ], [ %iv.next, %loop ] %iv.trunc = trunc i32 %iv to i16 ; CHECK: %iv.trunc = trunc i32 %iv to i16 ; CHECK-NEXT: --> {(trunc i32 %start to i16),+,(trunc i32 %step to i16)}<%loop> U: full-set S: full-set %iv.next = add i32 %iv, %step %loop.iv.inc = add i32 %loop.iv, 1 %be.cond = icmp ne i32 %loop.iv.inc, 128 br i1 %be.cond, label %loop, label %leave leave: ret void } define void @f5(i1 %c) { ; CHECK-LABEL: Classifying expressions for: @f5 entry: %start = select i1 %c, i32 127, i32 0 %step = select i1 %c, i32 -1, i32 1 br label %loop loop: %loop.iv = phi i16 [ 0, %entry ], [ %loop.iv.inc, %loop ] %iv = phi i32 [ %start, %entry ], [ %iv.next, %loop ] %iv.trunc = trunc i32 %iv to i16 ; CHECK: %iv.trunc = trunc i32 %iv to i16 ; CHECK-NEXT: --> {(trunc i32 %start to i16),+,(trunc i32 %step to i16)}<%loop> U: [0,128) S: [0,128) %iv.next = add i32 %iv, %step %loop.iv.inc = add i16 %loop.iv, 1 %be.cond = icmp ne i16 %loop.iv.inc, 128 br i1 %be.cond, label %loop, label %leave leave: ret void } define void @f6(i1 %c) { ; CHECK-LABEL: Classifying expressions for: @f6 entry: %start = select i1 %c, i32 127, i32 0 %step = select i1 %c, i32 -2, i32 0 br label %loop loop: %loop.iv = phi i16 [ 0, %entry ], [ %loop.iv.inc, %loop ] %iv = phi i32 [ %start, %entry ], [ %iv.next, %loop ] ; CHECK: %iv = phi i32 [ %start, %entry ], [ %iv.next, %loop ] ; CHECK-NEXT: --> {%start,+,(1 + %step)}<%loop> U: [0,128) S: [0,128) %step.plus.one = add i32 %step, 1 %iv.next = add i32 %iv, %step.plus.one %iv.sext = sext i32 %iv to i64 ; CHECK: %iv.sext = sext i32 %iv to i64 ; CHECK-NEXT: --> {(sext i32 %start to i64),+,(1 + (sext i32 %step to i64))}<%loop> U: [0,128) S: [0,128) %loop.iv.inc = add i16 %loop.iv, 1 %be.cond = icmp ne i16 %loop.iv.inc, 128 br i1 %be.cond, label %loop, label %leave leave: ret void } define void @f7(i1 %c) { ; CHECK-LABEL: Classifying expressions for: @f7 entry: %start = select i1 %c, i32 127, i32 0 %step = select i1 %c, i32 -1, i32 1 br label %loop loop: %loop.iv = phi i16 [ 0, %entry ], [ %loop.iv.inc, %loop ] %iv = phi i32 [ %start, %entry ], [ %iv.next, %loop ] %iv.trunc = trunc i32 %iv to i16 ; CHECK: %iv.trunc = trunc i32 %iv to i16 ; CHECK-NEXT: --> {(trunc i32 %start to i16),+,(trunc i32 %step to i16)}<%loop> U: [0,128) S: [0,128) %iv.next = add i32 %iv, %step %iv.trunc.plus.one = add i16 %iv.trunc, 1 ; CHECK: %iv.trunc.plus.one = add i16 %iv.trunc, 1 ; CHECK-NEXT: --> {(1 + (trunc i32 %start to i16)),+,(trunc i32 %step to i16)}<%loop> U: [1,129) S: [1,129) %iv.trunc.plus.two = add i16 %iv.trunc, 2 ; CHECK: %iv.trunc.plus.two = add i16 %iv.trunc, 2 ; CHECK-NEXT: --> {(2 + (trunc i32 %start to i16)),+,(trunc i32 %step to i16)}<%loop> U: [2,130) S: [2,130) %loop.iv.inc = add i16 %loop.iv, 1 %be.cond = icmp ne i16 %loop.iv.inc, 128 br i1 %be.cond, label %loop, label %leave leave: ret void }